Skip to main content

What have we learnt from CDNA microarray gene expression studies about the role of iron in MPTP induced neurodegeneration and Parkinson’s disease?

  • Conference paper
Advances in Research on Neurodegeneration

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 65))

Summary

There have been numerous hypotheses concerning the etiology and mechanism of dorsal raphe dopaminergic neurodegeneration in Parkinson’s disease and its animal models, MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 6-hydroxydopamine. The advent of cDNA microarray gene expression where expression of thousands of genes can be globally assessed has indicated that mechanism of neurodegeneration by MPTP is a complex cascade of vicious circles. One of these is the alteration of genes associated with iron metabolism, a transitional metal closely associated with inducing the formation of reactive oxygen species and inducing oxidative stress. cDNA gene expression analyses support the established hypothesis of oxidative induced neurodegeneration involving iron deposition in substantia nigra pars compacta (SNPC) parkinsonian brains. The regulation of cellular iron metabolism has been further enhanced by the recent discovery of two iron regulatory proteins, IRP1 and IRP2 which control the level of iron with in the cell. When the cellular level of iron increases IRP2 is degraded by ubiquitination and no further iron accumulates. The reverse occurs when the level of iron is low within the cell. Knock-out IRP1 and IRP2 mice have shown that in latter mice brain iron accumulation precedes the neurodegeneration, ataxia and bradykinesia observed in these animals. Indeed MPTP treatment, which results in iron accumulation in SNCP, abolishes IRP2 with the concomitant increase in α-synuclein. Iron chelators such as R-apomorphine and EGCG, which protect against MPTP neurotoxicity, prevent the loss of IRP2 and the increase in α-synuclein. The presence of iron together with α-synuclein in SNPC may be detrimental for dopaminergic neurons. Since, iron has been shown to cause aggregation of α-synuclein to a neurotoxic agent. The use of iron chelators penetrating the blood brain barrier as neuroprotective drugs has been envisaged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuna-Castroviejo D, Coto-Montes A, Gaia Monti M, Ortiz GG, Reiter RJ (1997) Melatonin is protective against MPTP-induced striatal and hippocampal lesions. Life Sci 60: L23–L29

    Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JP, Youdim MBH (1991) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 56: 1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D, Kahana N, Kampel V, Warshawsky A, Youdim MBH (2002) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lesion in rats. J Neurochem (in press)

    Google Scholar 

  • Berg D, Grote C, Rausch WD, Maurer M, Wesemann W, Riederer P, Becker G (1999) Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med Biol 25: 901–904

    Article  PubMed  CAS  Google Scholar 

  • Berg D, Gerlach M, Youdim MBH, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79: 225–236

    Article  PubMed  CAS  Google Scholar 

  • Borisenko GG, Kagan VE, Hsia CJ, Schor NF (2000) Interaction between 6-hydroxydopamine and transferrin: “Let my iron go”. Biochemistry 39: 3392–3400

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Katz M, Jackson-Lewis V, Fahn S (1989) Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence. Brain Res 476: 10–15

    Article  PubMed  CAS  Google Scholar 

  • Cohen G (2001) Oxidative stress, mitochondrial respiration, and Parkinson’s disease. Ann NY Acad Sci 899: 112–120

    Article  Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52: 1830–1836

    Article  PubMed  CAS  Google Scholar 

  • Double KL, Maywald M, Schmittel M, Riederer P, Gerlach M (1998) In vitro studies of ferritin iron release and neurotoxicity. J Neurochem 70: 2492–2499

    Article  PubMed  CAS  Google Scholar 

  • Duda JE, Lee VM, Trojanowski JQ (2000) Neuropathology of synuclein aggregates. J Neurosci Res 61: 121–127

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20: 627–662

    Article  PubMed  CAS  Google Scholar 

  • Ferger B, Spratt C, Teismann P, Seitz G, Kuschinsky K (1998) Effects of cytisine on hydroxyl radicals in vitro and MPTP-induced dopamine depletion in vivo. Eur J Pharmacol 360: 155–163

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Gonzalez A, Perez-Otano I, Morgan JI (2000) MPTP selectively induces haemoxygenase-1 expression in striatal astrocytes. Eur J Neurosci 12: 1573–1583

    Article  PubMed  CAS  Google Scholar 

  • Fredriksson A, Schroder N, Eriksson P, Izquierdo I, Archer T (2001) Neonatal iron potentiates adult MPTP-induced neurodegenerative and functional deficits. Parkinsonism Relat Disord 8: 97–105

    Article  Google Scholar 

  • Gassen M, Glinka Y, Pinchasi B, Youdim MBH (1996) Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction. Eur J Pharmacol 308: 219–225

    Article  PubMed  CAS  Google Scholar 

  • Gassen M, Gross A, Youdim MBH (1998) Apomorphine enantiomers protect cultured pheochromocytoma (PC12) cells from oxidative stress induced by H202 and 6-hydroxydopamine. Mov Disord 13: 242–248

    Article  PubMed  CAS  Google Scholar 

  • Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 793: 793–807

    Google Scholar 

  • Glinka YY, Youdim MBH (1995) Inhibition of mitochondrial complexes I and IV by 6-hydroxydopmine. Eur J Pharmacol 292: 329–332

    PubMed  CAS  Google Scholar 

  • Glinka Y, Tipton KF, Youdim MBH (1996) Nature of inhibition of mitochondrial respiratory complex I by 6-Hydroxydopamine. J Neurochem 66: 2004–2010

    Article  PubMed  CAS  Google Scholar 

  • Glinka Y, Tipton KF, Youdim MBH (1998) Mechanism of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine and its prevention by desferrioxamine. Eur J Pharmacol 351: 121–129

    Article  PubMed  CAS  Google Scholar 

  • Golts N, Snyder H, Frasier M, Theisler C, Choi P, Wolozin B (2002) Magnesium inhibits spontaneous and iron-induced aggregation of alpha-synuclein. J Biol Chem 15: 15

    Google Scholar 

  • Goto K, Mochizuki H, Imai H, Akiyama H, Mizuno Y (1996) An immuno-histochemical study of ferritin in l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Brain Res 724: 125–128

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E, Mandel S, Berkuzki T, Youdim MBH (1999) Apomorphine protects against MPTP-induced neurotoxicity in mice. Mov Disord 14: 612–618

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E, Mandel S, Maor G, Youdim MBH (2001a) Gene expression analysis in MPTP mice model of Parkinson’s disease using cDNA microarray. J Neurochem 78: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E, Mandel S, Maor G, Youdim MBH (2001b) Effects of R-apomorphine and S-apomorphine on MPTP-induced nigro-striatal doamine neuronal loss. J Neurochem 77: 146–156

    Article  PubMed  CAS  Google Scholar 

  • Hall S, Rutledge JN, Schauert T (1992) MRI, brain iron and experimental Parkinson’s disease. J Neurol Sci 113: 198–208

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18: 685–716

    Article  PubMed  CAS  Google Scholar 

  • Han J, Cheng FC, Yang Z, Dryhurst G (1999) Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson’s disease. J Neurochem 73: 1683–1695

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Takeda A, Hsu LJ, Takenouchi T, Masliah E (1999a) Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J Biol Chem 274: 28849–28852

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Hsu LJ, Xia Y, Takeda A, Sisk A, Sundsmo M, Masliah E (1999b) Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport 10: 717–721

    Article  PubMed  CAS  Google Scholar 

  • Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Faucheux BA, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci USA 94: 7531–7536

    Article  PubMed  CAS  Google Scholar 

  • Itazaki H, Kawasaki A, Matsuura M, Ueda M, Yonetani Y, Nakamura M (1988) Synthesis of 2,3-dihydro-l,4-benzodioxin derivatives. I. 2-substituted-5 (and 6)-sulfamoyl-2,3-dihydro-l,4-benzodioxins. Chem Pharm Bull (Tokyo) 36: 3387–3403

    Article  CAS  Google Scholar 

  • Jellinger K, Paulus W, Grundke-Iqbal I, Riederer P, Youdim MBH (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm [PD Sect] 2: 327–340

    Article  CAS  Google Scholar 

  • Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger H, Ben-Shachar D, Youdim MBH (1992) Iron-melanin complex in substantia nigra of parkinsonian brains: an x-ray microanalysis. J Neurochem 59: 1168–1171

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14: 115–140

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (1991) Oxidative stress as a cause of Parkinson’s disease. Acta Neurol Scand [Suppl] 136: 6–15

    Article  CAS  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47: S161–S170

    Article  PubMed  CAS  Google Scholar 

  • Kowall NW, Hantraye P, Brouillet E, Beal MF, McKee AC, Ferrante RJ (2000) MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. Neuroreport 11: 211–213

    Article  PubMed  CAS  Google Scholar 

  • Lan J, Jiang DH (1997a) Desferrixamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neural Transm 104: 469–481

    Article  PubMed  CAS  Google Scholar 

  • Lan J, Jiang DH (1997b) Excessive iron accumulation in the brain: a possible potential risk of neurodegeneration in Parkinson’s disease. J Neural Transm 104: 649–660

    Article  PubMed  CAS  Google Scholar 

  • Langston JW (1996) The etiology of Parkinson’s disease with emphasis on the MPTP story. Neurology 47: S153–S160

    Article  PubMed  CAS  Google Scholar 

  • LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, Drake SK, Miller G, Abu-Asab M, Tsokos M, Switzer R, 3rd, Grinberg A, Love P, Tresser N, Rouault TA (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 27: 209–214

    Article  PubMed  CAS  Google Scholar 

  • Leibold EA, Gahring LC, Rogers SW (2001) Immunolocalization of iron regulatory protein expression in the murine central nervous system. Histochem Cell Biol 115: 195–203

    PubMed  CAS  Google Scholar 

  • Lévites Y, Mandel S, Maor G, Youdim MBH (2001a) EGCG attenuates neuronal cell death in 6-OHDA and MPTP models of Parkinson’s disease: possible gene targets. Neural Plast 8: 184

    Google Scholar 

  • Levites Y, Youdim MBH, Maor G, Mandel S (2002a) Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 63: 21–29

    Article  PubMed  CAS  Google Scholar 

  • Lévites Y, Amit T, Mandel S, Youdim MBH (2002b) Green tea polyphenol (−)-epigallocatechin-3-gallate regulates secretion of non-amyloidogenic precursor protein via protein kinase C pathway. FASEB J (in press)

    Google Scholar 

  • Levites Y, Weinreb O, Maor G, Youdim MBH, Mandel S (2001b) Green tea polyphenol (−)-Epigallocatechin-3-gallate prevents N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78: 1073–1082

    Article  PubMed  CAS  Google Scholar 

  • Lin YL, Lin JK (1997) (−)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol Pharmacol 52: 465–472

    PubMed  CAS  Google Scholar 

  • Lin M, Rippe RA, Niemela O, Brittenham G, Tsukamoto H (1997) Role of iron in NF-kappa B activation and cytokine gene expression by rat hepatic macrophages. Am J Physiol 272: G1355–G1364

    PubMed  CAS  Google Scholar 

  • Linert W, Herdinger E, Jameson RF, Kienzl E, Jellinger K, Youdim MBH (1996) Dopamine, 6-hydroxydopamine, iron, and oxygen — their mutual interactions and possible implication in the development of Parkinson’s disease. Biochim Biophys Acta 1316: 160–168

    Article  PubMed  Google Scholar 

  • Lode HN, Bruchelt G, Rieth AG, Niethammer D (1990) Release of iron from ferritin by 6-hydroxydopamine under aerobic and anaerobic conditions. Free Rad Res Commun 11: 153–158

    Article  CAS  Google Scholar 

  • Mandel S, Grunblatt E, Maor G, Youdim MBH (2002a) Early and late gene changes in MPTP mice model of Parkinson’s disease employing cDNA microarray. Neurochem Res 27: 1231–1243

    Article  PubMed  CAS  Google Scholar 

  • Mandel S, Grunblatt E, Youdim MBH (2002b) Genes and oxidative stress in Parkinsonism: cDNA microarray studies. Adv Neurol 91: 123–133

    Google Scholar 

  • Mash DC, Pablo J, Buck BE, Sanchez-Ramos J, Weiner WJ (1991) Distribution and number of transferrin receptors in Parkinson’s disease and in MPTP-treated mice. Exp Neurol 114: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Miyajima H, Takahashi Y, Kamata T, Shimizu H, Sakai N, Gitlin JD (1997) Use of desferrioxamine in the treatment of aceruloplasminemia. Ann Neurol 41: 404–407

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki H, Imai H, Endo K, Yokomizo K, Murata Y, Hattori N, Mizuno Y (1994) Iron accumulation in the substantia nigra of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett 168: 251–253

    Article  PubMed  CAS  Google Scholar 

  • Monteiro HP, Winterbourn CC (1989) 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 38: 4177–4182

    Article  PubMed  CAS  Google Scholar 

  • Moussaoui S, Obinu MC, Daniel N, Reibaud M, Blanchard V, Imperato A (2000) The antioxidant ebselen prevents neurotoxicity and clinical symptoms in a primate model of Parkinson’s disease. Exp Neurol 166: 235–245

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher E, Sengstock GJ, Riederer P, Olanow CW, Dunn AJ, Arendash GW (1994) Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 660: 8–18

    Article  PubMed  CAS  Google Scholar 

  • Ostrerova-Golts N, Petrucelli L, Hardy J, Lee JM, Farer M, Wolozin B (2000) The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 20: 6048–6054

    PubMed  CAS  Google Scholar 

  • Perry TL, Yong VW, Clavier RM, Jones K, Wright JM, Foulks JG, Wall RA (1985) Partial protection from the dopaminergic neurotoxin N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine by four different antioxidants in the mouse. Neurosci Lett 60: 109–114

    Article  PubMed  CAS  Google Scholar 

  • Pezzella A, d’Ischia M, Napolitano A, Misuraca G, Prota G (1997) Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson’s disease. Med Chem 40: 2211–2216

    Article  CAS  Google Scholar 

  • Przedborski S, Chen Q, Vila M, Giasson BI, Djaldatti R, Vukosavic S, Souza JM, Jackson-Lewis VV, Lee VM, Ischiropoulos H (2001) Oxidative post-translational modifications of alpha-synuclein in the l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Neurochem 76: 637–640

    Article  PubMed  CAS  Google Scholar 

  • Ramsay RR, Kowal AT, Johnson MK, Salach JI, Singer TP (1987) The inhibition site of MPP+, the neurotoxic bioactivation product of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine is near the Q-binding site of NADH dehydrogenase. Arch Biochem Biophys 259: 645–649

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52: 515–520

    Article  PubMed  CAS  Google Scholar 

  • Roghani M, Behzadi G (2001) Neuroprotective effect of vitamin E on the early model of Parkinson’s disease in rat: behavioral and histochemical evidence. Brain Res 892: 211–217

    Article  PubMed  CAS  Google Scholar 

  • Seaton TA, Cooper JM, Schapira AH (1997) Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res 777:110–118

    Article  PubMed  CAS  Google Scholar 

  • Shoham S, Youdim MBH (2000) Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases. Cell Mol Biol 46: 743–760

    PubMed  CAS  Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckmann H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J Neural Transm 74: 199–205

    Article  PubMed  CAS  Google Scholar 

  • Temlett JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 62: 134–146

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto H, Lin M, Ohata M, Giulivi C, French SW, Brittenham G (1999) Iron primes hepatic macrophages for NF-kappaB activation in alcoholic liver injury. Am J Physiol 277: G1240–1250

    PubMed  CAS  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 276: 44284–44296

    Article  PubMed  CAS  Google Scholar 

  • Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S (2000) Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 74: 721–729

    Article  PubMed  CAS  Google Scholar 

  • Warshawsky B, Hussain Z, Gregson DB, Alder R, Austin M, Bruckschwaiger D, Chagla AH, Daley J, Duhaime C, McGhie K, Pollett G, Potters H, Schiedel L (2000) Hospital-and community-based surveillance of methicillin-resistant Staphylococcus aureus: previous hospitalization is the major risk factor. Infect Control Hosp Epidemiol 21: 724–727

    Article  PubMed  CAS  Google Scholar 

  • Yantiri F, Andersen JK (1999) The role of iron in Parkinson disease and l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine toxicity. IUBMB Life 48: 139–141

    PubMed  CAS  Google Scholar 

  • Youdim MBH, Ben-Shachar D, Riederer P (1993) The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord 8: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH (1985) Brain iron metabolism. Biochemical and behavioral aspects in relation to dopaminergic neurotransmission. In: Lajtha A (ed) Handbook of neuro-chemistry. Plenum, New York

    Google Scholar 

  • Youdim MBH, Riederer P (2002) Iron in the brain, normal and pathological. In: Smitt A, Adelman G (eds) Encyclopedia of neuroscience. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Youdim MBH, Grunblatt E, Mandel S (1999) The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration. Prospects for neuroprotection in Parkinson’s disease with iron chelators. Ann NY Acad Sci 890: 7–25

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this paper

Cite this paper

Youdim, M.B.H. (2003). What have we learnt from CDNA microarray gene expression studies about the role of iron in MPTP induced neurodegeneration and Parkinson’s disease?. In: Horowski, R., et al. Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 65. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0643-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0643-3_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83907-2

  • Online ISBN: 978-3-7091-0643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics