Skip to main content

Complements to Enzyme–Modifier Interactions

  • Chapter
Kinetics of Enzyme-Modifier Interactions

Abstract

Starting from the definitions of the basic modifier mechanisms, extensions to more complex systems are not always straightforward but can be achieved if the underlying theories are well understood and used correctly. The mathematical aspects can become more complex but the labor is compensated by rewarding results. This chapter fulfills a double purpose by showing the way for managing system of increasing complexity illustrating the theory with practical examples, and by adding methods that complement those described in the preceding chapters.

⋯ readers who understand the methods used to discriminate between the simple cases are well equipped to adapt them to special experimental circumstances and to understand the more detailed discussions found elsewhere.

A. Cornish-Bowden (2012) Fundamentals of Enzyme Kinetics, Wiley-Blackwell. p. 190

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is important to remember that this is mere formalism because whenever a reagent is present in excess, its concentration is part of the equilibrium constant of the reaction and can by no means be omitted.

  2. 2.

    To avoid confusion, the microscopic constants are numbered respecting the topology of reaction schemes already used in the preceding chapters by adding the new constant k 8.

  3. 3.

    Readers interested in the cited papers published by Di Cera and collaborators should note that the authors use association constants in place of dissociation constants as in this book.

  4. 4.

    This sound advice seems to have been largely ignored.

  5. 5.

    Acronym of [2-[2-(2,4-dioxo-1,3-thiazolidin-3-yl)ethylamino]-2-oxoethyl] 2-(furan-2- carbonylamino)acetate.

  6. 6.

    Abz = ortho-aminobenzoyl; Dnp = N\(\varepsilon\)-2,4-dinitrophenyl; the arrow indicates the scissile bond.

References

  1. Ackermann WW, Potter VR (1949) Enzyme inhibition in relation to chemotherapy. Proc Soc Exp Biol Med 72:1–9

    Article  CAS  PubMed  Google Scholar 

  2. Ayala Y, Di Cera E (1994) Molecular recognition by thrombin. Role of the slow to fast transition, site-specific ion binding energetics and thermodynamic mapping of structural components. J Mol Biol 235:733–746. doi:10.1006/jmbi.1994.1024

    Article  CAS  PubMed  Google Scholar 

  3. Baici A (1987) Graphical and statistical analysis of hyperbolic, tight-binding inhibition [This paper contains a mathematical mistake: see correction in Szedlacsek, S. et al. (1988) Biochem. J. 254:311–312]. Biochem J 244:793–796

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Cha S (1975) Tight-binding inhibitors - I. Kinetic behavior [See corrections, ibid. 25 (1976) 1561]. Biochem Pharmacol 24:2177–2185

    Article  CAS  PubMed  Google Scholar 

  5. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  6. Cleland WW (1963) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 67:104–136

    Article  CAS  PubMed  Google Scholar 

  7. Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J 137:143–144

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Cornish-Bowden A (2012) Fundamentals of enzyme kinetics, 4th edn. Wiley, Weinheim

    Google Scholar 

  9. Cortés A, Cascante M, Cárdenas ML, Cornish-Bowden A (2001) Relationships between inhibition constants, inhibitor concentrations for 50% inhibition and types of inhibition: new ways of analysing data. Biochem J 357:263–268

    Article  PubMed Central  PubMed  Google Scholar 

  10. Cotrin SS, Puzer L, Judice WAD, Juliano L, Carmona AK, Juliano MA (2004) Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides to define substrate specificity of carboxydipeptidases: assays with human cathepsin B. Anal Biochem 335:244–252

    Article  CAS  PubMed  Google Scholar 

  11. Cristofaro RD, Di Cera E (1990) Effect of protons on the amidase activity of human α-thrombin: analysis in terms of a general linkage scheme. J Mol Biol 216:1077–1085. http://dx.doi.org/10.1016/S0022-2836(99)80021-7

  12. Di Cera E, Cristofaro RD, Albright DJ, Fenton JW (1991) Linkage between proton binding and amidase activity in human.alpha.-thrombin: effect of ions and temperature. Biochemistry 30:7913–7924. doi:10.1021/bi00246a007

    Article  PubMed  Google Scholar 

  13. Di Cera E, Dang QD, Ayala Y, Vindigni A (1995) Linkage at steady state: allosteric transitions of thrombin. Meth Enzymol 259:127–144

    Article  PubMed  Google Scholar 

  14. Di Cera E, Hopfner KP, Dang QD (1996) Theory of allosteric effects in serine proteases. Biophys J 70:174–181

    Article  PubMed Central  PubMed  Google Scholar 

  15. Henderson PJF (1972) A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem J 127:321–333

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Hill AV (1910) The possible effect of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:4–7

    Google Scholar 

  17. Koshland DE, Némethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385

    Article  CAS  PubMed  Google Scholar 

  18. Küçükkilinç T, Özer I (2005) Inhibition of human plasma cholinesterase by malachite green and related triarylmethane dyes: mechanistic implications. Arch Biochem Biophys 440:118–122. http://dx.doi.org/10.1016/j.abb.2005.06.003

  19. Küçükkilinç T, Özer I (2007) Multi-site inhibition of human plasma cholinesterase by cationic phenoxazine and phenothiazine dyes. Arch Biochem Biophys 461:294–298

    Article  PubMed  Google Scholar 

  20. Lenarčič B, Bevec T (1998) Thyropins: new structurally related proteinase inhibitors. Biol Chem 379:105–111

    PubMed  Google Scholar 

  21. Lenarčič B, Turk V (1999) Thyroglobulin type-1 domains in equistatin inhibit both papain-like cysteine proteinases and cathepsin D. J Biol Chem 274:563–566

    Article  PubMed  Google Scholar 

  22. Lenarčič B, Ritonja A, Strukelj B, Turk B, Turk V (1997) Equistatin, a new inhibitor of cysteine proteinases from Actinia equina, is structurally related to thyroglobulin type-1 domain. J Biol Chem 272:13899–13903

    PubMed  Google Scholar 

  23. Liu HY, Wang Z, Regni C, Zou X, Tipton PA (2004) Detailed kinetic studies of an aggregating inhibitor; inhibition of phosphomannomutase/phosphoglucomutase by disperse blue 56. Biochemistry 43:8662–8669. doi:10.1021/bi0491907

    Article  CAS  PubMed  Google Scholar 

  24. Ludewig S, Kossner M, Schiller M, Baumann K, Schirmeister T (2010) Enzyme kinetics and hit validation in fluorimetric protease assays. Curr Top Med Chem 10:368–382

    Article  CAS  PubMed  Google Scholar 

  25. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45:1712–1722

    Article  CAS  PubMed  Google Scholar 

  26. McGovern SL, Helfand BT, Feng B, Shoichet BK (2003) A specific mechanism of nonspecific inhibition. J Med Chem 46:4265–4272

    Article  CAS  PubMed  Google Scholar 

  27. Monod J, Changeux JP, Jacob F (1963) Allosteric proteins and cellular control systems. J Mol Biol 6:306–329

    Article  CAS  PubMed  Google Scholar 

  28. Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  PubMed  Google Scholar 

  29. Morrison JF (1969) Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta 185:269–286

    Article  CAS  PubMed  Google Scholar 

  30. Naqui A (1983) What does I50 mean? Biochem J 215:429–430

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Palmier MO, Doren SRV (2007) Rapid determination of enzyme kinetics from fluorescence: Overcoming the inner filter effect. Anal Biochem 371:43–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Schechter I, Berger A (1967) On the size of the active sites in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  CAS  PubMed  Google Scholar 

  33. Schenker P, Alfarano P, Kolb P, Caflisch A, Baici A (2008) A double-headed cathepsin B inhibitor devoid of warhead. Protein Sci 17:2145–2155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Segel IH (1975) Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  35. Shoichet BK (2006) Interpreting steep dose-response curves in early inhibitor discovery. J Med Chem 49:7274–7277

    Article  CAS  PubMed  Google Scholar 

  36. Shoichet BK (2006) Screening in a spirit haunted world. Drug Discov Today 11:607–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Straus OH, Goldstein A (1943) Zone behavior of enzymes. Illustrated by the effect of dissociation constant and dilution on the system cholinesterase-physostigmine. J Gen Physiol 26:559–585

    CAS  Google Scholar 

  38. Szedlacsek SE, Ostafe V, Serban M, Vlad MO (1988) A re-evaluation of the kinetic equations for hyperbolic tight-binding inhibition. Biochem J 254:311–312

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Taketa K, Pogell BM (1965) Allosteric inhibition of rat liver fructose 1,6-diphosphatase by adenosine 5’-monophosphate. J Biol Chem 240:651–662

    CAS  PubMed  Google Scholar 

  40. Wells CM, Di Cera E (1992) Thrombin is a Na+-activated enzyme. Biochemistry 31:11721–11730. doi:10.1021/bi00162a008

    Article  CAS  PubMed  Google Scholar 

  41. Xing GW, Li XW, Tian GL, Ye YH (2000) Enzymatic peptide synthesis in organic solvent with different zeolites as immobilization matrixes. Tetrahedron 56:3517–3522. doi:10.1016/S0040-4020(00)00261-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

