Skip to main content

Hippocampal Neurophysiology Across Species

  • Chapter
  • First Online:
Space,Time and Memory in the Hippocampal Formation

Abstract

Comparative research in neuroscience can contribute to the understanding of general principles underlying brain function; it can also provide testable hypotheses that direct future research. This chapter provides a comparative review of the neurophysiology of the hippocampal formation across mammals. Over the last 40 years, the vast majority of findings on hippocampal electrophysiology were based on research from a single animal model—the rat. Yet, while rat hippocampal studies provided one of the richest datasets in systems neuroscience, the paradigms generated based on rat data were, until recently, largely untested in other mammals—and at least some of the ideas have been questioned by the few studies that were conducted in other species. Here we will summarize the data available from different mammalian species regarding hippocampal neurophysiology, focusing on similarities and differences across species—including functional implications. We will limit our discussion to two aspects: spatial cell types in the hippocampal formation and hippocampal oscillations. We will conclude by highlighting some of the major gaps in the available comparative data and by raising a “call to arms” to conduct further comparative research on the hippocampal formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen P, Morris RG, Amaral DG, Bliss TV, O’Keefe J (eds) (2007) The hippocampus book. Oxford University Press, New York, NY

    Google Scholar 

  • Barry C, Hayman R, Burgess N, Jeffery KJ (2007) Experience-dependent rescaling of entorhinal grids. Nat Neurosci 10:682–684

    CAS  PubMed  Google Scholar 

  • Battaglia FP, Sutherland GR, McNaughton BL (2004) Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem 11:697–704

    PubMed Central  PubMed  Google Scholar 

  • Bingman VP, Hough GE 2nd, Kahn MC, Siegel JJ (2003) The homing pigeon hippocampus and space: in search of adaptive specialization. Brain Behav Evol 62:117–127

    PubMed  Google Scholar 

  • Boccara CN, Sargolini F, Thoresen VH, Solstad T, Witter MP, Moser EI, Moser M-B (2010) Grid cells in pre- and parasubiculum. Nat Neurosci 13:987–994

    CAS  PubMed  Google Scholar 

  • Bragin A, Engel J Jr, Wilson CL, Fried I, Buzsáki G (1999) High-frequency oscillations in human brain. Hippocampus 9:137–142

    CAS  PubMed  Google Scholar 

  • Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science 332:595–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckmaster PS, Alonso A, Canfield DR, Amaral DG (2004) Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. J Comp Neurol 470:317–329

    PubMed  Google Scholar 

  • Burak Y, Fiete IR (2009) Accurate path integration in continuous attractor network models of grid cells. PLoS Comput Biol 5:e1000291

    PubMed Central  PubMed  Google Scholar 

  • Burgess N, O’Keefe J (2011) Models of place and grid cell firing and theta rhythmicity. Curr Opin Neurobiol 21:734–744

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340

    PubMed  Google Scholar 

  • Buzsáki G (2006) Rhythms of the brain. Oxford University Press, New York, NY

    Google Scholar 

  • Buzsáki G, Horvath Z, Urioste R, Hetke J, Wise K (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027

    PubMed  Google Scholar 

  • Buzsáki G, Buhl DL, Harris KD, Csicsvari J, Czeh B, Morozov A (2003) Hippocampal network patterns of activity in the mouse. Neuroscience 116:201–211

    PubMed  Google Scholar 

  • Calton JL, Taube JS (2005) Degradation of head direction cell activity during inverted locomotion. J Neurosci 25:2420–2428

    CAS  PubMed  Google Scholar 

  • Cantero JL, Atienza M, Stickgold R, Kahana MJ, Madsen JR, Kocsis B (2003) Sleep-dependent theta oscillations in the human hippocampus and neocortex. J Neurosci 23:10897–10903

    CAS  PubMed  Google Scholar 

  • Chang EH, Huerta PT (2012) Neurophysiological correlates of object recognition in the dorsal subiculum. Front Behav Neurosci 6:46

    PubMed Central  PubMed  Google Scholar 

  • Cheal ML, Sprott RL (1971) Social olfaction: a review of the role of olfaction in a variety of animal behaviors. Psychol Rep 29:195–243

    CAS  PubMed  Google Scholar 

  • Cho J, Sharp PE (2001) Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav Neurosci 115:3–25

    CAS  PubMed  Google Scholar 

  • Chrobak JJ, Buzsáki G (1996) High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J Neurosci 16:3056–3066

    CAS  PubMed  Google Scholar 

  • Couey JJ, Witoelar A, Zhang SJ, Zheng K, Ye J, Dunn B, Czajkowski R, Moser M-B, Moser EI, Roudi Y, Witter MP (2013) Recurrent inhibitory circuitry as a mechanism for grid formation. Nat Neurosci 16:318–324

    CAS  PubMed  Google Scholar 

  • Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G (1999) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 19:274–287

    CAS  PubMed  Google Scholar 

  • Derdikman D, Moser EI (2014) Spatial maps in the entorhinal cortex and adjacent structures. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Derdikman D, Whitlock JR, Tsao A, Fyhn M, Hafting T, Moser M-B, Moser EI (2009) Fragmentation of grid cell maps in a multicompartment environment. Nat Neurosci 12:1325–1332

    CAS  PubMed  Google Scholar 

  • Domnisoru C, Kinkhabwala AA, Tank DW (2013) Membrane potential dynamics of grid cells. Nature 495:199–204

    CAS  PubMed  Google Scholar 

  • Dragoi G, Tonegawa S (2011) Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469:397–401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dragoi G, Tonegawa S (2013) Distinct preplay of multiple novel spatial experiences in the rat. Proc Natl Acad Sci USA 110:9100–9105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425:184–188

    CAS  PubMed  Google Scholar 

  • Ekstrom AD, Caplan JB, Ho E, Shattuck K, Fried I, Kahana MJ (2005) Human hippocampal theta activity during virtual navigation. Hippocampus 15:881–889

    PubMed  Google Scholar 

  • Epsztein J, Lee AK, Chorev E, Brecht M (2010) Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration. Science 327:474–477

    CAS  PubMed  Google Scholar 

  • Fenton AA, Kao HY, Neymotin SA, Olypher A, Vayntrub Y, Lytton WW, Ludvig N (2008) Unmasking the CA1 ensemble place code by exposures to small and large environments: more place cells and multiple, irregularly arranged, and expanded place fields in the larger space. J Neurosci 28:11250–11262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finkelstein A, Derdikman D, Foerster J, Las L, Ulanovsky N (2012) 3-D head-direction cells in the bat presubiculum. In: Society for Neuroscience annual meeting, New Orleans, LA

    Google Scholar 

  • Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–683

    CAS  PubMed  Google Scholar 

  • Fox SE, Ranck JB Jr (1981) Electrophysiological characteristics of hippocampal complex-spike cells and theta cells. Exp Brain Res 41:399–410

    CAS  PubMed  Google Scholar 

  • Frank LM, Brown EN, Wilson MA (2001) A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex. J Neurophysiol 86:2029–2040

    CAS  PubMed  Google Scholar 

  • Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26:4266–4276

    CAS  PubMed  Google Scholar 

  • Fyhn M, Molden S, Witter MP, Moser EI, Moser M-B (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264

    CAS  PubMed  Google Scholar 

  • Fyhn M, Hafting T, Witter MP, Moser EI, Moser M-B (2008) Grid cells in mice. Hippocampus 18:1230–1238

    PubMed  Google Scholar 

  • Georges-François P, Rolls ET, Robertson RG (1999) Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. Cereb Cortex 9:197–212

    PubMed  Google Scholar 

  • Geva-Sagiv M, Las L, Ulanovsky N (2013) Switching between sensory modalities and flight directions alters 3-D spatial codes in bat hippocampus. In: Society for Neuroscience annual meeting, San Diego, CA

    Google Scholar 

  • Giocomo LM, Zilli EA, Fransen E, Hasselmo ME (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315:1719–1722

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giocomo LM, Hussaini SA, Zheng F, Kandel ER, Moser M-B, Moser EI (2011) Grid cells use HCN1 channels for spatial scaling. Cell 147:1159–1170

    CAS  PubMed  Google Scholar 

  • Goodridge JP, Dudchenko PA, Worboys KA, Golob EJ, Taube JS (1998) Cue control and head direction cells. Behav Neurosci 112:749–761

    CAS  PubMed  Google Scholar 

  • Gordon JA, Lacefield CO, Kentros CG, Hen R (2005) State-dependent alterations in hippocampal oscillations in serotonin 1A receptor-deficient mice. J Neurosci 25:6509–6519

    CAS  PubMed  Google Scholar 

  • Green JD, Arduini AA (1954) Hippocampal electrical activity in arousal. J Neurophysiol 17:533–557

    CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    CAS  PubMed  Google Scholar 

  • Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461:941–946

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayman R, Verriotis MA, Jovalekic A, Fenton AA, Jeffery KJ (2011) Anisotropic encoding of three-dimensional space by place cells and grid cells. Nat Neurosci 14:1182–1188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heffner RS, Koay G, Heffner HE (1999) Sound localization in an Old-World fruit bat (Rousettus aegyptiacus): acuity, use of binaural cues, and relationship to vision. J Comp Psychol 113:297–306

    CAS  PubMed  Google Scholar 

  • Henriksen EJ, Colgin LL, Barnes CA, Witter MP, Moser M-B, Moser EI (2010) Spatial representation along the proximodistal axis of CA1. Neuron 68:127–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heys JG, MacLeod KM, Moss CF, Hasselmo ME (2013) Bat and rat neurons differ in theta-frequency resonance despite similar coding of space. Science 340:363–367

    CAS  PubMed  Google Scholar 

  • Hoffman KL, McNaughton BL (2002) Coordinated reactivation of distributed memory traces in primate neocortex. Science 297:2070–2073

    CAS  PubMed  Google Scholar 

  • Holland RA, Winter P, Waters DA (2005) Sensory systems and spatial memory in the fruit bat Rousettus aegyptiacus. Ethology 111:715–725

    Google Scholar 

  • Hollup SA, Molden S, Donnett JG, Moser M-B, Moser EI (2001) Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J Neurosci 21:1635–1644

    CAS  PubMed  Google Scholar 

  • Hori E, Nishio Y, Kazui K, Umeno K, Tabuchi E, Sasaki K, Endo S, Ono T, Nishijo H (2005) Place-related neural responses in the monkey hippocampal formation in a virtual space. Hippocampus 15:991–996

    PubMed  Google Scholar 

  • Hough GE, Bingman VP (2004) Spatial response properties of homing pigeon hippocampal neurons: correlations with goal locations, movement between goals, and environmental context in a radial-arm arena. J Comp Physiol A 190:1047–1062

    Google Scholar 

  • Hussaini SA, Kempadoo KA, Thuault SJ, Siegelbaum SA, Kandel ER (2011) Increased size and stability of CA1 and CA3 place fields in HCN1 knockout mice. Neuron 72:643–653

    CAS  PubMed  Google Scholar 

  • Jacobs J, Kahana MJ, Ekstrom AD, Mollison MV, Fried I (2010) A sense of direction in human entorhinal cortex. Proc Natl Acad Sci USA 107:6487–6492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs J, Weidemann CT, Miller JF, Solway A, Burke JF, Wei XX, Suthana N, Sperling MR, Sharan AD, Fried I, Kahana MJ (2013) Direct recordings of grid-like neuronal activity in human spatial navigation. Nat Neurosci 16:1188–1190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jadhav SP, Frank LM (2014) Memory replay in the hippocampus. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Jadhav SP, Kemere C, German PW, Frank LM (2012) Awake hippocampal sharp-wave ripples support spatial memory. Science 336:1454–1458

    CAS  PubMed  Google Scholar 

  • Jeffery KJ, Anand RL, Anderson MI (2006) A role for terrain slope in orienting hippocampal place fields. Exp Brain Res 169:218–225

    PubMed  Google Scholar 

  • Jeffery KJ, Jovalekic A, Verriotis M, Hayman R (2013) Navigating in a three-dimensional world. Behav Brain Sci 36:523–543

    PubMed  Google Scholar 

  • Jensen O, Lisman JE (2005) Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends Neurosci 28:67–72

    CAS  PubMed  Google Scholar 

  • Jung R, Kornmüller AE (1938) Eine methodik der ableitung lokalisierter potentialschwankungen aus subcorticalen hirngebieten. Arch Psychiatr Nervenkr 109:1–30

    Google Scholar 

  • Jutras MJ, Buffalo EA (2009) Theta-band oscillations in the primate hippocampus are modulated by saccades during a fee-viewing task. In: Society for Neuroscience annual meeting, Chicago, IL

    Google Scholar 

  • Jutras MJ, Fries P, Buffalo EA (2013) Oscillatory activity in the monkey hippocampus during visual exploration and memory formation. Proc Natl Acad Sci U S A 110:13144–13149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kahn MC, Siegel JJ, Jechura TJ, Bingman VP (2008) Response properties of avian hippocampal formation cells in an environment with unstable goal locations. Behav Brain Res 191:153–163

    PubMed  Google Scholar 

  • Kentros CG, Agnihotri NT, Streater S, Hawkins RD, Kandel ER (2004) Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42:283–295

    CAS  PubMed  Google Scholar 

  • Killian NJ, Jutras MJ, Buffalo EA (2012) A map of visual space in the primate entorhinal cortex. Nature 491:761–764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kjelstrup KB, Solstad T, Brun VH, Hafting T, Leutgeb S, Witter MP, Moser EI, Moser M-B (2008) Finite scale of spatial representation in the hippocampus. Science 321:140–143

    CAS  PubMed  Google Scholar 

  • Knierim JJ, McNaughton BL (2001) Hippocampal place-cell firing during movement in three-dimensional space. J Neurophysiol 85:105–116

    CAS  PubMed  Google Scholar 

  • Knierim JJ, McNaughton BL, Poe GR (2000) Three-dimensional spatial selectivity of hippocampal neurons during space flight. Nat Neurosci 3:209–210

    CAS  PubMed  Google Scholar 

  • Kropff E, Treves A (2008) The emergence of grid cells: intelligent design or just adaptation? Hippocampus 18:1256–1269

    PubMed  Google Scholar 

  • Langston RF, Ainge JA, Couey JJ, Canto CB, Bjerknes TL, Witter MP, Moser EI, Moser M-B (2010) Development of the spatial representation system in the rat. Science 328:1576–1580

    CAS  PubMed  Google Scholar 

  • Lee JW, Kim WR, Sun W, Jung MW (2009) Role of dentate gyrus in aligning internal spatial map to external landmark. Learn Mem 16:530–536

    PubMed  Google Scholar 

  • Lever C (2013) Spatial cells in the subiculum of the freely moving rat. In: Spring hippocampal research conference, Taormina

    Google Scholar 

  • Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29:9771–9777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lever C, Kaplan R, Burgess N (2014) The function of oscillations in the hippocampal formation. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Logothetis NK, Eschenko O, Murayama Y, Augath M, Steudel T, Evrard HC, Besserve M, Oeltermann A (2012) Hippocampal-cortical interaction during periods of subcortical silence. Nature 491:547–553

    CAS  PubMed  Google Scholar 

  • Ludvig N, Tang HM, Gohil BC, Botero JM (2004) Detecting location-specific neuronal firing rate increases in the hippocampus of freely-moving monkeys. Brain Res 1014:97–109

    CAS  PubMed  Google Scholar 

  • Maier N, Tejero-Cantero A, Dorrn AL, Winterer J, Beed PS, Morris G, Kempter R, Poulet JF, Leibold C, Schmitz D (2011) Coherent phasic excitation during hippocampal ripples. Neuron 72:137–152

    CAS  PubMed  Google Scholar 

  • Marashi V, Rulicke T (2012) The Bruce effect in Norway rats. Biol Reprod 86:1–5

    PubMed  Google Scholar 

  • Mathis A, Herz AV, Stemmler MB (2012a) Resolution of nested neuronal representations can be exponential in the number of neurons. Phys Rev Lett 109:018103

    PubMed  Google Scholar 

  • Mathis A, Herz AV, Stemmler M (2012b) Optimal population codes for space: grid cells outperform place cells. Neural Comput 24:2280–2317

    PubMed  Google Scholar 

  • Matsumura N, Nishijo H, Tamura R, Eifuku S, Endo S, Ono T (1999) Spatial- and task-dependent neuronal responses during real and virtual translocation in the monkey hippocampal formation. J Neurosci 19:2381–2393

    CAS  PubMed  Google Scholar 

  • McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA (1996) Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87:1339–1349

    CAS  PubMed  Google Scholar 

  • McNaughton BL, Barnes CA, O’Keefe J (1983) The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats. Exp Brain Res 52:41–49

    CAS  PubMed  Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B (2006) Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci 7:663–678

    CAS  PubMed  Google Scholar 

  • Miller J, Neufang N, Jacobs J, Kahana MJ (2012) Human single-neuron activity encodes direction and location in a complex virtual environment. In: Society for Neuroscience annual meeting, New Orleans, LA

    Google Scholar 

  • Mizumori SJ, Williams JD (1993) Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. J Neurosci 13:4015–4028

    CAS  PubMed  Google Scholar 

  • Muir GM, Brown JE, Carey JP, Hirvonen TP, Della Santina CC, Minor LB, Taube JS (2009) Disruption of the head direction cell signal after occlusion of the semicircular canals in the freely moving chinchilla. J Neurosci 29:14521–14533

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muller R (1996) A quarter of a century of place cells. Neuron 17:813–822

    CAS  PubMed  Google Scholar 

  • Muller RU, Kubie JL (1987) The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci 7:1951–1968

    CAS  PubMed  Google Scholar 

  • Muzzio IA, Kentros C, Kandel E (2009a) What is remembered? Role of attention on the encoding and retrieval of hippocampal representations. J Physiol 587:2837–2854

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muzzio IA, Levita L, Kulkarni J, Monaco J, Kentros C, Stead M, Abbott LF, Kandel ER (2009b) Attention enhances the retrieval and stability of visuospatial and olfactory representations in the dorsal hippocampus. PLoS Biol 7:e1000140

    PubMed Central  PubMed  Google Scholar 

  • Navratilova Z, McNaughton BL (2014) Models of path integration in the hippocampal complex. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Nelson ME, MacIver MA (2006) Sensory acquisition in active sensing systems. J Comp Physiol A 192:573–586

    CAS  Google Scholar 

  • Nguyen DP, Kloosterman F, Barbieri R, Brown EN, Wilson MA (2009) Characterizing the dynamic frequency structure of fast oscillations in the rodent hippocampus. Front Integr Neurosci 3:11

    PubMed Central  PubMed  Google Scholar 

  • Nishijo H, Ono T, Eifuku S, Tamura R (1997) The relationship between monkey hippocampus place-related neural activity and action in space. Neurosci Lett 226:57–60

    CAS  PubMed  Google Scholar 

  • O’Keefe J (1979) A review of the hippocampal place cells. Prog Neurobiol 13:419–439

    PubMed  Google Scholar 

  • O’Keefe J (2007) Hippocampal neurophysiology in the behaving animal. In: Andersen P, Morris RG, Amaral DG, Bliss TV, O’Keefe J (eds) The hippocampus book. Oxford University Press, New York, NY, pp 475–548

    Google Scholar 

  • O’Keefe J, Burgess N (1996) Geometric determinants of the place fields of hippocampal neurons. Nature 381:425–428

    PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, Oxford

    Google Scholar 

  • Ono T, Nakamura K, Nishijo H, Eifuku S (1993) Monkey hippocampal neurons related to spatial and nonspatial functions. J Neurophysiol 70:1516–1529

    CAS  PubMed  Google Scholar 

  • Ozdogan T, Morris G (2012) Evolvement of change in the dynamics of coding in the hippocampus. In: 8th FENS forum of neuroscience, Barcelona

    Google Scholar 

  • Pettigrew JD, Dreher B, Hopkins CS, McCall MJ, Brown M (1988) Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. Brain Behav Evol 32:39–56

    CAS  PubMed  Google Scholar 

  • Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Res 40:2201–2209

    CAS  PubMed  Google Scholar 

  • Quirk GJ, Muller RU, Kubie JL (1990) The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J Neurosci 10:2008–2017

    CAS  PubMed  Google Scholar 

  • Ranck JB Jr (1985) Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats. In: Buzsáki G, Vanderwolf CH (eds) Electrical activity of the archicortex. Akademiai Kiado, Budapest, pp 217–220

    Google Scholar 

  • Robertson RG, Rolls ET, Georges-François P, Panzeri S (1999) Head direction cells in the primate pre-subiculum. Hippocampus 9:206–219

    CAS  PubMed  Google Scholar 

  • Robinson TE (1980) Hippocampal rhythmic slow activity (RSA; theta): a critical analysis of selected studies and discussion of possible species-differences. Brain Res 203:69–101

    CAS  PubMed  Google Scholar 

  • Rolls ET (1999) Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9:467–480

    CAS  PubMed  Google Scholar 

  • Rolls ET (2002) Hippocampal spatial representations and navigation in primates. In: Sharp PE (ed) The neural basis of navigation: evidence from single cell recording. Kluwer, Boston, MA, pp 183–195

    Google Scholar 

  • Rolls ET, O’Mara SM (1995) View-responsive neurons in the primate hippocampal complex. Hippocampus 5:409–424

    CAS  PubMed  Google Scholar 

  • Rolls ET, Robertson RG, Georges-François P (1997) Spatial view cells in the primate hippocampus. Eur J Neurosci 9:1789–1794

    CAS  PubMed  Google Scholar 

  • Rotenberg A, Mayford M, Hawkins RD, Kandel ER, Muller RU (1996) Mice expressing activated CaMKII lack low frequency LTP and do not form stable place cells in the CA1 region of the hippocampus. Cell 87:1351–1361

    CAS  PubMed  Google Scholar 

  • Rotenberg A, Abel T, Hawkins RD, Kandel ER, Muller RU (2000) Parallel instabilities of long-term potentiation, place cells, and learning caused by decreased protein kinase A activity. J Neurosci 20:8096–8102

    CAS  PubMed  Google Scholar 

  • Rutishauser U, Ross IB, Mamelak AN, Schuman EM (2010) Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature 464:903–907

    CAS  PubMed  Google Scholar 

  • Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser M-B, Moser EI (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762

    CAS  PubMed  Google Scholar 

  • Save E, Nerad L, Poucet B (2000) Contribution of multiple sensory information to place field stability in hippocampal place cells. Hippocampus 10:64–76

    CAS  PubMed  Google Scholar 

  • Savelli F, Yoganarasimha D, Knierim JJ (2008) Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus 18:1270–1282

    PubMed Central  PubMed  Google Scholar 

  • Schmidt-Hieber C, Häusser M (2013) Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat Neurosci 16:325–331

    CAS  PubMed  Google Scholar 

  • Schultz EF, Tapp JT (1973) Olfactory control of behavior in rodents. Psychol Bull 79:21–44

    CAS  PubMed  Google Scholar 

  • Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21:1123–1128

    CAS  PubMed  Google Scholar 

  • Sirota A, Csicsvari J, Buhl D, Buzsáki G (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci USA 100:2065–2069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL, Wilson MA, Barnes CA (1996) Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–172

    CAS  PubMed  Google Scholar 

  • Skaggs WE, McNaughton BL, Permenter M, Archibeque M, Vogt J, Amaral DG, Barnes CA (2007) EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus. J Neurophysiol 98:898–910

    PubMed  Google Scholar 

  • Solstad T, Boccara CN, Kropff E, Moser M-B, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322:1865–1868

    CAS  PubMed  Google Scholar 

  • Sreenivasan S, Fiete I (2011) Grid cells generate an analog error-correcting code for singularly precise neural computation. Nat Neurosci 14:1330–1337

    CAS  PubMed  Google Scholar 

  • Stackman RW, Taube JS (1998) Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity. J Neurosci 18:9020–9037

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stensola H, Stensola T, Solstad T, Froland K, Moser M-B, Moser EI (2012) The entorhinal grid map is discretized. Nature 492:72–78

    CAS  PubMed  Google Scholar 

  • Stewart M, Fox SE (1991) Hippocampal theta activity in monkeys. Brain Res 538:59–63

    CAS  PubMed  Google Scholar 

  • Taube JS (1995) Head direction cells recorded in the anterior thalamic nuclei of freely moving rats. J Neurosci 15:70–86

