Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 546))

Abstract

Microfluidics is an interdisciplinary field at the interface of chemistry, engineering, and biology; and has experienced rapid growth over the past decades due to advantages associated with miniaturization, integration and faster sample processing and analysis time (Gervais et al., 2011; Hou et al., 2011; Bhagat et al., 2010). Recently, several microfluidic platforms have been developed for the study of human disease cell biomechanics at the cellular and molecular levels so as to gain better insights into various human diseases such as cancer (Bhagat et al., 2010), pneumonia (Kim et al., 2009b), sepsis (Mach and Di Carlo, 2010) and malaria (Hou et al., 2010). In this section, we will elaborate on recent advances in cellular biomechanics using microfluidic approaches. In particular, we will look at various techniques in probing cellular mechanical properties with some novel applications in cancer and malaria such as the identification and enrichments of these diseased cells from their normal counter parts. We will also provide insights into the challenges associated with current microfluidic approaches and provide future perspectives for the next-generation platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A. Adamo, A. Sharei, L. Adamo, B.K. Lee, S. Mao, and K.F. Jensen. Microfluidics-based assessment of cell deformability. Analytical Chemistry, 84(15):6438–6443, 2012.

    Article  CAS  Google Scholar 

  • C. Alix-Panabires, H. Schwarzenbach, and K. Pantel. Circulating tumor cells and circulating tumor dna. Annual Review of Medicine, 63:199–215, 2012.

    Article  Google Scholar 

  • A.L. Allan and M. Keeney. Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. Journal of oncology, 2010, 2009.

    Google Scholar 

  • H. Becker and L.E. Locascio. Polymer microfluidic devices. Talanta, 56(2): 267–287, 2002.

    Article  CAS  Google Scholar 

  • A.A.S. Bhagat, H. Bow, H.W. Hou, S.J. Tan, J. Han, and C.T. Lim. Microfluidics for cell separation. Medical and Biological Engineering and Computing, 48(10):999–1014, 2010.

    Article  Google Scholar 

  • H. Bow, I.V. Pivkin, M. Diez-Silva, S.J. Goldfless, M. Dao, J.C. Niles,

    Google Scholar 

  • S. Suresh, and J. Han. A microfabricated deformability-based flow cytometer with application to malaria. Lab on a Chip, 11(6):1065–1073, 2011.

    Article  Google Scholar 

  • D.A. Fletcher and R.D. Mullins. Cell mechanics and the cytoskeleton. Nature, 463(7280):485–492, 2010.

    Article  CAS  Google Scholar 

  • T.A. Franke and A. Wixforth. Microfluidics for miniaturized laboratories on a chip. ChemPhysChem, 9(15):2140–2156, 2008.

    Article  CAS  Google Scholar 

  • S. Gabriele, A.M. Benoliel, P. Bongrand, and O. Thodoly. Microfluidic investigation reveals distinct roles for actin cytoskeleton and myosin ii activity in capillary leukocyte trafficking. Biophysical journal, 96(10): 4308–4318, 2009.

    Article  CAS  Google Scholar 

  • D. Gallego-Perez, N. Higuita-Castro, L. Denning, J. DeJesus, K. Dahl, A. Sarkar, and D.J. Hansford. Microfabricated mimics of in vivo structural cues for the study of guided tumor cell migration. Lab on a Chip, 2012.

    Google Scholar 

  • M. Geissler and Y. Xia. Patterning: Principles and some new developments. Advanced Materials, 16(15):1249–1269, 2004.

    Article  CAS  Google Scholar 

  • L. Gervais, N. De Rooij, and E. Delamarche. Microfluidic chips for pointofcare immunodiagnostics. Advanced Materials, 23(24):H151–H176, 2011.

    Article  CAS  Google Scholar 

  • Q. Guo, S. Park, and H. Ma. Microfluidic micropipette aspiration for measuring the deformability of single cells. Lab Chip, 2012a.

    Google Scholar 

  • Q. Guo, S.J. Reiling, P. Rohrbach, and H. Ma. Microfluidic biomechanical assay for red blood cells parasitized by plasmodium falciparum. Lab on a Chip, 12(6):1143–1150, 2012b.

    Article  CAS  Google Scholar 

  • S. Goldfless P. Abgrall K. Tan J. Niles C. T. Lim J. Han H. Bow, H. W. Hou. Continuous-flow deformability-based sorting of malaria-infected red blood cells. mTAS 2009, Jeju, Korea, pp. 1219, 2009.

    Google Scholar 

  • S. Handayani, D.T. Chiu, E. Tjitra, J.S. Kuo, D. Lampah, E. Kenangalem, L. Renia, G. Snounou, R.N. Price, and N.M. Anstey. High deformability of plasmodium vivax-infected red blood cells under microfluidic conditions. Journal of Infectious Diseases, 199(3):445–450, 2009.

    Article  Google Scholar 

  • HW Hou, QS Li, G.Y.H. Lee, AP Kumar, CN Ong, and CT Lim. Deformability study of breast cancer cells using microfluidics. Biomedical microdevices, 11(3):557–564, 2009.

    Article  CAS  Google Scholar 

  • H.W. Hou, A.A.S. Bhagat, A.G.L. Chong, P. Mao, K.S.W. Tan, J. Han, and C.T. Lim. Deformability based cell marginationa simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip, 10(19): 2605–2613, 2010.

    Article  CAS  Google Scholar 

  • H.W. Hou, W.C. Lee, M.C. Leong, S. Sonam, S.R.K. Vedula, and C.T. Lim. Microfluidics for applications in cell mechanics and mechanobiology. Cellular and Molecular Bioengineering, pages 1–12, 2011.

