Skip to main content

Compartmentalization of Proteolysis

  • Chapter
  • First Online:
Proteases: Structure and Function

Abstract

Proteolysis is arguably the most important of all post-translational modifications in that it is effectively irreversible, and leads to the partial or complete breakdown of proteins. Cells have adapted various mechanisms to control proteolysis as despite its importance, its destructive nature requires tight regulation. Evidence now clearly shows that the loss of proteolytic regulation is a key component in the progression of various pathophysiologies from metabolic disorders to cancer. This chapter discusses the central role for cellular compartmentalization of proteolysis to ensure homeostasis and highlights examples of how the loss of this regulation can promote disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele R, Tampe R (2006) Modulation of the antigen transport machinery TAP by friends and enemies. FEBS Lett 580(4):1156–1163

    CAS  PubMed  Google Scholar 

  • Abele R, Tampe R (2009) Peptide trafficking and translocation across membranes in cellular signaling and self-defense strategies. Curr Opin Cell Biol 21(4):508–515

    CAS  PubMed  Google Scholar 

  • Abrahamson M, Alvarez-Fernandez M, Nathanson CM (2003) Cystatins. Biochem Soc Symp 70:179–199

    CAS  PubMed  Google Scholar 

  • Adhikari A, Xu M, Chen ZJ (2007) Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26(22):3214–3226

    CAS  PubMed  Google Scholar 

  • Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87(2):171

    CAS  PubMed  Google Scholar 

  • Andrews NW (2000) Regulated secretion of conventional lysosomes. Trends Cell Biol 10(8):316–321

    CAS  PubMed  Google Scholar 

  • Annaert W, De Strooper B (1999) Presenilins: molecular switches between proteolysis and signal transduction. Trends Neurosci 22(10):439–443

    CAS  PubMed  Google Scholar 

  • Apte SS (2004) A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cell Biol 36(6):981–985

    CAS  PubMed  Google Scholar 

  • Arampatzidou M, Mayer K, Iolyeva ME, Gebre Asrat S, Ravichandran M, Günther R, Schüle T, Reinheckel T, Brix K (2011a) Studies of intestinal morphology and cathepsin B expressing in a transgenic mouse aiming at intestine-specific expression of CathB-EGFP. Biol Chem 392:983–993

    CAS  PubMed  Google Scholar 

  • Arampatzidou M, Rehders M, Dauth S, Yu DMT, Tedelind S, Brix K (2011b) Imaging of protease functions – current guide to spotting cysteine cathepsins in classical and novel scenes of action in mammalian epithelial cells and tissues. Ital J Anat Embryol 116(1):1–19

    PubMed  Google Scholar 

  • Arampatzidou M, Schütte A, Hansson GC, Saftig P, Brix K (2012) Effects of cathepsin K deficiency on intercellular junction proteins, luminal mucus layers, and extracellular matrix constituents in the mouse colon. Biol Chem 393:1391–1403

    CAS  PubMed  Google Scholar 

  • Arias E, Cuervo AM (2011) Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 23(2):184–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arolas JL, Vendrell J, Aviles FX, Fricker LD (2007) Metallocarboxypeptidases: emerging drug targets in biomedicine. Curr Pharm Des 13(4):349–366

    CAS  PubMed  Google Scholar 

  • Authier F, Posner BI, Bergeron JJ (1996) Insulin-degrading enzyme. Clin Invest Med 19(3):149–160

    CAS  PubMed  Google Scholar 

  • Bailey CM, Khalkhali-Ellis Z, Seftor EA, Hendrix MJ (2006) Biological functions of maspin. J Cell Physiol 209(3):617–624

    CAS  PubMed  Google Scholar 

  • Bank U, Bohr UR, Reinhold D, Lendeckel U, Ansorge S, Malfertheiner P, Tager M (2008) Inflammatory bowel diseases: multiple benefits from therapy with dipeptidyl- and alanyl-aminopeptidase inhibitors. Front Biosci 13:3699–3713

    CAS  PubMed  Google Scholar 

  • Barrett AJ (1979) Cathepsin D: the lysosomal aspartic proteinase. Ciba Found Symp 75:37–50

    PubMed  Google Scholar 

  • Barrett AJ (2004) Bioinformatics of proteases in the MEROPS database. Curr Opin Drug Discov Devel 7(3):334–341

    CAS  PubMed  Google Scholar 

  • Barrett AJ, Kirschke H (1981) Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol 80(Pt C):535–561

    CAS  PubMed  Google Scholar 

  • Barrett AJ, Rawlings ND (2001) Evolutionary lines of cysteine peptidases. Biol Chem 382(5):727–733

    CAS  PubMed  Google Scholar 

  • Barrett AJ, Rawlings ND (2007) ‘Species’ of peptidases. Biol Chem 388(11):1151–1157

    CAS  PubMed  Google Scholar 

  • Barrett AJ, Rawlings ND, O’Brien EA (2001) The MEROPS database as a protease information system. J Struct Biol 134(2–3):95–102

    CAS  PubMed  Google Scholar 

  • Barrett AJ, Tolle DP, Rawlings ND (2003) Managing peptidases in the genomic era. Biol Chem 384(6):873–882

    CAS  PubMed  Google Scholar 

  • Baruch A, Jeffery DA, Bogyo M (2004) Enzyme activity–it’s all about image. Trends Cell Biol 14(1):29–35

    CAS  PubMed  Google Scholar 

  • Basbaum CB, Werb Z (1996) Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface. Curr Opin Cell Biol 8(5):731–738

    CAS  PubMed  Google Scholar 

  • Behrendt N (2004) The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180): membrane proteins engaged in matrix turnover during tissue remodeling. Biol Chem 385(2):103–136

    CAS  PubMed  Google Scholar 

  • Bergers G, Coussens LM (2000) Extrinsic regulators of epithelial tumor progression: metalloproteinases. Curr Opin Genet Dev 10(1):120–127

    CAS  PubMed  Google Scholar 

  • Bhat KP, Greer SF (2011) Proteolytic and non-proteolytic roles of ubiquitin and the ubiquitin proteasome system in transcriptional regulation. Biochim Biophys Acta 1809(2):150–155

    CAS  PubMed  Google Scholar 

  • Blasi F (1993) Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness. Bioessays 15(2):105–111

    CAS  PubMed  Google Scholar 

  • Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3(12):932–943

    CAS  PubMed  Google Scholar 

  • Blobel CP (2000a) Remarkable roles of proteolysis on and beyond the cell surface. Curr Opin Cell Biol 12(5):606–612

    CAS  PubMed  Google Scholar 

  • Blobel CP (2000b) Functional processing of fertilin: evidence for a critical role of proteolysis in sperm maturation and activation. Rev Reprod 5(2):75–83

    CAS  PubMed  Google Scholar 

  • Blum G (2008) Use of fluorescent imaging to investigate pathological protease activity. Curr Opin Drug Discov Devel 11(5):708–716

    CAS  PubMed  Google Scholar 

  • Blum G, Mullins SR, Keren K, Fonovic M, Jedeszko C, Rice MJ, Sloane BF, Bogyo M (2005) Dynamic imaging of protease activity with fluorescently quenched activity-based probes. Nat Chem Biol 1(4):203–209

    CAS  PubMed  Google Scholar 

  • Bode W, Huber R (1992) Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 204(2):433–451

    CAS  PubMed  Google Scholar 

  • Bode W, Huber R (2000) Structural basis of the endoproteinase-protein inhibitor interaction. Biochim Biophys Acta 1477(1–2):241–252

    CAS  PubMed  Google Scholar 

  • Bode W, Maskos K (2001) Structural studies on MMPs and TIMPs. Methods Mol Biol 151:45–77

    CAS  PubMed  Google Scholar 

  • Bode W, Maskos K (2003) Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biol Chem 384(6):863–872

    CAS  PubMed  Google Scholar 

  • Bode W, Renatus M (1997) Tissue-type plasminogen activator: variants and crystal/solution structures demarcate structural determinants of function. Curr Opin Struct Biol 7(6):865–872

    CAS  PubMed  Google Scholar 

  • Bode W, Grams F, Reinemer P, Gomis-Ruth FX, Baumann U, McKay DB, Stocker W (1996) The metzincin-superfamily of zinc-peptidases. Adv Exp Med Biol 389:1–11

    CAS  PubMed  Google Scholar 

  • Bode W, Brandstetter H, Mather T, Stubbs MT (1997) Comparative analysis of haemostatic proteinases: structural aspects of thrombin, factor Xa, factor IXa and protein C. Thromb Haemost 78(1):501–511

    CAS  PubMed  Google Scholar 

  • Bode W, Fernandez-Catalan C, Nagase H, Maskos K (1999) Endoproteinase-protein inhibitor interactions. APMIS 107(1):3–10

    CAS  PubMed  Google Scholar 

  • Bonifacino JS, Weissman AM (1998) Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu Rev Cell Dev Biol 14:19–57

    CAS  PubMed  Google Scholar 

  • Brandstetter H, Kim JS, Groll M, Huber R (2001) Crystal structure of the tricorn protease reveals a protein disassembly line. Nature 414(6862):466–470

    CAS  PubMed  Google Scholar 

  • Bresciani R, Von Figura K (1996) Dephosphorylation of the mannose-6-phosphate recognition marker is localized in later compartments of the endocytic route. Identification of purple acid phosphatase (uteroferrin) as the candidate phosphatase. Eur J Biochem 238(3):669–674

    CAS  PubMed  Google Scholar 

  • Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803(1):55–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3(3):207–214

    CAS  PubMed  Google Scholar 

  • Brix K (2005) Lysosomal proteases: revival of the sleeping beauty, Chap. 5. In: Saftig P (ed) Lysosomes. Landes Bioscience/Eurekah.com/Springer, Georgetown, TX

    Google Scholar 

  • Brix K, Herzog V (1994) Extrathyroidal release of thyroid hormones from thyroglobulin by J774 mouse macrophages. J Clin Invest 93(4):1388–1396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brix K, Jordans S (2005) Watching proteases in action. Nat Chem Biol 1(4):186–187

    CAS  PubMed  Google Scholar 

  • Brix K, Lemansky P, Herzog V (1996) Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology 137(5):1963–1974

    CAS  PubMed  Google Scholar 

  • Brix K, Wirtz R, Herzog V (1997) Paracrine interaction between hepatocytes and macrophages after extrathyroidal proteolysis of thyroglobulin. Hepatology 26(5):1232–1240

    CAS  PubMed  Google Scholar 

  • Brix K, Linke M, Tepel C, Herzog V (2001) Cysteine proteinases mediate extracellular prohormone processing in the thyroid. Biol Chem 382(5):717–725

    CAS  PubMed  Google Scholar 

  • Brix K, Dunkhorst A, Mayer K, Jordans S (2008) Cysteine cathepsins: cellular roadmap to different functions. Biochimie 90(2):194–207

    CAS  PubMed  Google Scholar 

  • Brix K, Fuhrer D, Biebermann H (2011) Molecules important for thyroid hormone synthesis and action – known facts and future perspectives. Thyroid Res 4(Suppl 1):S9

    PubMed Central  PubMed  Google Scholar 

  • Bromme D, Okamoto K (1995) Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol Chem Hoppe Seyler 376(6):379–384

    CAS  PubMed  Google Scholar 

  • Brooks P, Fuertes G, Murray RZ, Bose S, Knecht E, Rechsteiner MC, Hendil KB, Tanaka K, Dyson J, Rivett J (2000a) Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J 346(Pt 1):155–161

    CAS  PubMed  Google Scholar 

  • Brooks P, Murray RZ, Mason GG, Hendil KB, Rivett AJ (2000b) Association of immunoproteasomes with the endoplasmic reticulum. Biochem J 352(Pt 3):611–615

    CAS  PubMed  Google Scholar 

  • Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100(4):391–398

    CAS  PubMed  Google Scholar 

  • Brunner G, Preissner KT (1994) Pericellular enzymatic hydrolysis: implications for the regulation of cell proliferation in the vessel wall and the bone marrow. Blood Coagul Fibrinolysis 5(4):625–639

    CAS  PubMed  Google Scholar 

  • Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    CAS  PubMed  Google Scholar 

  • Bugge TH, List K, Szabo R (2007) Matriptase-dependent cell surface proteolysis in epithelial development and pathogenesis. Front Biosci 12:5060–5070

    CAS  PubMed  Google Scholar 

  • Burden RE, Snoddy P, Jefferies CA, Walker B, Scott CJ (2007) Inhibition of cathepsin L-like proteases by cathepsin V propeptide. Biol Chem 388(5):541–545

    CAS  PubMed  Google Scholar 

  • Buth H, Wolters B, Hartwig B, Meier-Bornheim R, Veith H, Hansen M, Sommerhoff CP, Schaschke N, Machleidt W, Fusenig NE, Boukamp P, Brix K (2004) HaCaT keratinocytes secrete lysosomal cysteine proteinases during migration. Eur J Cell Biol 83(11–12):781–795

    PubMed  Google Scholar 

  • Buth H, Luigi Buttigieg P, Ostafe R, Rehders M, Dannenmann SR, Schaschke N, Stark HJ, Boukamp P, Brix K (2007) Cathepsin B is essential for regeneration of scratch-wounded normal human epidermal keratinocytes. Eur J Cell Biol 86(11–12):747–761

    PubMed  Google Scholar 

  • Buttle DJ (2007) Factors controlling matrix turnover in health and disease. Biochem Soc Trans 35(Pt 4):643–646

    CAS  PubMed  Google Scholar 

  • Carlson EE, Cravatt BF (2007) Chemoselective probes for metabolite enrichment and profiling. Nat Methods 4(5):429–435

    CAS  PubMed  Google Scholar 

  • Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cauwe B, Opdenakker G (2010) Intracellular substrate cleavage: a novel dimension in the biochemistry, biology and pathology of matrix metalloproteinases. Crit Rev Biochem Mol Biol 45(5):351–423

    CAS  PubMed  Google Scholar 

  • Cavallo-Medved D, Sloane BF (2003) Cell-surface cathepsin B: understanding its functional significance. Curr Top Dev Biol 54:313–341

    CAS  PubMed  Google Scholar 

  • Cawston TE, Young DA (2010) Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res 339(1):221–235

    CAS  PubMed  Google Scholar 

  • Ceru S, Konjar S, Maher K, Repnik U, Krizaj I, Bencina M, Renko M, Nepveu A, Zerovnik E, Turk B, Kopitar-Jerala N (2010) Stefin B interacts with histones and cathepsin L in the nucleus. J Biol Chem 285(13):10078–10086

    CAS  PubMed  Google Scholar 

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T (2003) Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253(1–2):269–285

    CAS  PubMed  Google Scholar 

  • Chambers RC, Laurent GJ (2002) Coagulation cascade proteases and tissue fibrosis. Biochem Soc Trans 30(2):194–200

    CAS  PubMed  Google Scholar 

  • Chapman HA (2004) Cathepsins as transcriptional activators? Dev Cell 6(5):610–611

    CAS  PubMed  Google Scholar 

  • Chapman HA Jr, Munger JS, Shi GP (1994) The role of thiol proteases in tissue injury and remodeling. Am J Respir Crit Care Med 150(6 Pt 2):S155–S159

    PubMed  Google Scholar 

  • Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59:63–88

    CAS  PubMed  Google Scholar 

  • Chen WT (1996) Proteases associated with invadopodia, and their role in degradation of extracellular matrix. Enzyme Protein 49(1–3):59–71

    CAS  PubMed  Google Scholar 

  • Chen Y, Klionsky DJ (2011) The regulation of autophagy – unanswered questions. J Cell Sci 124(Pt 2):161–170

    CAS  PubMed  Google Scholar 

  • Choi SY, Bertram S, Glowacka I, Park YW, Pohlmann S (2009) Type II transmembrane serine proteases in cancer and viral infections. Trends Mol Med 15(7):303–312

    CAS  PubMed  Google Scholar 

  • Ciechanover A (2003) The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Biochem Soc Trans 31(2):474–481

    CAS  PubMed  Google Scholar 

  • Ciechanover A (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 6(1):79–87

    CAS  PubMed  Google Scholar 

  • Ciechanover A, Iwai K (2004) The ubiquitin system: from basic mechanisms to the patient bed. IUBMB Life 56(4):193–201

    CAS  PubMed  Google Scholar 

  • Clegg JS (1991) Metabolic organization and the ultrastructure of animal cells. Biochem Soc Trans 19(4):986–991

    CAS  PubMed  Google Scholar 

  • Cobbe N, Marshall KM, Gururaja Rao S, Chang CW, Di Cara F, Duca E, Vass S, Kassan A, Heck MM (2009) The conserved metalloprotease invadolysin localizes to the surface of lipid droplets. J Cell Sci 122(Pt 18):3414–3423

    CAS  PubMed  Google Scholar 

  • Collins GA, Tansey WP (2006) The proteasome: a utility tool for transcription? Curr Opin Genet Dev 16(2):197–202

    CAS  PubMed  Google Scholar 

  • Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422(6927):37–44

    CAS  PubMed  Google Scholar 

  • Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295(5564):2387–2392

    CAS  PubMed  Google Scholar 

  • Creemers JW, Khatib AM (2008) Knock-out mouse models of proprotein convertases: unique functions or redundancy? Front Biosci 13:4960–4971

    CAS  PubMed  Google Scholar 

  • Dano K, Behrendt N, Hoyer-Hansen G, Johnsen M, Lund LR, Ploug M, Romer J (2005) Plasminogen activation and cancer. Thromb Haemost 93(4):676–681

    CAS  PubMed  Google Scholar 

  • Das R, Pluskota E, Plow EF (2010) Plasminogen and its receptors as regulators of cardiovascular inflammatory responses. Trends Cardiovasc Med 20(4):120–124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dash C, Kulkarni A, Dunn B, Rao M (2003) Aspartic peptidase inhibitors: implications in drug development. Crit Rev Biochem Mol Biol 38(2):89–119

    CAS  PubMed  Google Scholar 

  • Dauth S, Arampatzidou M, Rehders M, Yu DMT, Tedelind S, Brix K (2011a) Thyroid cathepsin K – roles in physiology and thyroid disease. Clin Rev Bone Miner Metab 9:94–106

    CAS  Google Scholar 

  • Dauth S, Sirbulescu RF, Jordans S, Rehders M, Avena L, Oswald J, Lerchl A, Saftig P, Brix K (2011b) Cathepsin K deficiency in mice induces structural and metabolic changes in the central nervous system that are associated with learning and memory deficits. BMC Neurosci 12(1):74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dauth S, Schmidt MM, Rehders M, Dietz F, Kelm S, Dringen R, Brix K (2012) Characterization and metabolism of astroglia-rich primary cultures from cathepsin K-deficient mice. Biol Chem 393:959–970

    CAS  PubMed  Google Scholar 

  • Davies KJ (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83(3–4):301–310

    CAS  PubMed  Google Scholar 

  • De Mot R, Nagy I, Walz J, Baumeister W (1999) Proteasomes and other self-compartmentalizing proteases in prokaryotes. Trends Microbiol 7(2):88–92

    PubMed  Google Scholar 

  • De Strooper B, Annaert W (2000) Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci 113(Pt 11):1857–1870

    PubMed  Google Scholar 

  • Declercq W, Vanden Berghe T, Vandenabeele P (2009) RIP kinases at the crossroads of cell death and survival. Cell 138(2):229–232

    CAS  PubMed  Google Scholar 

  • Degli Esposti M (2008) Organelle intermixing and membrane scrambling in cell death. Methods Enzymol 442:421–438

    PubMed  Google Scholar 

  • Desmarais S, Masse F, Percival MD (2009) Pharmacological inhibitors to identify roles of cathepsin K in cell-based studies: a comparison of available tools. Biol Chem 390(9):941–948

    CAS  PubMed  Google Scholar 

  • Deveraux QL, Stennicke HR, Salvesen GS, Reed JC (1999) Endogenous inhibitors of caspases. J Clin Immunol 19(6):388–398

    CAS  PubMed  Google Scholar 

  • Di Cara F, Duca E, Dunbar DR, Cagney G, Heck MM (2013) Invadolysin, a conserved lipid droplet-associated metalloprotease, is required for mitochondrial function in Drosophila. J Cell Sci, in press, doi:10.1242/jcs.133306

  • Dice JF (1987) Molecular determinants of protein half-lives in eukaryotic cells. FASEB J 1(5):349–357

    CAS  PubMed  Google Scholar 

  • Dice JF (1990) Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 15(8):305–309

    CAS  PubMed  Google Scholar 

  • Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3(4):295–299

    CAS  PubMed  Google Scholar 

  • Dice JF, Walker CD (1979) Protein degradation in metabolic and nutritional disorders. Ciba Found Symp 75:331–350

    PubMed  Google Scholar 

  • Dikic I, Schmidt MH (2010) Notch: implications of endogenous inhibitors for therapy. Bioessays 32(6):481–487

    CAS  PubMed  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890

    CAS  PubMed  Google Scholar 

  • Docherty K, Steiner DF (1982) Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol 44:625–638

    CAS  PubMed  Google Scholar 

  • Doucet A, Butler GS, Rodriguez D, Prudova A, Overall CM (2008) Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Mol Cell Proteomics 7(10):1925–1951

    CAS  PubMed  Google Scholar 

  • Drag M, Salvesen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9(9):690–701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Driscoll JJ, Dechowdhury R (2010) Therapeutically targeting the SUMOylation, ubiquitination and proteasome pathways as a novel anticancer strategy. Target Oncol 5(4):281–289

    PubMed  Google Scholar 

  • Dunn BM, Oda K, Kay J, Rao-Naik C, Lowther WT, Beyer BM, Scarborough PE, Bukhtiyarova M (1998) Comparison of the specificity of the aspartic proteinases towards internally consistent sets of oligopeptide substrates. Adv Exp Med Biol 436:133–138

    CAS  PubMed  Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    CAS  PubMed  Google Scholar 

  • Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Aspects Med 29(5):258–289

    CAS  PubMed  Google Scholar 

  • Ehrmann M, Clausen T (2004) Proteolysis as a regulatory mechanism. Annu Rev Genet 38:709–724

    CAS  PubMed  Google Scholar 

  • Ellis V (2003) Plasminogen activation at the cell surface. Curr Top Dev Biol 54:263–312

    CAS  PubMed  Google Scholar 

  • Farquhar MG, Palade GE (1981) The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol 91(3 Pt 2):77s–103s

    CAS  PubMed  Google Scholar 

  • Farquhar MG, Palade GE (1998) The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol 8(1):2–10

    CAS  PubMed  Google Scholar 

  • Felberbaum-Corti M, Van Der Goot FG, Gruenberg J (2003) Sliding doors: clathrin-coated pits or caveolae? Nat Cell Biol 5(5):382–384

    CAS  PubMed  Google Scholar 

  • Fineschi B, Miller J (1997) Endosomal proteases and antigen processing. Trends Biochem Sci 22(10):377–382

    CAS  PubMed  Google Scholar 

  • Freeman M (2008) Rhomboid proteases and their biological functions. Annu Rev Genet 42:191–210

    CAS  PubMed  Google Scholar 

  • Fricker LD (1988) Carboxypeptidase E. Annu Rev Physiol 50:309–321

    CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K (2003) Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochem Soc Symp 70:277–285

    CAS  PubMed  Google Scholar 

  • Friedl P, Wolf K (2009) Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev 28(1–2):129–135

    PubMed  Google Scholar 

  • Friedrichs B, Tepel C, Reinheckel T, Deussing J, von Figura K, Herzog V, Peters C, Saftig P, Brix K (2003) Thyroid functions of mouse cathepsins B, K, and L. J Clin Invest 111(11):1733–1745

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frittoli E, Palamidessi A, Disanza A, Scita G (2011) Secretory and endo/exocytic trafficking in invadopodia formation: the MT1-MMP paradigm. Eur J Cell Biol 90(2–3):108–114

    CAS  PubMed  Google Scholar 

  • Fritz H, Schiessler H, Schleuning WD (1973) Proteinases and proteinase inhibitors in the fertilization process: new concepts of control? Adv Biosci 10:271–286

    CAS  PubMed  Google Scholar 

  • Fu X, Parks WC, Heinecke JW (2008) Activation and silencing of matrix metalloproteinases. Semin Cell Dev Biol 19(1):2–13

    CAS  PubMed  Google Scholar 

  • Funkelstein L, Beinfeld M, Minokadeh A, Zadina J, Hook V (2010) Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides. Neuropeptides 44(6):457–466

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gagescu R, Gruenberg J, Smythe E (2000) Membrane dynamics in endocytosis: structure–function relationship. Traffic 1(1):84–88

    PubMed  Google Scholar 

  • Gahmberg CG, Tolvanen M (1996) Why mammalian cell surface proteins are glycoproteins. Trends Biochem Sci 21(8):308–311

    CAS  PubMed  Google Scholar 

  • Galivan J, Ryan TJ, Chave K, Rhee M, Yao R, Yin D (2000) Glutamyl hydrolase. Pharmacological role and enzymatic characterization. Pharmacol Ther 85(3):207–215

    CAS  PubMed  Google Scholar 

  • Garten W, Hallenberger S, Ortmann D, Schafer W, Vey M, Angliker H, Shaw E, Klenk HD (1994) Processing of viral glycoproteins by the subtilisin-like endoprotease furin and its inhibition by specific peptidylchloroalkylketones. Biochimie 76(3–4):217–225

    CAS  PubMed  Google Scholar 

  • Gerasimenko JV, Gerasimenko OV, Petersen OH (2001) Membrane repair: Ca(2+)-elicited lysosomal exocytosis. Curr Biol 11(23):R971–R974

    CAS  PubMed  Google Scholar 

  • Gerlt JA, Babbitt PC (2001) Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu Rev Biochem 70:209–246

    CAS  PubMed  Google Scholar 

  • Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6(1):60–64

    CAS  PubMed  Google Scholar 

  • Goldberg AL, Dice JF (1974) Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem 43:835–869

    CAS  PubMed  Google Scholar 

  • Gomez-Lazaro M, Rinn C, Aroso M, Amado F, Schrader M (2010) Proteomic analysis of zymogen granules. Expert Rev Proteomics 7(5):735–747

    CAS  PubMed  Google Scholar 

  • Gomis-Ruth FX (2008) Structure and mechanism of metallocarboxypeptidases. Crit Rev Biochem Mol Biol 43(5):319–345

    CAS  PubMed  Google Scholar 

  • Gomis-Ruth FX, Botelho TO, Bode W (2012) A standard orientation for metallopeptidases. Biochim Biophys Acta 1824(1):157–163

    CAS  PubMed  Google Scholar 

  • Goulet B, Nepveu A (2004) Complete and limited proteolysis in cell cycle progression. Cell Cycle 3(8):986–989

    CAS  PubMed  Google Scholar 

  • Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14(2):207–219

    CAS  PubMed  Google Scholar 

  • Goulet B, Sansregret L, Leduy L, Bogyo M, Weber E, Chauhan SS, Nepveu A (2007) Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Mol Cancer Res 5(9):899–907

    CAS  PubMed  Google Scholar 

  • Goulet B, Markovic Y, Leduy L, Nepveu A (2008) Proteolytic processing of cut homeobox 1 by neutrophil elastase in the MV4;11 myeloid leukemia cell line. Mol Cancer Res 6(4):644–653

    CAS  PubMed  Google Scholar 

  • Greenbaum D, Baruch A, Hayrapetian L, Darula Z, Burlingame A, Medzihradszky KF, Bogyo M (2002) Chemical approaches for functionally probing the proteome. Mol Cell Proteomics 1(1):60–68

    CAS  PubMed  Google Scholar 

  • Groettrup M, Soza A, Kuckelkorn U, Kloetzel PM (1996) Peptide antigen production by the proteasome: complexity provides efficiency. Immunol Today 17(9):429–435

    CAS  PubMed  Google Scholar 

  • Groettrup M, Khan S, Schwarz K, Schmidtke G (2001a) Interferon-gamma inducible exchanges of 20S proteasome active site subunits: why? Biochimie 83(3–4):367–372

    CAS  PubMed  Google Scholar 

  • Groettrup M, van den Broek M, Schwarz K, Macagno A, Khan S, de Giuli R, Schmidtke G (2001b) Structural plasticity of the proteasome and its function in antigen processing. Crit Rev Immunol 21(4):339–358

    CAS  PubMed  Google Scholar 

  • Groettrup M, Kirk CJ, Basler M (2010) Proteasomes in immune cells: more than peptide producers? Nat Rev Immunol 10(1):73–78

    CAS  PubMed  Google Scholar 

  • Groll M, Clausen T (2003) Molecular shredders: how proteasomes fulfill their role. Curr Opin Struct Biol 13(6):665–673

    CAS  PubMed  Google Scholar 

  • Groll M, Ditzel L, Lowe J, Stock D, Bochtler M, Bartunik HD, Huber R (1997) Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 386(6624):463–471

    CAS  PubMed  Google Scholar 

  • Gruenberg J (2001) The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2(10):721–730

    CAS  PubMed  Google Scholar 

  • Gruenberg J, Howell KE (1989) Membrane traffic in endocytosis: insights from cell-free assays. Annu Rev Cell Biol 5:453–481

    CAS  PubMed  Google Scholar 

  • Gruenberg J, Maxfield FR (1995) Membrane transport in the endocytic pathway. Curr Opin Cell Biol 7(4):552–563

    CAS  PubMed  Google Scholar 

  • Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5(4):317–323

    CAS  PubMed  Google Scholar 

  • Gu F, Gruenberg J (1999) Biogenesis of transport intermediates in the endocytic pathway. FEBS Lett 452(1–2):61–66

    CAS  PubMed  Google Scholar 

  • Gu F, Aniento F, Parton RG, Gruenberg J (1997) Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. J Cell Biol 139(5):1183–1195

    CAS  PubMed  Google Scholar 

  • Gumy LF, Tan CL, Fawcett JW (2010) The role of local protein synthesis and degradation in axon regeneration. Exp Neurol 223(1):28–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ha Y (2007) Structural principles of intramembrane proteases. Curr Opin Struct Biol 17(4):405–411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hajjar KA, Acharya SS (2000) Annexin II and regulation of cell surface fibrinolysis. Ann NY Acad Sci 902:265–271

    CAS  PubMed  Google Scholar 

  • Halangk W, Lerch MM, Brandt-Nedelev B, Roth W, Ruthenbuerger M, Reinheckel T, Domschke W, Lippert H, Peters C, Deussing J (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106(6):773–781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9(7):503–513

    CAS  PubMed  Google Scholar 

  • Haugen MH, Johansen HT, Pettersen SJ, Solberg R, Brix K, Flatmark K, Maelandsmo GM (2013) Nuclear legumain activity in colorectal cancer. PLoS One 8(1):e52980

    CAS  PubMed Central  PubMed  Google Scholar 

  • He B, Lu N, Zhou Z (2009) Cellular and nuclear degradation during apoptosis. Curr Opin Cell Biol 21(6):900–912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heck MM (1997) Condensins, cohesins, and chromosome architecture: how to make and break a mitotic chromosome. Cell 91(1):5–8

    CAS  PubMed  Google Scholar 

  • Hendrickx AP, Budzik JM, Oh SY, Schneewind O (2011) Architects at the bacterial surface – sortases and the assembly of pili with isopeptide bonds. Nat Rev Microbiol 9(3):166–176

    CAS  PubMed  Google Scholar 

  • Henrich S, Lindberg I, Bode W, Than ME (2005) Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J Mol Biol 345(2):211–227

    CAS  PubMed  Google Scholar 

  • Herget M, Tampe R (2007) Intracellular peptide transporters in human–compartmentalization of the “peptidome”. Pflugers Arch 453(5):591–600

    CAS  PubMed  Google Scholar 

  • Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172

    CAS  PubMed  Google Scholar 

  • Hille A, Klumperman J, Geuze HJ, Peters C, Brodsky FM, von Figura K (1992) Lysosomal acid phosphatase is internalized via clathrin-coated pits. Eur J Cell Biol 59(1):106–115

    CAS  PubMed  Google Scholar 

  • Hiraiwa M (1999) Cathepsin A/protective protein: an unusual lysosomal multifunctional protein. Cell Mol Life Sci 56(11–12):894–907

    CAS  PubMed  Google Scholar 

  • Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, Mankani M, Robey PG, Poole AR, Pidoux I, Ward JM, Birkedal-Hansen H (1999) MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 99(1):81–92

    CAS  PubMed  Google Scholar 

  • Hook V, Yasothornsrikul S, Greenbaum D, Medzihradszky KF, Troutner K, Toneff T, Bundey R, Logrinova A, Reinheckel T, Peters C, Bogyo M (2004) Cathepsin L and Arg/Lys aminopeptidase: a distinct prohormone processing pathway for the biosynthesis of peptide neurotransmitters and hormones. Biol Chem 385(6):473–480

    CAS  PubMed  Google Scholar 

  • Hook V, Schechter I, Demuth HU, Hook G (2008) Alternative pathways for production of beta-amyloid peptides of Alzheimer’s disease. Biol Chem 389(8):993–1006

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hooper NM (2002) Proteases: a primer. Essays Biochem 38:1–8

    CAS  PubMed  Google Scholar 

  • Hooper JD, Clements JA, Quigley JP, Antalis TM (2001) Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem 276(2):857–860

    CAS  PubMed  Google Scholar 

  • Howell KE, Devaney E, Gruenberg J (1989) Subcellular fractionation of tissue culture cells. Trends Biochem Sci 14(2):44–47

    CAS  PubMed  Google Scholar 

  • Hudson DF, Marshall KM, Earnshaw WC (2009) Condensin: architect of mitotic chromosomes. Chromosome Res 17(2):131–144

    CAS  PubMed  Google Scholar 

  • Ichihara A, Kaneshiro Y, Suzuki F (2006) Prorenin receptor blockers: effects on cardiovascular complications of diabetes and hypertension. Expert Opin Investig Drugs 15(10):1137–1139

    CAS  PubMed  Google Scholar 

  • Ishidoh K, Kominami E (2002) Processing and activation of lysosomal proteinases. Biol Chem 383(12):1827–1831

    CAS  PubMed  Google Scholar 

  • Itoh Y (2006) MT1-MMP: a key regulator of cell migration in tissue. IUBMB Life 58(10):589–596

    CAS  PubMed  Google Scholar 

  • Ivanova S, Repnik U, Bojic L, Petelin A, Turk V, Turk B (2008) Lysosomes in apoptosis. Methods Enzymol 442:183–199

    CAS  PubMed  Google Scholar 

  • Izuhara K, Ohta S, Kanaji S, Shiraishi H, Arima K (2008) Recent progress in understanding the diversity of the human ov-serpin/clade B serpin family. Cell Mol Life Sci 65(16):2541–2553

    CAS  PubMed  Google Scholar 

  • Jacques LB (1979) Heparin: an old drug with a new paradigm. Science 206(4418):528–533

    CAS  PubMed  Google Scholar 

  • Jedeszko C, Sameni M, Olive MB, Moin K, Sloane BF (2008) Visualizing protease activity in living cells: from two dimensions to four dimensions. Curr Protoc Cell Biol Chapter 4:Unit 4.20

    Google Scholar 

  • Jiang A, Lehti K, Wang X, Weiss SJ, Keski-Oja J, Pei D (2001) Regulation of membrane-type matrix metalloproteinase 1 activity by dynamin-mediated endocytosis. Proc Natl Acad Sci U S A 98(24):13693–13698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jordans S, Jenko-Kokalj S, Kuhl NM, Tedelind S, Sendt W, Bromme D, Turk D, Brix K (2009) Monitoring compartment-specific substrate cleavage by cathepsins B, K, L, and S at physiological pH and redox conditions. BMC Biochem 10:23

    PubMed Central  PubMed  Google Scholar 

  • Joyce JA, Hanahan D (2004) Multiple roles for cysteine cathepsins in cancer. Cell Cycle 3(12):1516–1619

    CAS  PubMed  Google Scholar 

  • Kaiser CA, Chen EJ, Losko S (2002) Subcellular fractionation of secretory organelles. Methods Enzymol 351:325–338

    CAS  PubMed  Google Scholar 

  • Kaiserman D, Whisstock JC, Bird PI (2006) Mechanisms of serpin dysfunction in disease. Expert Rev Mol Med 8(31):1–19

    PubMed  Google Scholar 

  • Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3(12):893–905

    CAS  PubMed  Google Scholar 

  • Kennedy RD, D’Andrea AD (2005) The Fanconi Anemia/BRCA pathway: new faces in the crowd. Genes Dev 19(24):2925–2940

    CAS  PubMed  Google Scholar 

  • Kenny AJ, Maroux S (1982) Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev 62(1):91–128

    CAS  PubMed  Google Scholar 

  • Kersse K, Verspurten J, Berghe TV, Vandenabeele P (2011) The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 36(10):541–552

    CAS  PubMed  Google Scholar 

  • Kessenbrock K, Dau T, Jenne DE (2011) Tailor-made inflammation: how neutrophil serine proteases modulate the inflammatory response. J Mol Med 89(1):23–28

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan AR, James MN (1998) Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci 7(4):815–836

    CAS  PubMed  Google Scholar 

  • Kidd D, Liu Y, Cravatt BF (2001) Profiling serine hydrolase activities in complex proteomes. Biochemistry 40(13):4005–4015

    CAS  PubMed  Google Scholar 

  • Kim J, Hajjar KA (2002) Annexin II: a plasminogen-plasminogen activator co-receptor. Front Biosci 7:d341–d348

    CAS  PubMed  Google Scholar 

  • Kirschke H, Wiederanders B (1994) Cathepsin S and related lysosomal endopeptidases. Methods Enzymol 244:500–511

    CAS  PubMed  Google Scholar 

  • Kirschke H, Barrett AJ, Rawlings ND (1995) Proteinases 1: lysosomal cysteine proteinases. Protein Profile 2(14):1581–1643

    CAS  PubMed  Google Scholar 

  • Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937

    CAS  PubMed  Google Scholar 

  • Kloetzel PM, Ossendorp F (2004) Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16(1):76–81

    CAS  PubMed  Google Scholar 

  • Koohmaraie M (1992) The role of Ca(2+)-dependent proteases (calpains) in post mortem proteolysis and meat tenderness. Biochimie 74(3):239–245

    CAS  PubMed  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10(12):524–530

    CAS  PubMed  Google Scholar 

  • Korkmaz B, Moreau T, Gauthier F (2008) Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 90(2):227–242

    CAS  PubMed  Google Scholar 

  • Kornfeld S (1992) Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Annu Rev Biochem 61:307–330

    CAS  PubMed  Google Scholar 

  • Koster A, Saftig P, Matzner U, von Figura K, Peters C, Pohlmann R (1993) Targeted disruption of the M(r) 46,000 mannose 6-phosphate receptor gene in mice results in misrouting of lysosomal proteins. EMBO J 12(13):5219–5223

    CAS  PubMed  Google Scholar 

  • Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, Vandenabeele P (2011) Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol 32(4):157–164

    CAS  PubMed  Google Scholar 

  • Kveiborg M, Albrechtsen R, Couchman JR, Wewer UM (2008) Cellular roles of ADAM12 in health and disease. Int J Biochem Cell Biol 40(9):1685–1702

    CAS  PubMed  Google Scholar 

  • Kwak J, Workman JL, Lee D (2011) The proteasome and its regulatory roles in gene expression. Biochim Biophys Acta 1809(2):88–96

    CAS  PubMed  Google Scholar 

  • Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P (2007) Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14(1):44–55

    CAS  PubMed  Google Scholar 

  • Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280(5363):547–553

    CAS  PubMed  Google Scholar 

  • Lecaille F, Weidauer E, Juliano MA, Bromme D, Lalmanach G (2003) Probing cathepsin K activity with a selective substrate spanning its active site. Biochem J 375(Pt 2):307–312

    CAS  PubMed  Google Scholar 

  • Lemansky P, Brix K, Herzog V (1998) Iodination of mature cathepsin D in thyrocytes as an indicator for its transport to the cell surface. Eur J Cell Biol 76(1):53–62

    CAS  PubMed  Google Scholar 

  • Lenarcic B, Bevec T (1998) Thyropins–new structurally related proteinase inhibitors. Biol Chem 379(2):105–111

    CAS  PubMed  Google Scholar 

  • Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, Prebois C, Rochefort H, Vignon F (2006) Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett 237(2):167–179

    CAS  PubMed  Google Scholar 

  • Lichtenthaler SF, Haass C, Steiner H (2011) Regulated intramembrane proteolysis–lessons from amyloid precursor protein processing. J Neurochem 117(5):779–796

    CAS  PubMed  Google Scholar 

  • Lin SX, Mallet WG, Huang AY, Maxfield FR (2004) Endocytosed cation-independent mannose 6-phosphate receptor traffics via the endocytic recycling compartment en route to the trans-Golgi network and a subpopulation of late endosomes. Mol Biol Cell 15(2):721–733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linder S (2007) The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol 17(3):107–117

    CAS  PubMed  Google Scholar 

  • Linke M, Herzog V, Brix K (2002a) Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J Cell Sci 115(Pt 24):4877–4889

    CAS  PubMed  Google Scholar 

  • Linke M, Jordans S, Mach L, Herzog V, Brix K (2002b) Thyroid stimulating hormone upregulates secretion of cathepsin B from thyroid epithelial cells. Biol Chem 383(5):773–784

    CAS  PubMed  Google Scholar 

  • Lipowsky R (1995) The morphology of lipid membranes. Curr Opin Struct Biol 5(4):531–540

    CAS  PubMed  Google Scholar 

  • List K, Bugge TH, Szabo R (2006) Matriptase: potent proteolysis on the cell surface. Mol Med 12(1–3):1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu H, Lazarus SC, Caughey GH, Fahy JV (1999) Neutrophil elastase and elastase-rich cystic fibrosis sputum degranulate human eosinophils in vitro. Am J Physiol 276(1 Pt 1):L28–L34

    CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283(45):30433–30437

    CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7(10):800–808

    CAS  PubMed  Google Scholar 

  • Ludwig T, Munier-Lehmann H, Bauer U, Hollinshead M, Ovitt C, Lobel P, Hoflack B (1994) Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts. EMBO J 13(15):3430–3437

    CAS  PubMed  Google Scholar 

  • Mach L (2002) Biosynthesis of lysosomal proteinases in health and disease. Biol Chem 383(5):751–756

    CAS  PubMed  Google Scholar 

  • Mach L, Mort JS, Glossl J (1994) Maturation of human procathepsin B. Proenzyme activation and proteolytic processing of the precursor to the mature proteinase, in vitro, are primarily unimolecular processes. J Biol Chem 269(17):13030–13035

    CAS  PubMed  Google Scholar 

  • Mackie EJ, Pagel CN, Smith R, de Niese MR, Song SJ, Pike RN (2002) Protease-activated receptors: a means of converting extracellular proteolysis into intracellular signals. IUBMB Life 53(6):277–281

    CAS  PubMed  Google Scholar 

  • Magdolen V, Arroyo de Prada N, Sperl S, Muehlenweg B, Luther T, Wilhelm OG, Magdolen U, Graeff H, Reuning U, Schmitt M (2000) Natural and synthetic inhibitors of the tumor-associated serine protease urokinase-type plasminogen activator. Adv Exp Med Biol 477:331–341

    CAS  PubMed  Google Scholar 

  • Mai J, Waisman DM, Sloane BF (2000) Cell surface complex of cathepsin B/annexin II tetramer in malignant progression. Biochim Biophys Acta 1477(1–2):215–230

    CAS  PubMed  Google Scholar 

  • Manon-Jensen T, Itoh Y, Couchman JR (2010) Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J 277(19):3876–3889

    CAS  PubMed  Google Scholar 

  • Marfany G, Denuc A (2008) To ubiquitinate or to deubiquitinate: it all depends on the partners. Biochem Soc Trans 36(Pt 5):833–838

    CAS  PubMed  Google Scholar 

  • Matrisian LM (1999) Cancer biology: extracellular proteinases in malignancy. Curr Biol 9(20):R776–R778

    CAS  PubMed  Google Scholar 

  • Matteucci E, Giampietro O (2009) Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr Med Chem 16(23):2943–2951

    CAS  PubMed  Google Scholar 

  • Mayer K, Schwartz S, Lentze MJ, Kalff JC, Brix K (2006) Extracellular localization of intestinal cathepsins: implications of their actions during post-operative ileus. In: XLI congress of the European society for surgical research. Medimond International Proceedings, Rostock, Germany

    Google Scholar 

  • Mayer K, Iolyeva ME, Meyer-Grahle U, Brix K (2008) Intestine-specific expression of green fluorescent protein-tagged cathepsin B: proof-of-principle experiments. Biol Chem 389(8):1085–1096

    CAS  PubMed  Google Scholar 

  • Mayer K, Vreemann A, Qu H, Brix K (2009) Release of endo-lysosomal cathepsins B, D, and L from IEC6 cells in a cell culture model mimicking intestinal manipulation. Biol Chem 390(5–6):471–480

    CAS  PubMed  Google Scholar 

  • McGrath ME (1999) The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28:181–204

    CAS  PubMed  Google Scholar 

  • McHugh B, Krause SA, Yu B, Deans AM, Heasman S, McLaughlin P, Heck MM (2004) Invadolysin: a novel, conserved metalloprotease links mitotic structural rearrangements with cell migration. J Cell Biol 167(4):673–686

    CAS  PubMed  Google Scholar 

  • McIntyre GF, Godbold GD, Erickson AH (1994) The pH-dependent membrane association of procathepsin L is mediated by a 9-residue sequence within the propeptide. J Biol Chem 269(1):567–572

    CAS  PubMed  Google Scholar 

  • McNeil PL, Steinhardt RA (1997) Loss, restoration, and maintenance of plasma membrane integrity. J Cell Biol 137(1):1–4

    CAS  PubMed  Google Scholar 

  • Meister T, Niehues R, Hahn D, Domschke W, Sendler M, Lerch MM, Schnekenburger J (2010) Missorting of cathepsin B into the secretory compartment of CI-MPR/IGFII-deficient mice does not induce spontaneous trypsinogen activation but leads to enhanced trypsin activity during experimental pancreatitis–without affecting disease severit. J Physiol Pharmacol 61(5):565–575

    CAS  PubMed  Google Scholar 

  • Mentlein R (2004) Cell-surface peptidases. Int Rev Cytol 235:165–213

    CAS  PubMed  Google Scholar 

  • Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7(8):766–772

    CAS  PubMed  Google Scholar 

  • Meyer-Hoffert U (2009) Neutrophil-derived serine proteases modulate innate immune responses. Front Biosci 14:3409–3418

    CAS  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    CAS  PubMed  Google Scholar 

  • Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6(10):764–775

    CAS  PubMed  Google Scholar 

  • Mondino A, Blasi F (2004) uPA and uPAR in fibrinolysis, immunity and pathology. Trends Immunol 25(8):450–455

    CAS  PubMed  Google Scholar 

  • Morita M, Kurochkin IV, Motojima K, Goto S, Takano T, Okamura S, Sato R, Yokota S, Imanaka T (2000) Insulin-degrading enzyme exists inside of rat liver peroxisomes and degrades oxidized proteins. Cell Struct Funct 25(5):309–315

    CAS  PubMed  Google Scholar 

  • Mort JS, Buttle DJ (1997) Cathepsin B. Int J Biochem Cell Biol 29(5):715–720

    CAS  PubMed  Google Scholar 

  • Mort JS, Recklies AD, Poole AR (1984) Extracellular presence of the lysosomal proteinase cathepsin B in rheumatoid synovium and its activity at neutral pH. Arthritis Rheum 27(5):509–515

    CAS  PubMed  Google Scholar 

  • Mott JD, Werb Z (2004) Regulation of matrix biology by matrix metalloproteinases. Curr Opin Cell Biol 16(5):558–564

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77(3):759–803

    CAS  PubMed  Google Scholar 

  • Munshi HG, Stack MS (2006) Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer Metastasis Rev 25(1):45–56

    CAS  PubMed  Google Scholar 

  • Murphy G (2009) Regulation of the proteolytic disintegrin metalloproteinases, the ‘Sheddases’. Semin Cell Dev Biol 20(2):138–145

    CAS  PubMed  Google Scholar 

  • Murphy G, Gavrilovic J (1999) Proteolysis and cell migration: creating a path? Curr Opin Cell Biol 11(5):614–621

    CAS  PubMed  Google Scholar 

  • Murphy G, Nagase H (2011) Localizing matrix metalloproteinase activities in the pericellular environment. FEBS J 278(1):2–15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci U S A 106(42):17615–17622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagase H, Suzuki K, Itoh Y, Kan CC, Gehring MR, Huang W, Brew K (1996) Involvement of tissue inhibitors of metalloproteinases (TIMPS) during matrix metalloproteinase activation. Adv Exp Med Biol 389:23–31

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Roth W, Wong P, Nelson A, Farr A, Deussing J, Villadangos JA, Ploegh H, Peters C, Rudensky AY (1998) Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280(5362):450–453

    CAS  PubMed  Google Scholar 

  • Nakanishi H (2003) Microglial functions and proteases. Mol Neurobiol 27(2):163–176

    CAS  PubMed  Google Scholar 

  • Nakayama K (1997) Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 327(Pt 3):625–635

    CAS  PubMed  Google Scholar 

  • Nasmyth K, Peters JM, Uhlmann F (2000) Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288(5470):1379–1385

    CAS  PubMed  Google Scholar 

  • Navarro A, Anand-Apte B, Parat MO (2004) A role for caveolae in cell migration. FASEB J 18(15):1801–1811

    CAS  PubMed  Google Scholar 

  • Nichols BJ, Lippincott-Schwartz J (2001) Endocytosis without clathrin coats. Trends Cell Biol 11(10):406–412

    CAS  PubMed  Google Scholar 

  • Nicotra G, Castino R, Follo C, Peracchio C, Valente G, Isidoro C (2010) The dilemma: does tissue expression of cathepsin D reflect tumor malignancy? The question: does the assay truly mirror cathepsin D mis-function in the tumor? Cancer Biomark 7(1):47–64

    CAS  PubMed  Google Scholar 

  • Nixon RA, Cataldo AM (1993) The lysosomal system in neuronal cell death: a review. Ann NY Acad Sci 679:87–109

    CAS  PubMed  Google Scholar 

  • Noel A, Maillard C, Rocks N, Jost M, Chabottaux V, Sounni NE, Maquoi E, Cataldo D, Foidart JM (2004) Membrane associated proteases and their inhibitors in tumour angiogenesis. J Clin Pathol 57(6):577–584

    CAS  PubMed  Google Scholar 

  • Norman LP, Matters GL, Crisman JM, Bond JS (2003) Expression of meprins in health and disease. Curr Top Dev Biol 54:145–166

    CAS  PubMed  Google Scholar 

  • Novinec M, Kordis D, Turk V, Lenarcic B (2006) Diversity and evolution of the thyroglobulin type-1 domain superfamily. Mol Biol Evol 23(4):744–755

    CAS  PubMed  Google Scholar 

  • O’Brien P, O’Connor BF (2008) Seprase: an overview of an important matrix serine protease. Biochim Biophys Acta 1784(9):1130–1145

    PubMed  Google Scholar 

  • Olson TS, Dice JF (1989) Regulation of protein degradation rates in eukaryotes. Curr Opin Cell Biol 1(6):1194–1200

    CAS  PubMed  Google Scholar 

  • Ong PC, McGowan S, Pearce MC, Irving JA, Kan WT, Grigoryev SA, Turk B, Silverman GA, Brix K, Bottomley SP, Whisstock JC, Pike RN (2007) DNA accelerates the inhibition of human cathepsin V by serpins. J Biol Chem 282(51):36980–36986

    CAS  PubMed  Google Scholar 

  • Ovaere P, Lippens S, Vandenabeele P, Declercq W (2009) The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 34(9):453–463

    CAS  PubMed  Google Scholar 

  • Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 8(3):245–257

    CAS  PubMed  Google Scholar 

  • Owen CA (2008) Leukocyte cell surface proteinases: regulation of expression, functions, and mechanisms of surface localization. Int J Biochem Cell Biol 40(6–7):1246–1272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owen CA, Campbell EJ (1995) Neutrophil proteinases and matrix degradation. The cell biology of pericellular proteolysis. Semin Cell Biol 6(6):367–376

    CAS  PubMed  Google Scholar 

  • Pagano M, Reboud-Ravaux M (2011) Cryptic activities of fibronectin fragments, particularly cryptic proteases. Front Biosci 16:698–706

    CAS  Google Scholar 

  • Palade GE (1964) The organization of living matter. Proc Natl Acad Sci U S A 52:613–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palade GE (1966) Structure and function at the cellular level. JAMA 198(8):815–825

    CAS  PubMed  Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189(4200):347–358

    CAS  PubMed  Google Scholar 

  • Pappot H, Gardsvoll H, Romer J, Pedersen AN, Grondahl-Hansen J, Pyke C, Brunner N (1995) Plasminogen activator inhibitor type 1 in cancer: therapeutic and prognostic implications. Biol Chem Hoppe Seyler 376(5):259–267

    CAS  PubMed  Google Scholar 

  • Parkin ET, Turner AJ, Hooper NM (2004) Secretase-mediated cell surface shedding of the angiotensin-converting enzyme. Protein Pept Lett 11(5):423–432

    CAS  PubMed  Google Scholar 

  • Paulick MG, Bogyo M (2008) Application of activity-based probes to the study of enzymes involved in cancer progression. Curr Opin Genet Dev 18(1):97–106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pelkmans L, Helenius A (2002) Endocytosis via caveolae. Traffic 3(5):311–320

    CAS  PubMed  Google Scholar 

  • Pellman D, Christman MF (2001) Separase anxiety: dissolving the sister bond and more. Nat Cell Biol 3(9):E207–E209

    CAS  PubMed  Google Scholar 

  • Peters C, von Figura K (1994) Biogenesis of lysosomal membranes. FEBS Lett 346(1):108–114

    CAS  PubMed  Google Scholar 

  • Peters C, Braun M, Weber B, Wendland M, Schmidt B, Pohlmann R, Waheed A, von Figura K (1990) Targeting of a lysosomal membrane protein: a tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes. EMBO J 9(11):3497–3506

    CAS  PubMed  Google Scholar 

  • Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6(7):541–550

    CAS  PubMed  Google Scholar 

  • Pham CT (2008) Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol 40(6–7):1317–1333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pickart CM (1997) Targeting of substrates to the 26S proteasome. FASEB J 11(13):1055–1066

    CAS  PubMed  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533

    CAS  PubMed  Google Scholar 

  • Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695(1–3):55–72

    CAS  PubMed  Google Scholar 

  • Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8(6):610–616

    CAS  PubMed  Google Scholar 

  • Pillay CS, Elliott E, Dennison C (2002) Endolysosomal proteolysis and its regulation. Biochem J 363(Pt 3):417–429

    CAS  PubMed  Google Scholar 

  • Piper RC, Katzmann DJ (2007) Biogenesis and function of multivesicular bodies. Annu Rev Cell Dev Biol 23:519–547

    CAS  PubMed Central  PubMed  Google Scholar 

  • Platta HW, Erdmann R (2007) Peroxisomal dynamics. Trends Cell Biol 17(10):474–484

    CAS  PubMed  Google Scholar 

  • Podgorski I (2009) Future of anticathepsin K drugs: dual therapy for skeletal disease and atherosclerosis? Future Med Chem 1(1):21–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pohlmann R, Boeker MW, von Figura K (1995) The two mannose 6-phosphate receptors transport distinct complements of lysosomal proteins. J Biol Chem 270(45):27311–27318

    CAS  PubMed  Google Scholar 

  • Pop C, Salvesen GS (2009) Human caspases: activation, specificity, and regulation. J Biol Chem 284(33):21777–21781

    CAS  PubMed  Google Scholar 

  • Potempa J, Sroka A, Imamura T, Travis J (2003) Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas gingivalis: structure, function and assembly of multidomain protein complexes. Curr Protein Pept Sci 4(6):397–407

    CAS  PubMed  Google Scholar 

  • Predescu SA, Predescu DN, Palade GE (2001) Endothelial transcytotic machinery involves supramolecular protein-lipid complexes. Mol Biol Cell 12(4):1019–1033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pungercar JR, Caglic D, Sajid M, Dolinar M, Vasiljeva O, Pozgan U, Turk D, Bogyo M, Turk V, Turk B (2009) Autocatalytic processing of procathepsin B is triggered by proenzyme activity. FEBS J 276(3):660–668

    CAS  PubMed  Google Scholar 

  • Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramsay AJ, Hooper JD, Folgueras AR, Velasco G, Lopez-Otin C (2009) Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis. Haematologica 94(6):840–849

    CAS  PubMed  Google Scholar 

  • Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7):489–501

    CAS  PubMed  Google Scholar 

  • Rawlings ND (2010) Peptidase inhibitors in the MEROPS database. Biochimie 92(11):1463–1483

    CAS  PubMed  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378(Pt 3):705–716

    CAS  PubMed  Google Scholar 

  • Rechsteiner M (1990) PEST sequences are signals for rapid intracellular proteolysis. Semin Cell Biol 1(6):433–440

    CAS  PubMed  Google Scholar 

  • Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15(1):27–33

    CAS  PubMed  Google Scholar 

  • Reed SI (2003) Ratchets and clocks: the cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol 4(11):855–864

    CAS  PubMed  Google Scholar 

  • Reinheckel T, Grune T, Davies KJ (2000) The measurement of protein degradation in response to oxidative stress. Methods Mol Biol 99:49–60

    CAS  PubMed  Google Scholar 

  • Reinheckel T, Deussing J, Roth W, Peters C (2001) Towards specific functions of lysosomal cysteine peptidases: phenotypes of mice deficient for cathepsin B or cathepsin L. Biol Chem 382(5):735–741

    CAS  PubMed  Google Scholar 

  • Reiser J, Adair B, Reinheckel T (2010) Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 120(10):3421–3431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reiss K, Saftig P (2009) The “a disintegrin and metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20(2):126–137

    CAS  PubMed  Google Scholar 

  • Reudelhuber TL, Brechler V, Jutras I, Mercure C, Methot D (1998) Proteolytic and non-proteolytic activation of prorenin. Adv Exp Med Biol 436:229–238

    CAS  PubMed  Google Scholar 

  • Reverter D, Sorimachi H, Bode W (2001) The structure of calcium-free human m-calpain: implications for calcium activation and function. Trends Cardiovasc Med 11(6):222–229

    CAS  PubMed  Google Scholar 

  • Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397

    CAS  PubMed  Google Scholar 

  • Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8(5):405–413

    CAS  PubMed  Google Scholar 

  • Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5(11):897–907

    CAS  PubMed  Google Scholar 

  • Riese RJ, Chapman HA (2000) Cathepsins and compartmentalization in antigen presentation. Curr Opin Immunol 12(1):107–113

    CAS  PubMed  Google Scholar 

  • Rivett AJ (1998) Intracellular distribution of proteasomes. Curr Opin Immunol 10(1):110–114

    CAS  PubMed  Google Scholar 

  • Rivett AJ, Hearn AR (2004) Proteasome function in antigen presentation: immunoproteasome complexes, Peptide production, and interactions with viral proteins. Curr Protein Pept Sci 5(3):153–161

    CAS  PubMed  Google Scholar 

  • Rochefort H, Garcia M, Glondu M, Laurent V, Liaudet E, Rey JM, Roger P (2000) Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clin Chim Acta 291(2):157–170

    CAS  PubMed  Google Scholar 

  • Rockwell NC, Thorner JW (2004) The kindest cuts of all: crystal structures of Kex2 and furin reveal secrets of precursor processing. Trends Biochem Sci 29(2):80–87

    CAS  PubMed  Google Scholar 

  • Romisch K (2005) Endoplasmic reticulum-associated degradation. Annu Rev Cell Dev Biol 21:435–456

    CAS  PubMed  Google Scholar 

  • Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8(2):205–216

    CAS  PubMed  Google Scholar 

  • Rosenblum JS, Kozarich JW (2003) Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr Opin Chem Biol 7(4):496–504

    CAS  PubMed  Google Scholar 

  • Rothman JE, Wieland FT (1996) Protein sorting by transport vesicles. Science 272(5259):227–234

    CAS  PubMed  Google Scholar 

  • Ruchaud S, Carmena M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8(10):798–812

    CAS  PubMed  Google Scholar 

  • Sachse M, Urbe S, Oorschot V, Strous GJ, Klumperman J (2002) Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. Mol Biol Cell 13(4):1313–1328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saftig P, Reiss K (2011) The “A Disintegrin And Metalloproteases” ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol 90(6–7):527–535

    CAS  PubMed  Google Scholar 

  • Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci U S A 95(23):13453–13458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salvesen GS (2002) Caspases and apoptosis. Essays Biochem 38:9–19

    CAS  PubMed  Google Scholar 

  • Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91(4):443–446

    CAS  PubMed  Google Scholar 

  • Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol 3(6):401–410

    CAS  PubMed  Google Scholar 

  • Sameni M, Cavallo-Medved D, Dosescu J, Jedeszko C, Moin K, Mullins SR, Olive MB, Rudy D, Sloane BF (2009) Imaging and quantifying the dynamics of tumor-associated proteolysis. Clin Exp Metastasis 26(4):299–309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sato K, Kawashima S (2001) Calpain function in the modulation of signal transduction molecules. Biol Chem 382(5):743–751

    CAS  PubMed  Google Scholar 

  • Sato H, Takino T (2010) Coordinate action of membrane-type matrix metalloproteinase-1 (MT1-MMP) and MMP-2 enhances pericellular proteolysis and invasion. Cancer Sci 101(4):843–847

    CAS  PubMed  Google Scholar 

  • Scamuffa N, Calvo F, Chretien M, Seidah NG, Khatib AM (2006) Proprotein convertases: lessons from knockouts. FASEB J 20(12):1954–1963

    CAS  PubMed  Google Scholar 

  • Schaller A, Ryan CA (1996) Systemin–a polypeptide defense signal in plants. Bioessays 18(1):27–33

    CAS  PubMed  Google Scholar 

  • Schaschke N, Assfalg-Machleidt I, Machleidt W, Moroder L (1998) Substrate/propeptide-derived endo-epoxysuccinyl peptides as highly potent and selective cathepsin B inhibitors. FEBS Lett 421(1):80–82

    CAS  PubMed  Google Scholar 

  • Schechter I (2005) Mapping of the active site of proteases in the 1960s and rational design of inhibitors/drugs in the 1990s. Curr Protein Pept Sci 6(6):501–512

    CAS  PubMed  Google Scholar 

  • Schenk S, Quaranta V (2003) Tales from the crypt[ic] sites of the extracellular matrix. Trends Cell Biol 13(7):366–375

    CAS  PubMed  Google Scholar 

  • Schmid SL (1993) Toward a biochemical definition of the endosomal compartment. Studies using free flow electrophoresis. Subcell Biochem 19:1–28

    CAS  PubMed  Google Scholar 

  • Schwartz DC, Hochstrasser M (2003) A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem Sci 28(6):321–328

    CAS  PubMed  Google Scholar 

  • Schweitzer K, Naumann M (2010) Control of NF-kappaB activation by the COP9 signalosome. Biochem Soc Trans 38(Pt 1):156–161

    CAS  PubMed  Google Scholar 

  • Scott CC, Gruenberg J (2011) Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. Bioessays 33(2):103–110

    CAS  PubMed  Google Scholar 

  • Scott CJ, Taggart CC (2010) Biologic protease inhibitors as novel therapeutic agents. Biochimie 92(11):1681–1688

    CAS  PubMed  Google Scholar 

  • Seglen PO, Berg TO, Blankson H, Fengsrud M, Holen I, Stromhaug PE (1996) Structural aspects of autophagy. Adv Exp Med Biol 389:103–111

    CAS  PubMed  Google Scholar 

  • Seidah NG (2011) What lies ahead for the proprotein convertases? Ann NY Acad Sci 1220:149–161

    CAS  PubMed  Google Scholar 

  • Seidah NG, Chretien M (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848(1–2):45–62

    CAS  PubMed  Google Scholar 

  • Seidah NG, Prat A (2002) Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem 38:79–94

    CAS  PubMed  Google Scholar 

  • Seidah NG, Day R, Marcinkiewicz M, Benjannet S, Chretien M (1991) Mammalian neural and endocrine pro-protein and pro-hormone convertases belonging to the subtilisin family of serine proteinases. Enzyme 45(5–6):271–284

    CAS  PubMed  Google Scholar 

  • Seiki M (2002) The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol 14(5):624–632

    CAS  PubMed  Google Scholar 

  • Selkoe DJ, Wolfe MS (2007) Presenilin: running with scissors in the membrane. Cell 131(2):215–221

    CAS  PubMed  Google Scholar 

  • Shi Z, Stack MS (2007) Urinary-type plasminogen activator (uPA) and its receptor (uPAR) in squamous cell carcinoma of the oral cavity. Biochem J 407(2):153–159

    CAS  PubMed  Google Scholar 

  • Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O’Donnell E, Salvesen GS, Travis J, Whisstock JC (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276(36):33293–33296

    CAS  PubMed  Google Scholar 

  • Simionescu N, Simionescu M, Palade GE (1972) Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J Cell Biol 53(2):365–392

    CAS  PubMed  Google Scholar 

  • Singhvi A, Garriga G (2009) Asymmetric divisions, aggresomes and apoptosis. Trends Cell Biol 19(1):1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sloane BF, Yan S, Podgorski I, Linebaugh BE, Cher ML, Mai J, Cavallo-Medved D, Sameni M, Dosescu J, Moin K (2005) Cathepsin B and tumor proteolysis: contribution of the tumor microenvironment. Semin Cancer Biol 15(2):149–157

    CAS  PubMed  Google Scholar 

  • Sloane BF, Sameni M, Podgorski I, Cavallo-Medved D, Moin K (2006) Functional imaging of tumor proteolysis. Annu Rev Pharmacol Toxicol 46:301–315

    CAS  PubMed  Google Scholar 

  • Smirnova IV, Ho GJ, Fenton JW II, Festoff BW (1994) Extravascular proteolysis and the nervous system: serine protease/serpin balance. Semin Thromb Hemost 20(4):426–432

    CAS  PubMed  Google Scholar 

  • Smith HW, Marshall CJ (2010) Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 11(1):23–36

    CAS  PubMed  Google Scholar 

  • Sohail A, Sun Q, Zhao H, Bernardo MM, Cho JA, Fridman R (2008) MT4-(MMP17) and MT6-MMP (MMP25), a unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer. Cancer Metastasis Rev 27(2):289–302

    CAS  PubMed  Google Scholar 

  • Sol-Church K, Picerno GN, Stabley DL, Frenck J, Xing S, Bertenshaw GP, Mason RW (2002) Evolution of placentally expressed cathepsins. Biochem Biophys Res Commun 293(1):23–29

    CAS  PubMed  Google Scholar 

  • Song L, Rape M (2008) Reverse the curse–the role of deubiquitination in cell cycle control. Curr Opin Cell Biol 20(2):156–163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song Z, Steller H (1999) Death by design: mechanism and control of apoptosis. Trends Cell Biol 9(12):M49–M52

    CAS  PubMed  Google Scholar 

  • Sorimachi H, Ishiura S, Suzuki K (1997) Structure and physiological function of calpains. Biochem J 328(Pt 3):721–732

    CAS  PubMed  Google Scholar 

  • Sorimachi H, Hata S, Ono Y (2010) Expanding members and roles of the calpain superfamily and their genetically modified animals. Exp Anim 59(5):549–566

    CAS  PubMed  Google Scholar 

  • Sounni NE, Noel A (2005) Membrane type-matrix metalloproteinases and tumor progression. Biochimie 87(3–4):329–342

    CAS  PubMed  Google Scholar 

  • Squier TC (2006) Redox modulation of cellular metabolism through targeted degradation of signaling proteins by the proteasome. Antioxid Redox Signal 8(1–2):217–228

    CAS  PubMed  Google Scholar 

  • Stadtmueller BM, Hill CP (2011) Proteasome activators. Mol Cell 41(1):8–19

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200(4):448–464

    CAS  PubMed  Google Scholar 

  • Steiner DF (1969) Proinsulin and the biosynthesis of insulin. N Engl J Med 280(20):1106–1113

    CAS  PubMed  Google Scholar 

  • Steiner DF (1998) The proprotein convertases. Curr Opin Chem Biol 2(1):31–39

    CAS  PubMed  Google Scholar 

  • Steiner H, Haass C (2000) Intramembrane proteolysis by presenilins. Nat Rev Mol Cell Biol 1(3):217–224

    CAS  PubMed  Google Scholar 

  • Steiner DF, Quinn PS, Chan SJ, Marsh J, Tager HS (1980) Processing mechanisms in the biosynthesis of proteins. Ann NY Acad Sci 343:1–16

    CAS  PubMed  Google Scholar 

  • Sterchi EE, Stocker W, Bond JS (2008) Meprins, membrane-bound and secreted astacin metalloproteinases. Mol Aspects Med 29(5):309–328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stetler-Stevenson WG (2008) The tumor microenvironment: regulation by MMP-independent effects of tissue inhibitor of metalloproteinases-2. Cancer Metastasis Rev 27(1):57–66

    CAS  PubMed Central  PubMed  Google Scholar 

  • Storr SJ, Carragher NO, Frame MC, Parr T, Martin SG (2011) The calpain system and cancer. Nat Rev Cancer 11(5):364–374

    CAS  PubMed  Google Scholar 

  • Strongin AY (2010) Proteolytic and non-proteolytic roles of membrane type-1 matrix metalloproteinase in malignancy. Biochim Biophys Acta 1803(1):133–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stubbs MT, Bode W (1994) Coagulation factors and their inhibitors. Curr Opin Struct Biol 4(6):823–832

    CAS  PubMed  Google Scholar 

  • Sun Y, Kucej M, Fan HY, Yu H, Sun QY, Zou H (2009) Separase is recruited to mitotic chromosomes to dissolve sister chromatid cohesion in a DNA-dependent manner. Cell 137(1):123–132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szabo R, Bugge TH (2008) Type II transmembrane serine proteases in development and disease. Int J Biochem Cell Biol 40(6–7):1297–1316

    CAS  PubMed  Google Scholar 

  • Tai HC, Schuman EM (2008) Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci 9(11):826–838

    CAS  PubMed  Google Scholar 

  • Takahashi T, Tang J (1981) Cathepsin D from porcine and bovine spleen. Methods Enzymol 80(Pt C):565–581

    CAS  PubMed  Google Scholar 

  • Tallant C, Marrero A, Gomis-Ruth FX (2010) Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta 1803(1):20–28

    CAS  PubMed  Google Scholar 

  • Tanaka Y, Tanaka R, Kawabata T, Noguchi Y, Himeno M (2000) Lysosomal cysteine protease, cathepsin B, is targeted to lysosomes by the mannose 6-phosphate-independent pathway in rat hepatocytes: site-specific phosphorylation in oligosaccharides of the proregion. J Biochem 128(1):39–48

    CAS  PubMed  Google Scholar 

  • Tatnell PJ, Fowler SD, Bur D, Lees WE, Kay J (1998) Cathepsin E. The best laid plans of mice and men. Adv Exp Med Biol 436:147–152

    CAS  PubMed  Google Scholar 

  • Tedelind S, Poliakova K, Valeta A, Hunegnaw R, Yemanaberhan EL, Heldin NE, Kurebayashi J, Weber E, Kopitar-Jerala N, Turk B, Bogyo M, Brix K (2010) Nuclear cysteine cathepsin variants in thyroid carcinoma cells. Biol Chem 391(8):923–935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tedelind S, Jordans S, Resemann H, Blum G, Bogyo M, Fuhrer D, Brix K (2011) Cathepsin B trafficking in thyroid carcinoma cells. Thyroid Res 4(Suppl 1):S2

    PubMed Central  PubMed  Google Scholar 

  • Tepel C, Bromme D, Herzog V, Brix K (2000) Cathepsin K in thyroid epithelial cells: sequence, localization and possible function in extracellular proteolysis of thyroglobulin. J Cell Sci 113(Pt 24):4487–4498

    CAS  PubMed  Google Scholar 

  • Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3(10):753–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tooze J, Hollinshead M, Hensel G, Kern HF, Hoflack B (1991) Regulated secretion of mature cathepsin B from rat exocrine pancreatic cells. Eur J Cell Biol 56(2):187–200

    CAS  PubMed  Google Scholar 

  • Travis J (1988) Structure, function, and control of neutrophil proteinases. Am J Med 84(6A):37–42

    PubMed  Google Scholar 

  • Travis J, Fritz H (1991) Potential problems in designing elastase inhibitors for therapy. Am Rev Respir Dis 143(6):1412–1415

    CAS  PubMed  Google Scholar 

  • Travis J, Salvesen GS (1983) Human plasma proteinase inhibitors. Annu Rev Biochem 52:655–709

    CAS  PubMed  Google Scholar 

  • Trombetta ES, Mellman I (2005) Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol 23:975–1028

    CAS  PubMed  Google Scholar 

  • Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4(2):95–104

    CAS  PubMed  Google Scholar 

  • Tsukuba T, Okamoto K, Yasuda Y, Morikawa W, Nakanishi H, Yamamoto K (2000) New functional aspects of cathepsin D and cathepsin E. Mol Cells 10(6):601–611

    CAS  PubMed  Google Scholar 

  • Turk V, Bode W (1991) The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285(2):213–219

    CAS  PubMed  Google Scholar 

  • Turk B, Turk V (2009) Lysosomes as “suicide bags” in cell death: myth or reality? J Biol Chem 284(33):21783–21787

    CAS  PubMed  Google Scholar 

  • Turk B, Turk V, Turk D (1997) Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol Chem 378(3–4):141–150

    CAS  PubMed  Google Scholar 

  • Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477(1–2):98–111

    CAS  PubMed  Google Scholar 

  • Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. EMBO J 20(17):4629–4633

    CAS  PubMed  Google Scholar 

  • Turk D, Turk B, Turk V (2003) Papain-like lysosomal cysteine proteases and their inhibitors: drug discovery targets? Biochem Soc Symp 70:15–30

    CAS  PubMed  Google Scholar 

  • Turner AJ, Nalivaeva NN (2007) New insights into the roles of metalloproteinases in neurodegeneration and neuroprotection. Int Rev Neurobiol 82:113–135

    CAS  PubMed  Google Scholar 

  • Uddin MN, Nabi AH, Nakagawa T, Ichihara A, Inagami T, Suzuki F (2008) Non-proteolytic activation of prorenin: activation by (pro)renin receptor and its inhibition by a prorenin prosegment, “decoy peptide”. Front Biosci 13:745–753

    CAS  PubMed  Google Scholar 

  • Uhlmann F (2003) Separase regulation during mitosis. Biochem Soc Symp 70:243–251

    CAS  PubMed  Google Scholar 

  • Urban S (2010) Taking the plunge: integrating structural, enzymatic and computational insights into a unified model for membrane-immersed rhomboid proteolysis. Biochem J 425(3):501–512

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urban S, Freeman M (2002) Intramembrane proteolysis controls diverse signalling pathways throughout evolution. Curr Opin Genet Dev 12(5):512–518

    CAS  PubMed  Google Scholar 

  • Urban S, Lee JR, Freeman M (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107(2):173–182

    CAS  PubMed  Google Scholar 

  • Van den Eynde BJ, Morel S (2001) Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 13(2):147–153

    PubMed  Google Scholar 

  • van Goor H, Melenhorst WB, Turner AJ, Holgate ST (2009) Adamalysins in biology and disease. J Pathol 219(3):277–286

    PubMed  Google Scholar 

  • van Meer G, de Kroon AI (2011) Lipid map of the mammalian cell. J Cell Sci 124(Pt 1):5–8

    PubMed  Google Scholar 

  • Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10):700–714

    CAS  PubMed  Google Scholar 

  • Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P (2008) Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8(3):207–220

    CAS  PubMed  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2):97–130

    CAS  PubMed  Google Scholar 

  • Varki A (1998) Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8(1):34–40

    CAS  PubMed  Google Scholar 

  • Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 13(4):387–403

    CAS  PubMed  Google Scholar 

  • Victor BC, Sloane BF (2007) Cysteine cathepsin non-inhibitory binding partners: modulating intracellular trafficking and function. Biol Chem 388(11):1131–1140

    CAS  PubMed  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10(6):385–397

    CAS  PubMed  Google Scholar 

  • Villadangos JA, Bryant RA, Deussing J, Driessen C, Lennon-Dumenil AM, Riese RJ, Roth W, Saftig P, Shi GP, Chapman HA, Peters C, Ploegh HL (1999) Proteases involved in MHC class II antigen presentation. Immunol Rev 172:109–120

    CAS  PubMed  Google Scholar 

  • Vreemann A, Qu H, Mayer K, Andersen LB, Stefana MI, Wehner S, Lysson M, Farcas AM, Peters C, Reinheckel T, Kalff J, Brix K (2009) Cathepsin B release from rodent intestine mucosa due to mechanical injury results in extracellular matrix damage in early post-traumatic phases. Biol Chem 390(5–6):481–492

    CAS  PubMed  Google Scholar 

  • Watts C (2012) The endosome-lysosome pathway and information generation in the immune system. Biochim Biophys Acta 1824(1):14–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watts C, Matthews SP, Mazzeo D, Manoury B, Moss CX (2005) Asparaginyl endopeptidase: case history of a class II MHC compartment protease. Immunol Rev 207:218–228

    CAS  PubMed  Google Scholar 

  • Weihofen A, Martoglio B (2003) Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol 13(2):71–78

    CAS  PubMed  Google Scholar 

  • Whisstock JC, Bottomley SP (2006) Molecular gymnastics: serpin structure, folding and misfolding. Curr Opin Struct Biol 16(6):761–768

    CAS  PubMed  Google Scholar 

  • Whisstock JC, Bottomley SP (2008) Structural biology: serpins’ mystery solved. Nature 455(7217):1189–1190

    CAS  PubMed  Google Scholar 

  • White JM (2003) ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15(5):598–606

    CAS  PubMed  Google Scholar 

  • Wiederanders B, Kaulmann G, Schilling K (2003) Functions of propeptide parts in cysteine proteases. Curr Protein Pept Sci 4(5):309–326

    CAS  PubMed  Google Scholar 

  • Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996a) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84(5):769–779

    CAS  PubMed  Google Scholar 

  • Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996b) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384(6608):432–438

    CAS  PubMed  Google Scholar 

  • Wojcik C, DeMartino GN (2003) Intracellular localization of proteasomes. Int J Biochem Cell Biol 35(5):579–589

    CAS  PubMed  Google Scholar 

  • Wolf DH, Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695(1–3):19–31

    CAS  PubMed  Google Scholar 

  • Wolfe MS, Kopan R (2004) Intramembrane proteolysis: theme and variations. Science 305(5687):1119–1123

    CAS  PubMed  Google Scholar 

  • Woodward JK, Holen I, Coleman RE, Buttle DJ (2007) The roles of proteolytic enzymes in the development of tumour-induced bone disease in breast and prostate cancer. Bone 41(6):912–927

    CAS  PubMed  Google Scholar 

  • Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    CAS  PubMed  Google Scholar 

  • Yamamoto K (1995) Cathepsin E and cathepsin D: biosynthesis, processing and subcellular location. Adv Exp Med Biol 362:223–229

    CAS  PubMed  Google Scholar 

  • Yanagida M (2009) Clearing the way for mitosis: is cohesin a target? Nat Rev Mol Cell Biol 10(7):489–496

    CAS  PubMed  Google Scholar 

  • Yao C (2010) Major surface protease of trypanosomatids: one size fits all? Infect Immun 78(1):22–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu DM, Wang XM, McCaughan GW, Gorrell MD (2006) Extraenzymatic functions of the dipeptidyl peptidase IV-related proteins DP8 and DP9 in cell adhesion, migration and apoptosis. FEBS J 273(11):2447–2460

    CAS  PubMed  Google Scholar 

  • Yu DM, Yao TW, Chowdhury S, Nadvi NA, Osborne B, Church WB, McCaughan GW, Gorrell MD (2010) The dipeptidyl peptidase IV family in cancer and cell biology. FEBS J 277(5):1126–1144

    CAS  PubMed  Google Scholar 

  • Zaidi N, Hermann C, Herrmann T, Kalbacher H (2008) Emerging functional roles of cathepsin E. Biochem Biophys Res Commun 377(2):327–330

    CAS  PubMed  Google Scholar 

  • Zhao JH, Yang CT, Wu JW, Tsai WB, Lin HY, Fang HW, Ho Y, Liu HL (2008) RING domains functioning as E3 ligases reveal distinct structural features: a molecular dynamics simulation study. J Biomol Struct Dyn 26(1):65–74

    CAS  PubMed  Google Scholar 

  • Zhou A, Webb G, Zhu X, Steiner DF (1999) Proteolytic processing in the secretory pathway. J Biol Chem 274(30):20745–20748

    CAS  PubMed  Google Scholar 

  • Zhou A, Carrell RW, Murphy MP, Wei Z, Yan Y, Stanley PL, Stein PE, Broughton Pipkin F, Read RJ (2010) A redox switch in angiotensinogen modulates angiotensin release. Nature 468(7320):108–111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zogg T, Brandstetter H (2011) Complex assemblies of factors IX and X regulate the initiation, maintenance, and shutdown of blood coagulation. Prog Mol Biol Transl Sci 99:51–103

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaudia Brix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Brix, K., Scott, C.J., Heck, M.M.S. (2013). Compartmentalization of Proteolysis. In: Brix, K., Stöcker, W. (eds) Proteases: Structure and Function. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0885-7_3

Download citation

Publish with us

Policies and ethics