Skip to main content

The Evolving Landscape of Neuroinflammation After Neonatal Hypoxia-Ischemia

  • Chapter
  • First Online:
Intracerebral Hemorrhage Research

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 111))

Abstract

Hypoxic-ischemic brain injury remains a leading cause of mortality and morbidity in neonates. The inflammatory response, which is characterized in part by activation of local immune cells, has been implicated as a core component for the progression of damage to the immature brain following hypoxia-ischemia (HI). However, mounting evidence implicates circulating immune cells recruited to the site of damage as orchestrators of neuron-glial interactions and perpetuators of secondary brain injury. This suggests that re-directing our attention from the local inflammatory response toward the molecular mediators believed to link brain-immune cell interactions may be a more effective approach to mitigating the inflammatory sequelae of perinatal HI. In this review, we focus our attention on cyclooxygenase-2, a mediator by which peripheral immune cells may modulate signaling pathways in the brain that lead to a worsened outcome. Additionally, we present an overview of emerging therapeutic modalities that target mechanisms of neuroinflammation in the hypoxic-ischemic neonate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shankaran S (2009) Neonatal encephalopathy: treatment with hypothermia. J Neurotrauma 26(3):437–443

    Article  PubMed  Google Scholar 

  2. Fatemi A, Wilson MA, Johnston MV (2009) Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol 36:835–858

    Article  PubMed  Google Scholar 

  3. Gunn AJ (2000) Cerebral hypothermia for prevention of brain injury following perinatal asphyxia. Curr Opin Pediatr 12:111–115

    Article  PubMed  CAS  Google Scholar 

  4. Vanucci RC, Perlman JM (1997) Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 100:1004–1014

    Article  Google Scholar 

  5. Locatelli A, Incerti M, Ghidini A, Greco M, Villa E, Paterlini G (2008) Factors associated with umbilical artery acidemia in term infants with low Apgar scores at 5 min. Eur J Obstet Gynecol Reprod Biol 139(2):146–150

    Article  PubMed  Google Scholar 

  6. Liu J, Li J, Gu M (2007) The correlation between myocardial function and cerebral hemodynamics in term infants with hypoxic-ischemic encephalopathy. J Trop Pediatr 53(1):44–48

    Article  PubMed  Google Scholar 

  7. Brillault J, Lam TI, Rutkowsky JM, Foroutan S, O’Donnell ME (2008) Hypoxia effects on cell volume and ion uptake of cerebral microvascular endothelial cells. Am J Physiol Cell Physiol 294(1):C88–C96

    Article  PubMed  CAS  Google Scholar 

  8. Hausmann R, Seidl S, Betz P (2007) Hypoxic changes in Purkinje cells of the human cerebellum. Int J Legal Med 121(3):175–183

    Article  PubMed  CAS  Google Scholar 

  9. Johnston MV, Trescher WH, Ishida A, Nakajima W (2001) Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 49:735–741

    Article  PubMed  CAS  Google Scholar 

  10. Leonardo CC, Pennypacker KR (2009) Neuroinflammation and MMPs: potential therapeutic targets in neonatal hypoxic-ischemic injury. J Neuroinflammation 6:13

    Article  PubMed  Google Scholar 

  11. Alvarez-Diaz A, Hilario E, de Cerio FG, Valls-i-Soler A, Alvarez-Diaz FJ (2007) Hypoxic-ischemic injury in the immature brain–key vascular and cellular players. Neonatology 92:227–235

    Article  PubMed  CAS  Google Scholar 

  12. Fathali N, Ostrowski RP, Lekic T, Jadhav V, Tong W, Tang J, Zhang JH (2010) Cyclooxygenase-2 inhibition provides lasting protection against neonatal hypoxic-ischemic brain injury. Crit Care Med 38:572–578

    Article  PubMed  CAS  Google Scholar 

  13. Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351:1985–1995

    Article  PubMed  CAS  Google Scholar 

  14. Pimentel VC, Belle LP, Pinheiro FV, De Bona KS, Da Luz SCA, Moretto MB (2009) Adenosine deaminase activity, lipid peroxidation and astrocyte responses in the cerebral cortex of rats after neonatal hypoxia ischemia. Int J Dev Neurosci 27:857–862

    Article  PubMed  CAS  Google Scholar 

  15. Curin Y, Ritz MF, Andriantsitohaina R (2006) Cellular mechanisms of the protective effect of polyphenols on the neurovascular unit in strokes. Cardiovasc Hematol Agents Med Chem 4:277–288

    Article  PubMed  CAS  Google Scholar 

  16. del Zoppo GJ (2009) Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 158:972–982

    Article  PubMed  Google Scholar 

  17. Lo EH (2008) Experimental models, neurovascular mechanisms and translational issues in stroke research. Br J Pharmacol 153(Suppl 1):S396–S405

    PubMed  CAS  Google Scholar 

  18. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  PubMed  CAS  Google Scholar 

  19. Chabot S, Williams G, Yong VW (1997) Microglial production of TNF-alpha is induced by activated T lymphocytes. Involvement of VLA-4 and inhibition by interferonbeta-1b. J Clin Invest 100:604–612

    Article  PubMed  CAS  Google Scholar 

  20. Ajmo CT Jr, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, Pennypacker KR (2008) The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res 86(10):2227–2234

    Article  PubMed  CAS  Google Scholar 

  21. Chen H, Chopp M, Zhang RL, Bodzin G, Chen Q, Rusche JR, Todd RF 3rd (1994) Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann Neurol 35:458–463

    Article  PubMed  Google Scholar 

  22. Chopp M, Zhang RL, Chen H, Li Y, Jiang N, Rusche JR (1994) Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 25:869–875

    PubMed  CAS  Google Scholar 

  23. Zhang ZG, Chopp M, Tang WX, Jiang N, Zhang RL (1995) Postischemic treatment (2–4 h) with anti-CD11b and anti-CD18 monoclonal antibodies are neuroprotective after transient (2 h) focal cerebral ischemia in the rat. Brain Res 698:79–85

    Article  PubMed  CAS  Google Scholar 

  24. Sen E, Levison SW (2006) Astrocytes and developmental white matter disorders. Ment Retard Dev Disabil Res Rev 12(2):97–104

    Article  PubMed  Google Scholar 

  25. Svedin P, Guan J, Mathai S, Zhang R, Wang X, Gustavsson M, Hagberg H, Mallard C (2007) Delayed peripheral administration of a GPE analogue induces astrogliosis and angiogenesis and reduces inflammation and brain injury following hypoxia-ischemia in the neonatal rat. Dev Neurosci 29(4–5):393–402

    Article  PubMed  CAS  Google Scholar 

  26. Dammann O, O’Shea TM (2008) Cytokines and perinatal brain damage. Clin Perinatol 35(4):643–663

    Article  PubMed  Google Scholar 

  27. Savman K, Blennow M, Gustafson K, Tarkowski E, Hagberg H (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43(6):746–751

    Article  PubMed  CAS  Google Scholar 

  28. Maslinska D, Laure-Kamionowska M, Kaliszek A, Makarewicz D (2002) Proinflammatory cytokines in injured rat brain following perinatal asphyxia. Folia Neuropathol 40(4):177–182

    PubMed  Google Scholar 

  29. Gomez-Nicola D, Valle-Argos B, Pita-Thomas DW, Nieto-Sampedro M (2008) Interleukin 15 expression in the CNS: blockade of its activity prevents glial activation after an inflammatory injury. Glia 56(5):494–505

    Article  PubMed  Google Scholar 

  30. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105

    Article  PubMed  Google Scholar 

  31. Ovanesov MV, Ayhan Y, Wolbert C, Moldovan K, Sauder C, Pletnikov MV (2008) Astrocytes play a key role in activation of microglia by persistent Borna disease virus infection. J Neuroinflammation 5:50

    Article  PubMed  Google Scholar 

  32. Tanuma N, Sakuma H, Sasaki A, Matsumoto Y (2006) Chemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol 112:195–204

    Article  PubMed  CAS  Google Scholar 

  33. Xiong M, Yang Y, Chen GQ, Zhou WH (2009) Post-ischemic hypothermia for 24 h in P7 rats rescues hippocampal neuron: association with decreased astrocyte activation and inflammatory cytokine expression. Brain Res Bull 79:351–357

    Article  PubMed  CAS  Google Scholar 

  34. Ding J, Li QY, Yu JZ, Wang X, Sun CH, Lu CZ, Xiao BG (2010) Fasudil, a Rho kinase inhibitor, drives mobilization of adult neural stem cells after hypoxia/reoxygenation injury in mice. Mol Cell Neurosci 43(2):201–208

    Article  PubMed  CAS  Google Scholar 

  35. Aschner M, Sonnewald U, Tan KH (2002) Astrocyte modulation of neurotoxic injury. Brain Pathol 12(4):475–481

    Article  PubMed  CAS  Google Scholar 

  36. Ten VS, Yao J, Ratner V, Sosunov S, Fraser DA, Botto M, Sivasankar B, Morgan BP, Silverstein S, Stark R, Polin R, Vannucci SJ, Pinsky D, Starkov AA (2010) Complement component C1q mediates mitochondria-driven oxidative stress in neonatal hypoxic-ischemic brain injury. J Neurosci 30(6):2077–2087

    Article  PubMed  CAS  Google Scholar 

  37. Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14(1):89–94

    Article  PubMed  CAS  Google Scholar 

  38. Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11(2):371–386

    Article  PubMed  CAS  Google Scholar 

  39. Adams J, Collaco-Moraes Y, de Belleroche J (1996) Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J Neurochem 66(1):6–13

    Article  PubMed  CAS  Google Scholar 

  40. Dore S, Otsuka T, Mito T, Sugo N, Hand T, Wu L, Hurn PD, Traystman RJ, Andreasson K (2003) Neuronal overexpression of cyclooxygenase-2 increases cerebral infarction. Ann Neurol 54(2):155–162

    Article  PubMed  CAS  Google Scholar 

  41. Nakayama M, Uchimura K, Zhu RL, Nagayama T, Rose ME, Stetler RA, Isakson PC, Chen J, Graham SH (1998) Cyclooxygenase-2 inhibition prevents delayed death of CA1 hippocampal neurons following global ischemia. Proc Natl Acad Sci USA 95(18):10954–10959

    Article  PubMed  CAS  Google Scholar 

  42. Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17(8):2746–2755

    PubMed  CAS  Google Scholar 

  43. Yong VW, Marks S (2010) The interplay between the immune and central nervous systems in neuronal injury. Neurology 74:S9–S16

    Article  PubMed  CAS  Google Scholar 

  44. Giuliani F, Goodyer CG, Antel JP, Yong VW (2003) Vulnerability of human neurons to T cell-mediated cytotoxicity. J Immunol 171:368–379

    PubMed  CAS  Google Scholar 

  45. Arumugam TV, Granger DN, Mattson MP (2005) Stroke and T-cells. Neuromolecular Med 7:229–242

    Article  PubMed  CAS  Google Scholar 

  46. Brait VH, Jackman KA, Walduck AK, Selemidis S, Diep H, Mast AE, Guida E, Broughton BR, Drummond GR, Sobey CG (2010) Mechanisms contributing to cerebral infarct size after stroke: gender, reperfusion, T lymphocytes, and Nox2-derived superoxide. J Cereb Blood Flow Metab 30(7):1306–1317

    Article  PubMed  CAS  Google Scholar 

  47. Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H (2007) T- and B-cell deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27:1798–1805

    Article  PubMed  CAS  Google Scholar 

  48. Yilmaz G, Arumugam TV, Stokes KY, Granger DN (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113:2105–2112

    Article  PubMed  Google Scholar 

  49. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15:192–199

    Article  PubMed  CAS  Google Scholar 

  50. Baron R, Nemirovsky A, Harpaz I, Cohen H, Owens T, Monsonego A (2008) IFN-gamma enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer’s disease. FASEB J 22:2843–2852

    Article  PubMed  CAS  Google Scholar 

  51. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9:268–275

    Article  PubMed  CAS  Google Scholar 

  52. Ziv Y, Schwartz M (2008) Immune-based regulation of adult neurogenesis: implications for learning and memory. Brain Behav Immun 22:167–176

    Article  PubMed  CAS  Google Scholar 

  53. Lin JH, Weigel H, Cotrina ML, Liu S, Bueno E, Hansen AJ, Hansen TW, Goldman S, Nedergaard M (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1:494–500

    Article  PubMed  CAS  Google Scholar 

  54. Bezzi P, Volterra A (2001) A neuron-glia signaling network in the active brain. Curr Opin Neurobiol 11:387–394

    Article  PubMed  CAS  Google Scholar 

  55. Strauss KI (2008) Anti-inflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain Behav Immun 22:285–298

    Article  PubMed  CAS  Google Scholar 

  56. Botting RM (2006) Inhibitors of cyclooxygenases: mechanisms, selectivity and uses. J Physiol Pharmacol 57(5):113–124

    PubMed  Google Scholar 

  57. Yang H, Chen C (2008) Cyclooxygenase-2 in synaptic signaling. Curr Pharm Des 14(14):1443–1451

    Article  PubMed  CAS  Google Scholar 

  58. Minghetti L (2004) Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 63:901–910

    PubMed  CAS  Google Scholar 

  59. Chandrasekharan NV, Dai H, Roos KLT, Evanson NK, Tomsik J, Elton TS, Simmons DL (2002) COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 99:13926–13931

    Article  PubMed  CAS  Google Scholar 

  60. Kis B, Snipes JA, Busija DW (2005) Acetaminophen and the cyclooxygenase-3 puzzle: sorting out facts, fictions, and uncertainties. J Pharmacol Exp Ther 315(1):1–7

    Article  PubMed  CAS  Google Scholar 

  61. Chacon P, Vega A, Monteseirin J, El Bekay R, Alba G, Perez-Formoso JL, Msartinez A, Asturias JA, Perez-Cano R, Sobrino F, Conde J (2005) Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients. Eur J Immunol 35(8):2313–2324

    Article  PubMed  CAS  Google Scholar 

  62. Linker R, Gold R, Luhder R (2009) Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit Rev Immunol 29(1):43–68

    PubMed  CAS  Google Scholar 

  63. Pitzer C, Krüger C, Plaas C, Kirsch F, Dittgen T, Müller R, Laage R, Kastner S, Suess S, Spoelgen R, Henriques A, Ehrenreich H, Schäbitz WR, Bach A, Schneider A (2008) Granulocyte-colony stimulating factor improves outcome in a mouse model of amytrophic lateral sclerosis. Brain 131(Pt 12):335–347

    Google Scholar 

  64. Schabitz WR, Kollmar R, Schwaninger M (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751

    Article  PubMed  Google Scholar 

  65. Ding J, Yu JZ, Li QY, Wang X, Lu CZ, Xiao BG (2009) Rho kinase inhibitor Fasudil induces neuroprotection and neurogenesis partially through astrocyte-derived G-CSF. Brain Behav Immun 23(8):1083–1088

    Article  PubMed  CAS  Google Scholar 

  66. Barrientos RM, Sprunger DB, Campeau S, Higgins EA, Watkins LR, Rudy JW, Maier SF (2003) Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience 121:847–853

    Article  PubMed  CAS  Google Scholar 

  67. Ben Menachem-Zidon O, Goshen I, Kreisel T, Ben Menahem Y, Reinhartz E, Ben Hur T, Yirmiya R (2008) Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology 33:2251–2262

    Article  PubMed  CAS  Google Scholar 

  68. Wu CW, Chen YC, Yu L, Chen HI, Jen CJ, Huang AM, Tsai HJ, Chang YT, Kuo YM (2007) Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J Neurochem 103:2471–2481

    Article  PubMed  CAS  Google Scholar 

  69. Hofer M, Pospisil M, Hola J, Vacek A, Streitova D, Znojil V (2008) Inhibition of cyclooxygenase 2 in mice increases production of G-CSF and induces radioprotection. Radiat Res 170:566–571

    Article  PubMed  CAS  Google Scholar 

  70. Hofer M, Pospisil M, Znojil V, Hola J, Vacek A, Streitova D (2008) Meloxicam, an inhibitor of cyclooxygenase-2, increases the level of serum G-CSF and might be usable as an auxiliary means in G-CSF therapy. Physiol Res 57:307–310

    PubMed  CAS  Google Scholar 

  71. Van Bel F, Groenendaal F (2008) Long-term pharmacologic neuroprotection after birth asphyxia: where do we stand? Neonatology 94:203–210

    Article  PubMed  Google Scholar 

  72. Solaroglu I, Jadhav V, Zhang JH (2007) Neuroprotective effect of granulocyte-colony stimulating factor. Front Biosci 12:712–724

    Article  PubMed  CAS  Google Scholar 

  73. Gorgen I, Hartung T, Leist M, Niehörster M, Tiegs G, Uhlig S, Weitzel F, Wendel A (1992) Granulocyte colony-stimulating factor treatment protects rodents against lipopolysaccharide-induced toxicity via suppression of systemic tumor necrosis factor-alpha. J Immunol 49:918–924

    Google Scholar 

  74. Gibson CL, Jones NC, Prior MJ, Bath PM, Murphy SP (2005) G-CSF suppresses edema formation and reduces interleukin-1beta expression after cerebral ischemia in mice. J Neuropathol Exp Neurol 64:763–769

    Article  PubMed  CAS  Google Scholar 

  75. Komine-Kobayashi M, Zhang N, Liu M, Tanaka R, Hara H, Osaka A, Mochizuki H, Mizuno Y, Urabe T (2006) Neuroprotective effect of recombinant human granulocyte colony-stimulating factor in transient focal ischemia of mice. J Cereb Blood Flow Metab 26:402–413

    Article  PubMed  CAS  Google Scholar 

  76. Heard SO, Fink MP (1999) Counterregulatory control of the acute inflammatory response: granulocyte colony-stimulating factor has anti-inflammatory properties. Crit Care Med 27:1019–1021

    Article  PubMed  CAS  Google Scholar 

  77. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS (2004) Functional recovery of stroke rats induced by granulocyte colony stimulation factor stimulated stem cells. Circulation 110:1847–1854

    Article  PubMed  CAS  Google Scholar 

  78. Schneider A, Krüger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Kuhn HG, Schäbitz WR (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098

    Article  PubMed  CAS  Google Scholar 

  79. Yata K, Matchett GA, Tsubokawa T, Tang J, Kanamaru K, Zhang JH (2007) Granulocyte-colony stimulating factor inhibits apoptotic neuron loss after neonatal hypoxia-ischemia in rats. Brain Res 1145:227–238

    Article  PubMed  CAS  Google Scholar 

  80. Kim BR, Shim JW, Sung DK, Kim SS, Jeon GW, Kim MJ, Chang YS, Park WS, Choi ES (2008) Granulocyte stimulating factor attenuates hypoxic-ischemic brain injury by inhibiting apoptosis in neonatal rats. Yonsei Med J 49(5):836–842

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was partially supported by NIH NS053407 to J.H. Zhang.

Conflict of interest statement We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Fathali, N., Khatibi, N.H., Ostrowski, R.P., Zhang, J.H. (2011). The Evolving Landscape of Neuroinflammation After Neonatal Hypoxia-Ischemia. In: Zhang, J., Colohan, A. (eds) Intracerebral Hemorrhage Research. Acta Neurochirurgica Supplementum, vol 111. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0693-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0693-8_15

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0692-1

  • Online ISBN: 978-3-7091-0693-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics