Skip to main content

Early CT Perfusion Measurement After Aneurysmal Subarachnoid Hemorrhage: A Screening Method to Predict Outcome?

  • Chapter
  • First Online:
Intracranial Pressure and Brain Monitoring XIV

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 114))

Abstract

Objective: The goal of the present study is to analyze the predictive impact of early CT-based perfusion measurement (CTP) on clinical outcome in patients suffering from aneurysmal SAH.

Methods: Fifteen patients with aneurysmal SAH received an early CTP measurement that was performed within the first 6 h after initial bleeding. According to a specific CTP protocol, mean transit time (MTT) and time to peak (TTP) were calculated bihemispherically and correlated with the clinical initial status according to the WFNS grade as well as with the Glasgow Outcome Scale (GOS) at the time of discharge.

Results: The MTT and TTP correlated highly significantly with the initial WFNS grade and the GOS at the time of discharge. Mean bihemispheric MTT was 3.4 s (2.8–4.1 s, SD: 0.5 s) for initially good-grade patients (WFNS° I–III) and 4.5 s (31.2–49.8 s) for poor-grade patients (WFNS° IV–V). ICP monitored in nine patients via EVD was documented within normal intracranial pressure as defined below 18 mmHg.

Conclusion: The determination of MTT and TTP using early CTP measurements in patients suffering from aneurysmal SAH demonstrated a significant correlation with the initial neurological status and the early clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins AL III, Vallabhajosyula P (1998) Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery 42(2):352–360

    Article  PubMed  CAS  Google Scholar 

  2. Brinker T, Seifert V, Dietz H (1992) Cerebral blood flow and intracranial pressure during experimental subarachnoid haemorrhage. Acta Neurochir (Wien) 115(1–2):47–52

    Article  CAS  Google Scholar 

  3. Ebel H, Rust DS, Leschinger A, Ehresmann N, Kranz A, Hoffmann O, Boker DK (1996) Vasomotion, regional cerebral blood flow and intracranial pressure after induced subarachnoid haemorrhage in rats. Zentralbl Neurochir 57(3):150–155

    PubMed  CAS  Google Scholar 

  4. Frykholm P, Andersson JL, Langstrom B, Persson L, Enblad P (2004) Haemodynamic and metabolic disturbances in the acute stage of subarachnoid haemorrhage demonstrated by PET. Acta Neurol Scand 109(1):25–32

    Article  PubMed  CAS  Google Scholar 

  5. Hop JW, Rinkel GJ, Algra A, van Gijn J (1997) Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review. Stroke 28:660–664

    Article  PubMed  CAS  Google Scholar 

  6. Ishiguro M, Murakami K, Link T, Zvarova K, Tranmer BI, Morielli AD, Wellman GC (2008) Acute and chronic effects of oxyhemoglobin on voltage-dependent ion channels in cerebral arteries. Acta Neurochir Suppl 104:99–102

    Article  PubMed  CAS  Google Scholar 

  7. Koivisto T, Vanninen E, Vanninen R, Kuikka J, Hernesniemi J, Vapalahti M (2002) Cerebral perfusion before and after endovascular or surgical treatment of acutely ruptured cerebral aneurysms: a 1-year prospective follow-up study. Neurosurgery 51(2):312–325

    PubMed  Google Scholar 

  8. Lovelock CE, Rinkel GJ, Rothwell PM (2010) Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review. Neurology 74:1494–1501

    Article  PubMed  CAS  Google Scholar 

  9. Ostrowski RP, Colohan AR, Zhang JH (2005) Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 25(5):554–571

    Article  PubMed  CAS  Google Scholar 

  10. Prunell GF, Mathiesen T, Svendgaard NA (2004) Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat. Neurosurgery 54(2):426–436

    Article  PubMed  Google Scholar 

  11. Sanelli PC, Jou A, Gold R, Reichman M, Greenberg E, John M, Cayci Z, Ugorec I, Rosengart A (2011) Using CT perfusion during the early baseline period in aneurysmal subarachnoid hemorrhage to assess for development of vasospasm. Neuroradiology 53(6):425–434

    Article  PubMed  Google Scholar 

  12. Schubert GA, Seiz M, Hegewald AA, Manville J, Thome C (2009) Acute hypoperfusion immediately after subarachnoid hemorrhage: a xenon contrast-enhanced CT study. J Neurotrauma 26(12):2225–2231

    Article  PubMed  Google Scholar 

  13. Solomon RA, Antunes JL, Chen RY, Bland L, Chien S (1985) Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 16(1):58–64

    Article  PubMed  CAS  Google Scholar 

  14. Takenaka K, Yamada H, Sakai N, Ando T, Okano Y, Nozawa Y (1991) Intracellular Ca2+ changes in cultured vascular smooth muscle cells by treatment with various spasmogens. Neurol Res 13(3):168–172

    PubMed  CAS  Google Scholar 

  15. Tanaka A, Yoshinaga S, Nakayama Y, Tomonaga M (1998) Cerebral blood flow and the response to acetazolamide during the acute, subacute, and chronic stages of aneurysmal subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 38(10):623–630

    Article  CAS  Google Scholar 

  16. Turowski B, Haenggi D, Wittsack HJ, Beck A, Aurich V (2007) Computerized analysis of brain perfusion parameter images. Rofo 179(5):525–529

    Article  PubMed  CAS  Google Scholar 

  17. Turowski B, Haenggi D, Wittsack J, Beck A, Moedder U (2007) Cerebral perfusion computerized tomography in vasospasm after subarachnoid hemorrhage: diagnostic value of MTT. Rofo 179(8):847–854

    Article  PubMed  CAS  Google Scholar 

  18. Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K (2009) Time-course of cerebral perfusion and tissue oxygenation in the first 6 h after experimental subarachnoid hemorrhage in rats. J Cereb Blood Flow Metab 29(4):771–779

    Article  PubMed  Google Scholar 

Download references

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel A. Kamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Kamp, M.A., Heiroth, HJ., Beseoglu, K., Turowski, B., Steiger, HJ., Hänggi, D. (2012). Early CT Perfusion Measurement After Aneurysmal Subarachnoid Hemorrhage: A Screening Method to Predict Outcome?. In: Schuhmann, M., Czosnyka, M. (eds) Intracranial Pressure and Brain Monitoring XIV. Acta Neurochirurgica Supplementum, vol 114. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0956-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0956-4_63

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0955-7

  • Online ISBN: 978-3-7091-0956-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics