Skip to main content

Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia

  • Conference paper
Advances in Research on Neurodegeneration

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 65))

Summary

Learning in neuronal networks occurs by instructions to the neurons to change their synaptic weights (i.e., efficacies). According to the present model a molecular mechanism that can contribute to change synaptic weights may be represented by multiple interactions between membrane receptors forming aggregates (receptor mosaics) via oligomerization at both pre- and post-synaptic level.

These assemblies of receptors together with inter alia single receptors, adapter proteins, G-proteins and ion channels form the membrane bound part of a complex three-dimensional (3D) molecular circuit, the cytoplasmic part of which consists especially of protein kinases, protein phosphatases and phosphoproteins. It is suggested that this molecular circuit has the capability to learn and store information. Thus, engram formation will depend on the resetting of 3D molecular circuits via the formation of new receptor mosaics capable of addressing the transduction of the chemical messages impinging on the cell membrane to certain sets of G-proteins. Short-term memory occurs by a transient stabilization of the receptor mosaics producing the appropriate change in the synaptic weight.

Engram consolidation (long-term memory) may involve intracellular signals that translocate to the nucleus to cause the activation of immediate early genes and subsequent formation of postulated adapter proteins which stabilize the receptor mosaics with the formation of long-lived heteromeric receptor complexes.

The receptor mosaic hypothesis of the engram formation has been formulated in agreement with the Hebbian rule and gives a novel molecular basis for it by postulating that the pre-synaptic activity change in transmitter and modulator release reorganizes the receptor mosaics at post-synaptic level and subsequently at pre-synaptic level with the formation of novel 3D molecular circuits leading to a different integration of chemical signals impinging on pre-and post-synaptic membranes hence leading to a new value of the synaptic weight.

Engram retrieval is brought about by the scanning of the target networks by the highly divergent arousal systems. Hence, a continuous reverberating process occurs both at the level of the neural networks as well as at the level of the 3D molecular circuits within each neuron of the network until the appropriate tuning of the synaptic weights is obtained and, subsequently, the reappearance of the engram occurs.

Learning and memory in the basal ganglia is discussed in the frame of the present hypothesis. It is proposed that formation of long-term memories (consolidated receptor mosaics) in the plasma membranes of the striosomal GABA neurons may play a major role in the motivational learning of motor skills of relevance for survival.

In conclusion, long-lived heteromeric receptor complexes of high order may be crucial for learning, memory and retrieval processes, where extensive reciprocal feedback loops give rise to coherent synchronized neural activity (binding) essential for a sophisticated information handling by the central nervous system.

This paper is dedicated to Fiorenzo Stirpe, Professor of General Pathology, and to Eugenio Riva, Professor of Human Physiology, at the University of Bologna, Italy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnati LF, Fuxe K, Zini I, Lenzi P, Hökfelt T (1980) Aspects on receptor regulation and isoreceptor identification. Med Biol 58: 182–187

    PubMed  CAS  Google Scholar 

  • Agnati LF, Fuxe K, Zoli M, Rondanini C, Ögren S-O (1982) New vistas on synaptic plasticity: mosaic hypothesis on the engram. Med Biol 60: 183–190

    PubMed  CAS  Google Scholar 

  • Agnati LF, Fuxe K, Pich EM, et al. (1986) Aspects on the information handling by the central nervous system: focus on cotransmission in the aged rat brain. Prog Brain Res 68: 291–301

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Fuxe K, Zoli M, Ferraguti F, Benfenati F, Ouimet C, Walaas S, Hemmings Jr H, Goldstein M, Greengard P (1988) Morphometrical evidence for a complex organization of tyrosine hydroxylase-, enkephalin-and DARPP-32-like immunoreactive patches and their codistribution at three rostrocaudal levels in the rat neostriatum. Neuroscience 27: 785–797

    Article  PubMed  CAS  Google Scholar 

  • Agnati LF, Zoli M, Pich EM, Benfenati F, Fuxe K (1990) Aspects of neural plasticity in the central nervous system. VII. Theoretical aspects of brain communication and computation. Neurochem Int 16: 478–500

    Google Scholar 

  • Agnati LF, Fuxe K, Nicholson C, Syková E (2000) Volume transmission revisited. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Agnati LF, Santarossa L, Benfenati F, Ferri M, Morpurgo A, Apolloni B, Fuxe K (2002) Molecular basis of learning and memory: modeling based on receptor mosaics. In: Apolloni B, Kurfess F (eds) From synapses to rules: discovering symbolic rules from neural processed data. Kluwer Academic/Plenum Press Publisher, New York, pp 165–195

    Google Scholar 

  • Aigner TG (1995) Pharmacology of memory: cholinergic-glutamatergic interactions. Curr Opin Neurobiol 5: 155–160

    Article  PubMed  CAS  Google Scholar 

  • Albright TD, Kandel ER, Posner MI (2000) Cognitive neuroscience. Curr Opin Neurobiol 10: 612–624

    Article  PubMed  CAS  Google Scholar 

  • Andersson M, Hilbertson A, Cenci MA (1999) Striatal fosB expression is causally linked with L-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease. Neurobiol Dis 6: 461–474

    Article  PubMed  CAS  Google Scholar 

  • Angers S, Bouvier M (2000) Reply: beyond receptor dimerization. Trends Pharmacol Sci 21: 326

    Article  PubMed  CAS  Google Scholar 

  • Bailey CH, Bartsch D, Kandel ER (1996) Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci USA 93: 13445–13452