    CAS  PubMed  Google Scholar 

  • Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181–207

    CAS  PubMed  Google Scholar 

  • Taube JS, Shinder M (2013) On the nature of three-dimensional encoding in the cognitive map: commentary on Hayman, Verriotis, Jovalekic, Fenton, and Jeffery. Hippocampus 23:14–21

    PubMed Central  PubMed  Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990a) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10:420–435

    CAS  PubMed  Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10:436–447

    CAS  PubMed  Google Scholar 

  • Treves A, Tashiro A, Witter MP, Moser EI (2008) What is the mammalian dentate gyrus good for? Neuroscience 154:1155–1172

    CAS  PubMed  Google Scholar 

  • Ulanovsky N (2011) Neuroscience: how is three-dimensional space encoded in the brain? Curr Biol 21:R886–R888

    CAS  PubMed  Google Scholar 

  • Ulanovsky N, Moss CF (2007) Hippocampal cellular and network activity in freely moving echolocating bats. Nat Neurosci 10:224–233

    CAS  PubMed  Google Scholar 

  • Ulanovsky N, Moss CF (2011) Dynamics of hippocampal spatial representation in echolocating bats. Hippocampus 21:150–161

    PubMed Central  PubMed  Google Scholar 

  • Van Cauter T, Poucet B, Save E (2008) Unstable CA1 place cell representation in rats with entorhinal cortex lesions. Eur J Neurosci 27:1933–1946

    PubMed  Google Scholar 

  • Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418

    CAS  PubMed  Google Scholar 

  • Wallenstein GV, Hasselmo ME (1997) GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J Neurophysiol 78:393–408

    CAS  PubMed  Google Scholar 

  • Whitlock JR, Sutherland RJ, Witter MP, Moser M-B, Moser EI (2008) Navigating from hippocampus to parietal cortex. Proc Natl Acad Sci USA 105:14755–14762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wills TJ, Cacucci F, Burgess N, O’Keefe J (2010) Development of the hippocampal cognitive map in preweanling rats. Science 328:1573–1576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058

    CAS  PubMed  Google Scholar 

  • Winson J (1972) Interspecies differences in the occurrence of theta. Behav Biol 7:479–487

    CAS  PubMed  Google Scholar 

  • Winter SS, Taube JS (2014) Head direction cells: from generation to integration. In: Derdikman D, Knierim JJ (eds) Space, time and memory in the hippocampal formation. Springer, Heidelberg

    Google Scholar 

  • Wulff P, Ponomarenko AA, Bartos M, Korotkova TM, Fuchs EC, Bähner F, Both M, Tort AB, Kopell NJ, Wisden W, Monyer H (2009) Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci USA 106:3561–3566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yartsev MM, Ulanovsky N (2013) Representation of three-dimensional space in the hippocampus of flying bats. Science 340:367–372

    CAS  PubMed  Google Scholar 

  • Yartsev MM, Witter MP, Ulanovsky N (2011) Grid cells without theta oscillations in the entorhinal cortex of bats. Nature 479:103–107

    CAS  PubMed  Google Scholar 

  • Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabó I, Sik A, Buzsáki G (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15:30–46

    CAS  PubMed  Google Scholar 

  • Yoder RM, Taube JS (2009) Head direction cell activity in mice: robust directional signal depends on intact otolith organs. J Neurosci 29:1061–1076

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yovel Y, Falk B, Moss CF, Ulanovsky N (2010) Optimal localization by pointing off axis. Science 327:701–704

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank A. Finkelstein, M. Geva-Sagiv, M. Yartsev, D. Derdikman, and J. Knierim for comments on this chapter and E. Buffalo, C. Kentros, D. Rinberg, B. Slotnick, M. Laska, and H. Eichenbaum for discussions. This work was supported by a grant from the European Research Council (ERC – NEUROBAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nachum Ulanovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Las, L., Ulanovsky, N. (2014). Hippocampal Neurophysiology Across Species. In: Derdikman, D., Knierim, J. (eds) Space,Time and Memory in the Hippocampal Formation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1292-2_16

Download citation

Publish with us

Policies and ethics