4.1.1 Derivation of the Tight-Binding Rate Equation for the General Modifier Mechanism

Redirected from Sect. 4.4. The reactant concentrations in a rate equation represent free concentrations. However, in the presence of tight-binding, disambiguation between free and total concentrations is made by appending a ‘t’ (total), and where necessary an ‘f’ (free) to the symbols of concentration. We start the derivation of the tight-binding rate equation of the general modifier mechanism by putting in evidence the free modifier concentration while rearranging (3.35) discussed in Chap. 3

$$\displaystyle{ v_{\mathrm{X}} = \dfrac{\left (1+\sigma \right )\left (1 +\beta \dfrac{\left [\mathrm{X}\right ]_{\mathrm{f}}} {\alpha K_{\mathrm{X}}} \right )} {1 +\sigma +\dfrac{\left [\mathrm{X}\right ]_{\mathrm{f}}} {K_{\mathrm{X}}} + \dfrac{\sigma \left [\mathrm{X}\right ]_{\mathrm{f}}} {\alpha K_{\mathrm{X}}} }v_{0}\,, }$$
(4.51)

from which \(\left [\mathrm{X}\right ]_{\mathrm{f}}\) can be extracted as:

$$\displaystyle{ \left [\mathrm{X}\right ]_{\mathrm{f}} = \dfrac{\left (1+\sigma \right )\left (v_{0} - v_{\mathrm{X}}\right )} {v_{\mathrm{X}}\left ( \dfrac{1} {K_{\mathrm{X}}} + \dfrac{\sigma } {\alpha K_{\mathrm{X}}}\right ) - v_{0} \dfrac{\beta } {\alpha K_{\mathrm{X}}}\left (1+\sigma \right )}\,. }$$
(4.52)

To proceed, an expression of the total modifier concentration is needed as the sum \(\left [\mathrm{EX}\right ] + \left [\mathrm{ESX}\right ] + \left [\mathrm{X}\right ]_{\mathrm{f}}\), and \(\left [\mathrm{EX}\right ] + \left [\mathrm{ESX}\right ]\) can be obtained considering the rate (4.51) at saturating modifier, in which case all enzyme molecules are present in these two complexes with product generation occurring only by decomposition of ESX into EX + P:

$$\displaystyle{ v_{\infty } = \dfrac{\left (1+\sigma \right ) \dfrac{\beta } {\alpha K_{\mathrm{X}}}} { \dfrac{1} {K_{\mathrm{X}}} + \dfrac{\sigma } {\alpha K_{\mathrm{X}}}}v_{0}\,. }$$
(4.53)

The denominator of (4.53) represents now EX + ESX, while the denominator of (4.51) represents \(\mathrm{E} + \mathrm{ES} + \mathrm{EX} + \mathrm{ESX}\). According to the distribution equations of Cleland [6], dividing the first by the second of these denominators and multiplying by \(\left [\mathrm{X}\right ]_{\mathrm{f}}\left [\mathrm{E}\right ]_{\mathrm{t}}\) yields \(\left [\mathrm{EX}\right ] + \left [\mathrm{ESX}\right ]\):

$$\displaystyle{ \left [\mathrm{EX}\right ] + \left [\mathrm{ESX}\right ] = \dfrac{\left (\dfrac{\left [\mathrm{X}\right ]_{\mathrm{f}}} {K_{\mathrm{X}}} + \dfrac{\sigma \left [\mathrm{X}\right ]_{\mathrm{f}}} {\alpha K_{\mathrm{X}}} \right )\left [\mathrm{E}\right ]_{\mathrm{t}}} {1 +\sigma +\dfrac{\left [\mathrm{X}\right ]_{\mathrm{f}}} {K_{\mathrm{X}}} + \dfrac{\sigma \left [\mathrm{X}\right ]_{\mathrm{f}}} {\alpha K_{\mathrm{X}}} }\;. }$$
(4.54)

Experimentally, rates are measured which contain the concentrations of the complexes. Thus, such concentrations must be deduced from the differences between the rate in the absence (\(v_{0}\)) of modifier, at a given modifier concentration (\(v_{\mathrm{X}}\)) and at saturating modifier (\(v_{\infty }\)), i.e., \(\left (v_{0} - v_{\mathrm{X}}\right )\) and \(\left (v_{0} - v_{\infty }\right )\) using the explicit expression \(v_{0} = V \sigma \left /\right. \left (1+\sigma \right )\), (4.51) and (4.53):

$$\displaystyle\begin{array}{rcl} v_{0} - v_{\mathrm{X}}& =& \frac{V \sigma \left [\mathrm{X}\right ]_{\mathrm{f}}\left (\alpha +\sigma -\beta -\beta \sigma \right )} {\left (1+\sigma \right )\left (\alpha K_{\mathrm{X}} +\alpha \sigma K_{\mathrm{X}} + \left [\mathrm{X}\right ]_{\mathrm{f}}\sigma + \left [\mathrm{X}\right ]_{\mathrm{f}}\alpha \right )} \\ v_{0} - v_{\infty }& =& \frac{V \sigma \left (\alpha +\sigma -\beta -\beta \sigma \right )} {\left (1+\sigma \right )\left (\alpha +\sigma \right )} \\ \frac{v_{0} - v_{\mathrm{X}}} {v_{0} - v_{\infty }}& =& \frac{\left (\alpha +\sigma \right )\left [\mathrm{X}\right ]_{\mathrm{f}}} {\alpha K_{\mathrm{X}} +\sigma \alpha K_{\mathrm{X}} + \left [\mathrm{X}\right ]_{\mathrm{f}}\sigma + \left [\mathrm{X}\right ]_{\mathrm{f}}\alpha } = \dfrac{\dfrac{\left [\mathrm{X}\right ]_{\mathrm{f}}} {K_{\mathrm{X}}} + \dfrac{\sigma \left [\mathrm{X}\right ]_{\mathrm{f}}} {\alpha K_{\mathrm{X}}} } {1 +\sigma +\dfrac{\left [\mathrm{X}\right ]_{\mathrm{f}}} {K_{\mathrm{X}}} + \dfrac{\sigma \left [\mathrm{X}\right ]_{\mathrm{f}}} {\alpha K_{\mathrm{X}}} }\,.{}\end{array}$$
(4.55)

After multiplication by \(\left [\mathrm{E}\right ]_{\mathrm{t}}\), the ratio in (4.55) is identical with (4.54) and the sought conservation equation for the modifier concentration becomes:

$$\displaystyle{ \left [\mathrm{X}\right ]_{\mathrm{t}} = \left [\mathrm{EX}\right ] + \left [\mathrm{ESX}\right ] + \left [\mathrm{X}\right ]_{\mathrm{f}} = \frac{v_{0} - v_{\mathrm{X}}} {v_{0} - v_{\infty }}\left [\mathrm{E}\right ]_{\mathrm{t}} + \left [\mathrm{X}\right ]_{\mathrm{f}}\;. }$$
(4.56)

We have now all elements for writing the rate equation of the general modifier mechanism under tight-binding conditions but it would contain \(v_{\infty }\), which can be usefully replaced by other parameters to produce an expression that contains only familiar elements present in (4.51) and in the specific velocity equation (3.36). Inspection of (4.53) suggest the following, equivalent rearrangement obtained by multiplying the numerator and the denominator by α K X:

$$\displaystyle{ v_{\infty } = v_{0}\beta \frac{1+\sigma } {\alpha +\sigma } \;. }$$
(4.57)

Furthermore, purposeful rearrangement of (4.52) gives

$$\displaystyle\begin{array}{rcl} \left [\mathrm{X}\right ]_{\mathrm{f}}& =& \dfrac{v_{0} - v_{\mathrm{X}}} {v_{\mathrm{X}} - v_{0} \dfrac{\beta } {\alpha K_{\mathrm{X}}}\left ( \dfrac{1+\sigma } { \dfrac{1} {K_{\mathrm{X}}} + \dfrac{\sigma } {\alpha K_{\mathrm{X}}}}\right )} \times \dfrac{1+\sigma } { \dfrac{1} {K_{\mathrm{X}}} + \dfrac{\sigma } {\alpha K_{\mathrm{X}}}} \\ & =& \dfrac{v_{0} - v_{\mathrm{X}}} {v_{\mathrm{X}} -\underbrace{\mathop{ v_{0}\beta \left (\dfrac{1+\sigma } {\alpha +\sigma } \right )}}\limits _{v_{\infty }}} \times \dfrac{1+\sigma } { \dfrac{1} {K_{\mathrm{X}}} + \dfrac{\sigma } {\alpha K_{\mathrm{X}}}}\;, {}\end{array}$$
(4.58)

where the term underscored by the curled brace represents \(v_{\infty }\) in (4.57).

The conservation equation for the modifier’s concentration is finally obtained introducing (4.51), (4.57), and (4.58) in (4.56). The resulting expression is then used to extract \(v_{\mathrm{X}}\), a quadratic equation, whose physically significant root is displayed as (4.35) in the main text.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Baici, A. (2015). Complements to Enzyme–Modifier Interactions. In: Kinetics of Enzyme-Modifier Interactions. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1402-5_4

Download citation

Publish with us

Policies and ethics