    Google Scholar 

  • D.H. Kim, P.K. Wong, J. Park, A. Levchenko, and Y. Sun. Microengineered platforms for cell mechanobiology. Annual review of biomedical engineering, 11:203–233, 2009a.

    Article  CAS  Google Scholar 

  • K. Kim, H.S. Jung, J.Y. Song, M.R. Lee, K.S. Kim, and K.Y. Suh. Rapid detection of mycoplasma pneumonia in a microfluidic device using immunoagglutination assay and static light scattering. Electrophoresis, 30 (18):3206–3211, 2009b.

    Article  CAS  Google Scholar 

  • N. Li, A. Tourovskaia, and A. Folch. Biology on a chip: microfabrication for studying the behavior of cultured cells. Critical reviews in biomedical engineering, 31(5-6):423–488, 2003.

    Article  Google Scholar 

  • A.J. Mach and D. Di Carlo. Continuous scalable blood filtration device using inertial microfluidics. Biotechnology and bioengineering, 107(2): 302–311, 2010.

    Article  CAS  Google Scholar 

  • M. Madou. Fundamentals of microfabrication, volume 1. CRC Press LLC. Captulo, 1997.

    Google Scholar 

  • P. Preira, V. Grandne, M. Camara, S. GABRIELE, J.M. Forel, and O. Theodoly. Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab on a Chip, 2012.

    Google Scholar 

  • D. Qin, Y. Xia, A.J. Black, and G.M. Whitesides. Photolithography with transparent reflective photomasks. Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, 16(1):98–103, 1998.

    Article  CAS  Google Scholar 

  • M.J. Rosenbluth, W.A. Lam, and D.A. Fletcher. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip, 8(7):1062–1070, 2008.

    Article  CAS  Google Scholar 

  • J.P. Shelby, J. White, K. Ganesan, P.K. Rathod, and D.T. Chiu. A microfluidic model for single-cell capillary obstruction by plasmodium falciparum-infected erythrocytes. Proceedings of the National Academy of Sciences, 100(25):14618–14622, 2003. S. Suresh. Biomechanics and biophysics of cancer cells. Acta Materialia, 55 (12):3989–4014, 2007.

    Google Scholar 

  • A. Vaziri and A. Gopinath. Cell and biomolecular mechanics in silico. Nature materials, 7(1):15–23, 2007.

    Article  Google Scholar 

  • L. Vogelaar. Phase separation micromolding. phd dissertation, university of twente, enschede, the netherlands, 2005.

    Google Scholar 

  • J. Voldman, M.L. Gray, and M.A. Schmidt. Microfabrication in biology and medicine. Annual review of biomedical engineering, 1(1):401–425, 1999.

    Article  CAS  Google Scholar 

  • M.E. Warkiani. Fabrication and characterization of micro/nano filter for isolation of waterborne pathogens. phd dissertation, nanyang technological university, singapore, 2012.

    Google Scholar 

  • D.B. Weibel, W.R. DiLuzio, and G.M. Whitesides. Microfabrication meets microbiology. Nature Reviews Microbiology, 5(3):209–218, 2007.

    Article  CAS  Google Scholar 

  • G.M. Whitesides. The origins and the future of microfluidics. Nature, 442 (7101):368–373, 2006.

    Article  CAS  Google Scholar 

  • D. Wirtz, K. Konstantopoulos, and P.C. Searson. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer, 11(7):512–522, 2011.

    Article  CAS  Google Scholar 

  • Y. Xia and G.M. Whitesides. Soft lithography. Annual review of materials science, 28(1):153–184, 1998.

    Article  CAS  Google Scholar 

  • Y. Xia, D. Qin, and G.M. Whitesides. Microcontact printing with a cylindrical rolling stamp: A practical step toward automatic manufacturing of patterns with submicrometersized features. Advanced Materials, 8(12): 1015–1017, 1996.

    Article  CAS  Google Scholar 

  • Y. Xia, J.J. McClelland, R. Gupta, D. Qin, X.M. Zhao, L.L. Sohn, R.J. Celotta, and G.M. Whitesides. Replica molding using polymeric materials: A practical step toward nanomanufacturing. Advanced Materials, 9(2):147–149, 2004.

    Article  Google Scholar 

  • R.N. Zare and S. Kim. Microfluidic platforms for single-cell analysis. Annual review of biomedical engineering, 12:187–201, 2010.

    Article  CAS  Google Scholar 

  • W. Zhang, K. Kai, D.S. Choi, T. Iwamoto, Y.H. Nguyen, H. Wong, M.D. Landis, N.T. Ueno, J. Chang, and L. Qin. Microfluidics separation reveals the stem-celllike deformability of tumor-initiating cells. Proceedings of the National Academy of Sciences, 2012.

    Google Scholar 

  • Y. Zhang, C. Liu, and D. Whalley. Direct-write techniques for maskless production of microelectronics: A review of current state-of-the-art technologies. In Electronic Packaging Technology High Density Packaging, 2009. ICEPT-HDP’09. International Conference on, pages 497–503. IEEE.

    Chapter  Google Scholar 

  • Y. Zheng, E. Shojaei-Baghini, A. Azad, C. Wang, and Y. Sun. Highthroughput biophysical measurement of human red blood cells. Lab on a Chip, 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 CISM, Udine

About this chapter

Cite this chapter

Majid, E.W., Lim, C.T. (2013). Microfluidic Platforms for Human Disease Cell Mechanics Studies. In: Buehler, M.J., Ballarini, R. (eds) Materiomics: Multiscale Mechanics of Biological Materials and Structures. CISM International Centre for Mechanical Sciences, vol 546. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1574-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1574-9_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1573-2

  • Online ISBN: 978-3-7091-1574-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics