Skip to main content

The Interplay Between Auxin and the Cell Cycle During Plant Development

  • Chapter
  • First Online:
Auxin and Its Role in Plant Development

Abstract

The essential role of auxin for cell proliferation in plants is well known. Both auxin signaling and cell cycle regulation have been studied elaborately, but less is known about the connection between these processes. Recent studies report on the first molecular pathways that have been found to directly link auxin levels to the regulation of cell cycle activity. Here, we discuss the general effect of auxin on cell cycle progression and then zoom in on the interplay between auxin and the cell cycle during root development in Arabidopsis thaliana. At the root tip, an auxin gradient maintains the correct organization of the ground tissue layers and controls the size of the root apical meristem. During auxin-induced lateral root initiation LATERAL ORGAN BOUNDARIES-DOMAIN transcription factors are upregulated and control reactivation of the cell cycle and cell specification, both of which are needed for proper lateral root initiation. Auxin-induced lateral root initiation-like pathways are also involved in cell cycle reactivation during the formation of nematode feeding sites, nitrogen-fixing nodules and callus tissue, pointing to the existence of one common auxin–cell cycle module to initiate new organs in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y-S, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119(1):109–120. doi:10.1016/j.cell.2004.09.018

    CAS  PubMed  Google Scholar 

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57(4):626–644. doi:10.1111/j.1365-313X.2008.03715.x

    CAS  PubMed  Google Scholar 

  • Bayliss MW (1985) Regulation of the cell division cycle in cultured plant cells. In: Bryant JA, Francis D (eds) The cell division cycle in plants. Cambridge University Press, Cambridge, pp 157–177

    Google Scholar 

  • Beeckman T, Burssens S, Inzé D (2001) The peri-cell-cycle in Arabidopsis. J Exp Bot 52(Spec Issue):403–411

    CAS  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115(5):591–602

    PubMed  Google Scholar 

  • Berckmans B, Vassileva V, Schmid SPC, Maes S, Parizot B, Naramoto S, Magyar Z, Alvim Kamei CL, Koncz C, Bögre L, Persiau G, De Jaeger G, Friml J, Simon R, Beeckman T, De Veylder L (2011) Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. Plant Cell 23(10):3671–3683. doi:10.1105/tpc.111.088377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blakely LM, Evans TA (1979) Cell dynamics studies on the pericycle of radish seedling roots. Plant Sci Lett 14(1):79–83

    CAS  Google Scholar 

  • Boerjan W, Cervera M-T, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inzé D (1995) superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7(9):1405–1419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley MV, Crane JC (1955) The effect of 2,4,5-trichlorophenoxyacetic acid on cell and nuclear size and endopolyploidy in parenchyma of apricot fruits. Am J Bot 42(3):273–281

    CAS  Google Scholar 

  • Burssens S, de Almeida Engler J, Beeckman T, Richard C, Shaul O, Ferreira P, Van Montagu M, Inzé D (2000) Developmental expression of the Arabidopsis thaliana CycA2;1 gene. Planta 211(5):623–631

    CAS  PubMed  Google Scholar 

  • Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9(17):2131–2142

    CAS  PubMed  Google Scholar 

  • Chevalier C (2007) Cell cycle control and fruit development. In: Inzé D (ed) Cell cycle control and plant development, vol 32, Annual plant reviews. Blackwell, Oxford, UK

    Google Scholar 

  • Chupeau M-C, Granier F, Pichon O, Renou J-P, Gaudin V, Chupeau Y (2013) Characterization of the early events leading to totipotency in an Arabidopsis protoplast liquid culture by temporal transcript profiling. Plant Cell. doi:10.1105/tpc.113.109538

    PubMed Central  PubMed  Google Scholar 

  • Churchman ML, Brown ML, Kato N, Kirik V, Hülskamp M, Inzé D, De Veylder L, Walker JD, Zheng Z, Oppenheimer DG, Gwin T, Churchman J, Larkin JC (2006) SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18(11):3145–3157. doi:10.1105/tpc.106.044834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cools T, Iantcheva A, Weimer AK, Boens S, Takahashi N, Maes S, Van den Daele H, Van Isterdael G, Schnittger A, De Veylder L (2011) The Arabidopsis thaliana checkpoint kinase WEE1 protects against premature vascular differentiation during replication stress. Plant Cell 23(4):1435–1448. doi:10.1105/tpc.110.082768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Ramírez A, Díaz-Triviño S, Blilou I, Grieneisen VA, Sozzani R, Zamioudis C, Miskolczi P, Nieuwland J, Benjamins R, Dhonukshe P, Caballero-Pérez J, Horvath B, Long Y, Mähönen AP, Zhang H, Xu J, Murray JAH, Benfey PN, Bako L, Marée AFM, Scheres B (2012) A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150(5):1002–1015. doi:10.1016/j.cell.2012.07.017

    PubMed Central  PubMed  Google Scholar 

  • de Almeida Engler J, De Vleesschauwer V, Burssens S, Celenza JL Jr, Inzé D, Van Montagu M, Engler G, Gheysen G (1999) Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia. Plant Cell 11(5):793–808

    PubMed Central  PubMed  Google Scholar 

  • de Almeida Engler J, De Veylder L, De Groodt R, Rombauts S, Boudolf V, De Meyer B, Hemerly A, Ferreira P, Beeckman T, Karimi M, Hilson P, Inzé D, Engler G (2009) Systematic analysis of cell-cycle gene expression during Arabidopsis development. Plant J 59(4):645–660. doi:10.1111/j.1365-313X.2009.03893.x

    PubMed  Google Scholar 

  • De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, Audenaert D, Van Campenhout J, Overvoorde P, Jansen L, Vanneste S, Möller B, Wilson M, Holman T, Van Isterdael G, Brunoud G, Vuylsteke M, Vernoux T, De Veylder L, Inzé D, Weijers D, Bennett MJ, Beeckman T (2010) A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol 20(19):1697–1706. doi:10.1016/j.cub.2010.09.007, S0960-9822(10)01088-2 [pii]

    PubMed  Google Scholar 

  • De Schutter K, Joubès J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E, Beeckman T, Kushnir S, Inzé D, De Veylder L (2007) Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19(1):211–225. doi:10.1105/tpc.106.045047

    PubMed Central  PubMed  Google Scholar 

  • De Smet I, Beeckman T (2011) Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat Rev Mol Cell Biol 12(3):177–188. doi:10.1038/nrm3064

    PubMed  Google Scholar 

  • De Smet I, Tetsumura T, De Rybel B, Frei dit Frey N, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzé D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134(4):681–690

    PubMed  Google Scholar 

  • De Smet I, Lau S, Voß U, Vanneste S, Benjamins R, Rademacher EH, Schlereth A, De Rybel B, Vassileva V, Grunewald W, Naudts M, Levesque MP, Ehrismann JS, Inzé D, Luschnig C, Benfey PN, Weijers D, Van Montagu MCE, Bennett MJ, Jürgens G, Beeckman T (2010) Bimodular auxin response controls organogenesis in Arabidopsis. Proc Natl Acad Sci U S A 107(6):2705–2710. doi:10.1073/pnas.0915001107

    PubMed Central  PubMed  Google Scholar 

  • De Veylder L, de Almeida Engler J, Burssens S, Manevski A, Lescure B, Van Montagu M, Engler G, Inzé D (1999) A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordia formation. Planta 208(4):453–462

    PubMed  Google Scholar 

  • De Veylder L, Larkin JC, Schnittger A (2011) Molecular control and function of endoreplication in development and physiology. Trends Plant Sci 16(11):624–634. doi:10.1016/j.tplants.2011.07.001

    PubMed  Google Scholar 

  • del Pozo JC, Manzano C (2013) Auxin and the ubiquitin pathway. Two players-one target: the cell cycle in action. J Exp Bot. doi:10.1093/jxb/ert363

    PubMed  Google Scholar 

  • del Pozo JC, Boniotti MB, Gutierrez C (2002) Arabidopsis E2Fc functions in cell division and is degraded by the ubiquitin-SCFAtSKP2 pathway in response to light. Plant Cell 14(12):3057–3071

    PubMed Central  PubMed  Google Scholar 

  • del Pozo JC, Diaz-Trivino S, Cisneros N, Gutierrez C (2006) The balance between cell division and endoreplication depends on E2FC-DPB, transcription factors regulated by the ubiquitin-SCFSKP2A pathway in Arabidopsis. Plant Cell 18(9):2224–2235. doi:10.1105/tpc.105.039651

    PubMed Central  PubMed  Google Scholar 

  • Delarue M, Prinsen E, Van Onckelen H, Caboche M, Bellini C (1998) Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14(5):603–611

    CAS  PubMed  Google Scholar 

  • Dhondt S, Coppens F, De Winter F, Swarup K, Merks RMH, Inzé D, Bennett MJ, Beemster GTS (2010) SHORT-ROOT and SCARECROW regulate leaf growth in Arabidopsis by stimulating S-phase progression of the cell cycle. Plant Physiol 154(3):1183–1195. doi:10.1104/pp.110.158857

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiDonato RJ, Arbuckle E, Buker S, Sheets J, Tobar J, Totong R, Grisafi P, Fink GR, Celenza JL (2004) Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation. Plant J 37(3):340–353. doi:10.1046/j.1365-313X.2003.01964.x

    CAS  PubMed  Google Scholar 

  • Doerner P, Jørgensen J-E, You R, Steppuhn J, Lamb C (1996) Control of root growth and development by cyclin expression. Nature 380(6574):520–523. doi:10.1038/380520a0

    CAS  PubMed  Google Scholar 

  • Donner TJ, Sherr I, Scarpella E (2009) Regulation of preprocambial cell state acquisition by auxin signaling in Arabidopsis leaves. Development 136(19):3235–3246. doi:10.1242/dev.037028

    CAS  PubMed  Google Scholar 

  • Dubrovsky JG, Doerner PW, Colón-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol 124(4):1648–1657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci U S A 105(25):8790–8794. doi:10.1073/pnas.0712307105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dudits D, Ábrahám E, Miskolczi P, Ayaydin F, Bilgin M, Horváth GV (2011) Cell-cycle control as a target for calcium, hormonal and developmental signals: the role of phosphorylation in the retinoblastoma-centred pathway. Ann Bot 107(7):1193–1202. doi:10.1093/aob/mcr038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22(7):1169–1180. doi:10.1038/cr.2012.63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feng Z, Sun X, Wang G, Liu H, Zhu J (2012) LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana. Ann Bot 110(1):1–10. doi:10.1093/aob/mcs019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferreira P, Hemerly A, de Almeida Engler J, Bergounioux C, Burssens S, Van Montagu M, Engler G, Inzé D (1994a) Three discrete classes of Arabidopsis cyclins are expressed during different intervals of the cell cycle. Proc Natl Acad Sci U S A 91(24):11313–11317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferreira PCG, Hemerly AS, de Almeida Engler J, Van Montagu M, Engler G, Inzé D (1994b) Developmental expression of the Arabidopsis cyclin gene cyc1At. Plant Cell 6(12):1763–1774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29(2):153–168

    CAS  PubMed  Google Scholar 

  • Fukaki H, Nakao Y, Okushima Y, Theologis A, Tasaka M (2005) Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J 44(3):382–395. doi:10.1111/j.1365-313X.2005.02537.x

    CAS  PubMed  Google Scholar 

  • Fukaki H, Taniguchi N, Tasaka M (2006) PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant J 48(3):380–389. doi:10.1111/j.1365-313X.2006.02882.x

    CAS  PubMed  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449(7165):1053–1057. doi:10.1038/nature06206

    CAS  PubMed  Google Scholar 

  • Gheysen G, Mitchum MG (2011) How nematodes manipulate plant development pathways for infection. Curr Opin Plant Biol 14(4):415–421. doi:10.1016/j.pbi.2011.03.012

    PubMed  Google Scholar 

  • Goh T, Joi S, Mimura T, Fukaki H (2012) The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 139(5):883–893. doi:10.1242/dev.071928

    CAS  PubMed  Google Scholar 

  • Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134(19):3539–3548. doi:10.1242/dev.010298

    CAS  PubMed  Google Scholar 

  • Goverse A, de Almeida Engler J, Verhees J, van der Krol S, Helder J, Gheysen G (2000) Cell cycle activation by plant parasitic nematodes. Plant Mol Biol 43(5–6):747–761

    CAS  PubMed  Google Scholar 

  • Grieneisen VA, Xu J, Marée AFM, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449(7165):1008–1013. doi:10.1038/nature06215

    CAS  PubMed  Google Scholar 

  • Grunewald W, Cannoot B, Friml J, Gheysen G (2009a) Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection. PLoS Pathog 5(1):e1000266. doi:10.1371/journal.ppat.1000266

    PubMed Central  PubMed  Google Scholar 

  • Grunewald W, van Noorden G, Van Isterdael G, Beeckman T, Gheysen G, Mathesius U (2009b) Manipulation of auxin transport in plant roots during Rhizobium symbiosis and nematode parasitism. Plant Cell 21(9):2553–2562. doi:10.1105/tpc.109.069617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hemerly AS, Ferreira P, de Almeida Engler J, Van Montagu M, Engler G, Inzé D (1993) cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5(12):1711–1723. doi:10.1105/tpc.5.12.1711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hewezi T, Baum TJ (2013) Manipulation of plant cells by cyst and root-knot nematode effectors. Mol Plant Microbe Interact 26(1):9–16. doi:10.1094/MPMI-05-12-0106-FI

    CAS  PubMed  Google Scholar 

  • Heyman J, De Veylder L (2012) The anaphase-promoting complex/cyclosome in control of plant development. Mol Plant 5(6):1182–1194. doi:10.1093/mp/sss094

    CAS  PubMed  Google Scholar 

  • Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inzé D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14(10):2339–2351. doi:10.1105/tpc.004960

    CAS  PubMed Central  PubMed  Google Scholar 

  • Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Van Montagu M, Inzé D, Beeckman T (2004) Transcript profiling of early lateral root initiation. Proc Natl Acad Sci U S A 101(14):5146–5151. doi:10.1073/pnas.0308702101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inzé D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105. doi:10.1146/annurev.genet.40.110405.090431

    PubMed  Google Scholar 

  • Ishida T, Adachi S, Yoshimura M, Shimizu K, Umeda M, Sugimoto K (2010) Auxin modulates the transition from the mitotic cycle to the endocycle in Arabidopsis. Development 137(1):63–71. doi:10.1242/dev.035840

    CAS  PubMed  Google Scholar 

  • Ito M (2000) Factors controlling cyclin B expression. Plant Mol Biol 43(5–6):677–690

    CAS  PubMed  Google Scholar 

  • Jansen L, Hollunder J, Roberts I, Forestan C, Fonteyne P, Van Quickenborne C, Zhen R-G, McKersie B, Parizot B, Beeckman T (2013a) Comparative transcriptomics as a tool for the identification of root branching genes in maize. Plant Biotechnol J. doi:10.1111/pbi.12104

    PubMed  Google Scholar 

  • Jansen L, Parizot B, Beeckman T (2013b) Inducible system for lateral roots in Arabidopsis thaliana and maize. Methods Mol Biol 959:149–158. doi:10.1007/978-1-62703-221-6_9

    PubMed  Google Scholar 

  • John PCL (2007) Hormonal regulation of cell cycle progression and its role in development. In: Inzé D (ed) Cell cycle control and plant development. Blackwell, Oxford, pp 311–334

    Google Scholar 

  • John PCL, Zhang K, Dong C, Diederich L, Wightman F (1993) p34cdc2 related proteins in control of cell cycle progression, the switch between division and differentiation in tissue development, and stimulation of division by auxin and cytokinin. Aust J Plant Physiol 20(5):503–526

    CAS  Google Scholar 

  • Jurado S, Abraham Z, Manzano C, López-Torrejón G, Pacios LF, Del Pozo JC (2010) The Arabidopsis cell cycle F-box protein SKP2A binds to auxin. Plant Cell 22(12):3891–3904. doi:10.1105/tpc.110.078972

    CAS  PubMed Central  PubMed  Google Scholar 

  • King JJ, Stimart DP, Fisher RH, Bleecker AB (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7(12):2023–2037. doi:10.1105/tpc.7.12.2023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landrieu I, da Costa M, De Veylder L, Dewitte F, Vandepoele K, Hassan S, Wieruszeski J-M, Corellou F, Faure J-D, Van Montagu M, Inzé D, Lippens G (2004) A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Proc Natl Acad Sci U S A 101(36):13380–13385. doi:10.1073/pnas.0405248101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121(10):3303–3310

    CAS  PubMed  Google Scholar 

  • Lee HW, Kim NY, Lee DJ, Kim J (2009) LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol 151(3):1377–1389. doi:10.1104/pp.109.143685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liscum E, Hangarter RP (1991) Manipulation of ploidy level in cultured haploid Petunia tissue by phytohormone treatments. J Plant Physiol 138(1):33–38

    CAS  Google Scholar 

  • Lloret PG, Casero PJ, Pulgarín A, Navascués J (1989) The behaviour of two cell populations in the pericycle of Allium cepa, Pisum sativum, and Daucus carota during early lateral root development. Ann Bot 63:465–475

    Google Scholar 

  • Magyar Z, De Veylder L, Atanassova A, Bakó L, Inzé D, Bögre L (2005) The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division. Plant Cell 17(9):2527–2541. doi:10.1105/tpc.105.033761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124(1):33–44

    CAS  PubMed  Google Scholar 

  • Manzano C, Ramirez-Parra E, Casimiro I, Otero S, Desvoyes B, De Rybel B, Beeckman T, Casero P, Gutierrez C, del Pozo JC (2012) Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation. Plant Physiol 160(2):749–762. doi:10.1104/pp.112.198341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez MC, Jørgensen J-E, Lawton MA, Lamb CJ, Doerner PW (1992) Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc Natl Acad Sci U S A 89(16):7360–7364

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menges M, de Jager SM, Gruissem W, Murray JAH (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J 41(4):546–566. doi:10.1111/j.1365-313X.2004.02319.x

    CAS  PubMed  Google Scholar 

  • Monshausen GB (2012) Visualizing Ca2+ signatures in plants. Curr Opin Plant Biol 15(6):677–682. doi:10.1016/j.pbi.2012.09.014

    CAS  PubMed  Google Scholar 

  • Monshausen GB, Miller ND, Murphy AS, Gilroy S (2011) Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J 65(2):309–318. doi:10.1111/j.1365-313X.2010.04423.x

    CAS  PubMed  Google Scholar 

  • Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329(5997):1306–1311. doi:10.1126/science.1191937

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Murray JAH, Freeman D, Greenwood J, Huntley R, Makkerh J, Riou-Khamlichi C, Sorrell DA, Cockcroft C, Carmichael JP, Soni R, Shah ZH (1998) Plant D cyclins and retinoblastoma protein homologues. In: Francis D, Dudits D, Inzé D (eds) Plant cell division. Portland Press, London, pp 99–127

    Google Scholar 

  • Niebel A, de Almeida Engler J, Hemerly A, Ferreira P, Inzé D, Van Montagu M, Gheysen G (1996) Induction of cdc2a and cyc1At expression in Arabidopsis thaliana during early phases of nematode-induced feeding cell formation. Plant J 10(6):1037–1043

    CAS  PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17(2):444–463. doi:10.1105/tpc.104.028316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19(1):118–130. doi:10.1105/tpc.106.047761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orchard CB, Siciliano I, Sorrell DA, Marchbank A, Rogers HJ, Francis D, Herbert RJ, Suchomelova P, Lipavska H, Azmi A, Van Onckelen H (2005) Tobacco BY-2 cells expressing fission yeast cdc25 bypass a G2/M block on the cell cycle. Plant J 44(2):290–299. doi:10.1111/j.1365-313X.2005.02524.x

    CAS  PubMed  Google Scholar 

  • Peres A, Churchman ML, Hariharan S, Himanen K, Verkest A, Vandepoele K, Magyar Z, Hatzfeld Y, Van Der Schueren E, Beemster GTS, Frankard V, Larkin JC, Inzé D, De Veylder L (2007) Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses. J Biol Chem 282(35):25588–25596. doi:10.1074/jbc.M703326200

    CAS  PubMed  Google Scholar 

  • Pettkó-Szandtner A, Mészáros T, Horváth GV, Bakó L, Csordás-Tóth É, Blastyák A, Zhiponova M, Miskolczi P, Dudits D (2006) Activation of an alfalfa cyclin-dependent kinase inhibitor by calmodulin-like domain protein kinase. Plant J 46(1):111–123. doi:10.1111/j.1365-313X.2006.02677.x

    PubMed  Google Scholar 

  • Ren H, Santner A, del Pozo JC, Murray JAH, Estelle M (2008) Degradation of the cyclin-dependent kinase inhibitor KRP1 is regulated by two different ubiquitin E3 ligases. Plant J 53(5):705–716. doi:10.1111/j.1365-313X.2007.03370.x

    CAS  PubMed  Google Scholar 

  • Richard C, Lescot M, Inzé D, De Veylder L (2002) Effect of auxin, cytokinin, and sucrose on cell cycle gene expression in Arabidopsis thaliana cell suspension cultures. Plant Cell Tissue Organ Cult 69(2):167–176. doi:10.1023/A:1015241709145

    CAS  Google Scholar 

  • Roudier F, Fedorova E, Lebris M, Lecomte P, Györgyey J, Vaubert D, Horvath G, Abad P, Kondorosi A, Kondorosi E (2003) The Medicago species A2-type cyclin is auxin regulated and involved in meristem formation but dispensable for endoreduplication-associated developmental programs. Plant Physiol 131(3):1091–1103. doi:10.1104/pp.102.011122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabelli PA, Nguyen H, Larkins BA (2007) Cell cycle and endosperm development. In: Inzé D (ed) Cell cycle control and plant development, vol 32, Annual plant reviews. Blackwell, Oxford, UK

    Google Scholar 

  • Sanz L, Dewitte W, Forzani C, Patell F, Nieuwland J, Wen B, Quelhas P, De Jager S, Titmus C, Campilho A, Ren H, Estelle M, Wang H, Murray JAH (2011) The Arabidopsis D-type cyclin CYCD2;1 and the inhibitor ICK2/KRP2 modulate auxin-induced lateral root formation. Plant Cell 23(2):641–660. doi:10.1105/tpc.110.080002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shishova M, Lindberg S (2010) A new perspective on auxin perception. J Plant Physiol 167(6):417–422. doi:10.1016/j.jplph.2009.12.014

    CAS  PubMed  Google Scholar 

  • Soni R, Carmichael JP, Shah ZH, Murray JAH (1995) A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif. Plant Cell 7(1):85–103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sorrell DA, Marchbank A, McMahon K, Dickinson JR, Rogers HJ, Francis D (2002) A WEE1 homologue from Arabidopsis thaliana. Planta 215(3):518–522. doi:10.1007/s00425-002-0815-4

    CAS  PubMed  Google Scholar 

  • Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, Vernoux T, Brady SM, Dewitte W, Murray JAH, Benfey PN (2010) Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466(7302):128–132. doi:10.1038/nature09143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18(3):463–471. doi:10.1016/j.devcel.2010.02.004

    CAS  PubMed  Google Scholar 

  • Sun Y, Dilkes BP, Zhang C, Dante RA, Carneiro NP, Lowe KS, Jung R, Gordon-Kamm WJ, Larkins BA (1999) Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc Natl Acad Sci U S A 96(7):4180–4185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takanashi K, Sugiyama A, Yazaki K (2011) Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta 234(1):73–81. doi:10.1007/s00425-011-1385-0

    CAS  PubMed  Google Scholar 

  • Tao W, Verbelen J-P (1996) Switching on and off cell division and cell expansion in cultured mesophyll protoplasts of tobacco. Plant Sci 116:107–115

    CAS  Google Scholar 

  • Tardieu F, Granier C (2000) Quantitative analysis of cell division in leaves: methods, developmental patterns and effects of environmental conditions. Plant Mol Biol 43(5–6):555–567

    CAS  PubMed  Google Scholar 

  • Torrey JG (1950) The induction of lateral roots by indoleacetic acid and root decapitation. Am J Bot 37:257–264

    CAS  Google Scholar 

  • Ulmasov T, Liu Z-B, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. Plant Cell 7(10):1611–1623. doi:10.1105/tpc.7.10.1611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9(11):1963–1971. doi:10.1105/tpc.9.11.1963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19(3):309–319

    CAS  PubMed  Google Scholar 

  • Umeda M, Shimotohno A, Yamaguchi M (2005) Control of cell division and transcription by cyclin-dependent kinase-activating kinases in plants. Plant Cell Physiol 46(9):1437–1442. doi:10.1093/pcp/pci170

    CAS  PubMed  Google Scholar 

  • Valente P, Tao W, Verbelen J-P (1998) Auxins and cytokinins control DNA endoreduplication and deduplication in single cells of tobacco. Plant Sci 134:207–215

    CAS  Google Scholar 

  • Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y, Vandepoele K (2012) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol 158(2):590–600. doi:10.1104/pp.111.189514

    PubMed Central  PubMed  Google Scholar 

  • Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E, Stals H, Van Isterdael G, Verkest A, Neirynck S, Buffel Y, De Bodt S, Maere S, Laukens K, Pharazyn A, Ferreira PCG, Eloy N, Renne C, Meyer C, Faure J-D, Steinbrenner J, Beynon J, Larkin JC, Van de Peer Y, Hilson P, Kuiper M, De Veylder L, Van Onckelen H, Inzé D, Witters E, De Jaeger G (2010) Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 6:397. doi:10.1038/msb.2010.53

    PubMed Central  PubMed  Google Scholar 

  • van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144(2):1115–1131. doi:10.1104/pp.107.099978

    PubMed Central  PubMed  Google Scholar 

  • Van Norman JM, Xuan W, Beeckman T, Benfey PN (2013) To branch or not to branch: the role of pre-patterning in lateral root formation. Development 140(21):4301–4310. doi:10.1242/dev.090548

    PubMed  Google Scholar 

  • Van’t Hof J (1985) Control points within the cell cycle. In: Bryant JA, Francis D (eds) The cell division cycle in plants. Cambridge University Press, Cambridge, pp 1–13

    Google Scholar 

  • Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D (2002) Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14(4):903–916

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanneste S, De Rybel B, Beemster GTS, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M, Inzé D, Fukaki H, Beeckman T (2005) Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17(11):3035–3050. doi:10.1105/tpc.105.035493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vieira P, Escudero C, Rodiuc N, Boruc J, Russinova E, Glab N, Mota M, De Veylder L, Abad P, Engler G, de Almeida Engler J (2013) Ectopic expression of Kip-related proteins restrains root-knot nematode-feeding site expansion. New Phytol 199(2):505–519. doi:10.1111/nph.12255

    CAS  PubMed  Google Scholar 

  • Vodermaier HC (2004) APC/C and SCF: controlling each other and the cell cycle. Curr Biol 14(18):R787–R796. doi:10.1016/j.cub.2004.09.020

    CAS  PubMed  Google Scholar 

  • Walcher CL, Nemhauser JL (2012) Bipartite promoter element required for auxin response. Plant Physiol 158(1):273–282. doi:10.1104/pp.111.187559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weimer AK, Nowack MK, Bouyer D, Zhao X, Harashima H, Naseer S, De Winter F, Dissmeyer N, Geldner N, Schnittger A (2012) Retinoblastoma related1 regulates asymmetric cell divisions in Arabidopsis. Plant Cell 24(10):4083–4095. doi:10.1105/tpc.112.104620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilmoth JC, Wang S, Tiwari SB, Joshi AD, Hagen G, Guilfoyle TJ, Alonso JM, Ecker JR, Reed JW (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43(1):118–130. doi:10.1111/j.1365-313X.2005.02432.x

    CAS  PubMed  Google Scholar 

  • Xu K, Liu J, Fan M, Xin W, Hu Y, Xu C (2012) A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs. Genomics 100(2):116–124. doi:10.1016/j.ygeno.2012.05.013

    CAS  PubMed  Google Scholar 

  • Zhang K, Letham DS, John PCL (1996) Cytokinin controls the cell cycle at mitosis by stimulating the tyrosine dephosphorylation and activation of p34cdc2-like H1 histone kinase. Planta 200(1):2–12

    CAS  PubMed  Google Scholar 

  • Zhang K, Diederich L, John PCL (2005) The cytokinin requirement for cell division in cultured Nicotiana plumbaginifolia cells can be satisfied by yeast Cdc25 protein tyrosine phosphatase. Implications for mechanisms of cytokinin response and plant development. Plant Physiol 137(1):308–316. doi:10.1104/pp.104.051938

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

M.J.F.D. is indebted to the Agency for Innovation by Science and Technology in Flanders (IWT) for a predoctoral grant. Work in the lab of T.B. is supported by the Interuniversity Attraction Poles Programme IAP7/29 from the Belgian Federal Science Policy Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Beeckman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Demeulenaere, M.J.F., Beeckman, T. (2014). The Interplay Between Auxin and the Cell Cycle During Plant Development. In: Zažímalová, E., Petrášek, J., Benková, E. (eds) Auxin and Its Role in Plant Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1526-8_7

Download citation

Publish with us

Policies and ethics