    Article  PubMed  CAS  Google Scholar 

  • Bartlett F (1932) Remembering. Cambridge University Press, New York

    Google Scholar 

  • Bear MF (1996) A synaptic basis for memory storage in the cerebral cortex. Proc Natl Acad Sci USA 93: 13453–13459

    Article  PubMed  CAS  Google Scholar 

  • Beiser DG, Hua SE, Houk JC (1997) Network models of the basal ganglia. Curr Opin Neurobiol 7: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. Embo J 18: 1723–1729

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M (2001) Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2: 274–286

    Article  PubMed  CAS  Google Scholar 

  • Cahill L, McGaugh JL, Weinberger NM (2001) The neurobiology of learning and memory: some reminders to remember. Trends Neurosci 24: 578–581

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1994) Post-receptor mechanisms underlying striatal long-term depression. J Neurosci 14: 4871–4881

    PubMed  CAS  Google Scholar 

  • Calabresi P, Pisani A, Mercuri NB, Bernardi G (1996) The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci 19:19–24

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Gubellini P, Marfia GA, Bernardi G (1999a) Glutamate triggered events inducing corticostriatal long-term depression. J Neurosci 19: 6102–6110

    PubMed  CAS  Google Scholar 

  • Calabresi P, Gubellini P, Centonze D, Sancesario G, Morello M, Giorgi M, Pisani A, Bernardi G (1999b) A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J Neurosci 19: 2489–2499

    PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Gubellini P, Marfia GA, Pisani A, Sancesario G, Bernardi G (2000a) Synaptic transmission in the striatum: from plasticity to neurodegeneration. Prog Neurobiol 61: 231–265

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Gubellini P, Centonze D, Picconi B, Bernardi G, Chergui K, Svenningsson P, Fienberg AA, Greengard P (2000b) Dopamine and cAMP-regulated phosphoprotein 32kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci 20: 8443–8451

    PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Bernardi G (2000c) Electrophysiology of dopamine in normal and denervated striatal neurons. Trends Neurosci 23: S57–S63

    Article  PubMed  CAS  Google Scholar 

  • Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, Bailey CH, Kandel ER (1999) A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99: 221–237

    Article  PubMed  CAS  Google Scholar 

  • Cenci MA, Lee CS, Bjorklund A (1998) L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin-and glutamic acid decarboxylase mRNA. Eur J Neurosci 10: 2694–2706

    Article  PubMed  CAS  Google Scholar 

  • Cenci MA, Tranberg A, Andersson M, Hilbertson A (1999) Changes in the regional and compartmental distribution of FosB-and JunB-like immunoreactivity induced in the dopamine-denervated rat striatum by acute or chronic L-dopa treatment. Neuroscience 94: 515–527

    Article  PubMed  CAS  Google Scholar 

  • Changeux JP, Dehaene S (1998) Hierarchical neuronal modeling of cognitive functions: from synaptic transmission to the Tower of London. CR Acad Sci III 321: 241–247

    Article  CAS  Google Scholar 

  • Changeux JP, Thiéy J-P, Tung T, Kittel C (1967) On the cooperativity of biological membranes. Proc Natl Acad Sci USA 57: 335–341

    Article  PubMed  CAS  Google Scholar 

  • Damasio AR (1998) Emotion in the perspective of an integrated nervous system. Brain Res Rev 26: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S, Changeux JP (2000) Reward-dependent learning in neuronal networks for planning and decision making. Prog Brain Res 126: 217–229

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 95: 14529–14534

    Article  PubMed  CAS  Google Scholar 

  • Daniel H, Levenes C, Crepel F (1998) Cellular mechanisms of cerebellar LTD. Trends Neurosci 21: 401–407

    Article  PubMed  CAS  Google Scholar 

  • Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10: 732–739

    Article  PubMed  CAS  Google Scholar 

  • Duke TA, Bray D (1999) Heightened sensitivity of a lattice of membrane receptors. Proc Natl Acad Sci USA 96: 10104–10108

    Article  PubMed  CAS  Google Scholar 

  • Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15: 5999–6013

    PubMed  CAS  Google Scholar 

  • Ferre S, Popoli P, Rimondini R, Reggio R, Kehr J, Fuxe K (1999) Adenosine A2A and group I metabotropic glutamate receptors synergistically modulate the binding characteristics of dopamine D2 receptors in the rat striatum. Neuropharmacology 38:129–140

    Article  PubMed  CAS  Google Scholar 

  • Fienberg AA, Greengard P (2000) The DARPP-32 knockout mouse. Brain Res Brain Res Rev 31: 313–319

    Article  PubMed  CAS  Google Scholar 

  • Franco R, Ferré S, Agnati LF, Torvinen M, Gines S, Hillion J, Casado V, Lledo P, Zoli M, Lluis C, Fuxe K (2000) Evidence for adenosine/dopamine receptor interactions. Indications for heteromerization. Neuropsychopharmacology 23: 50–59

    Google Scholar 

  • Franzén O, Lennerstrand G, Pardo J, Richter H (2000) Spatial contrast sensitivity and visual accommodation studied with VEP (Visual Evoked Potential), PET (Positron Emission Tomography) and psychophysical techniques. In: Franzén O, Richter H, Stark J (eds) Accommodation and convergence mechanisms in the visual system. Birkhäuser, Basel, pp 91–114

    Google Scholar 

  • Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254: 1598–1603

    Article  PubMed  CAS  Google Scholar 

  • Freeman WJ (1994) Neural networks and chaos. J Theor Biol 171: 13–18

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF (1985) Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. Med Res Rev 5: 441–482

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF (1987) Receptor-receptor interactions. A new intramembrane integrative mechanism, Macmillan Press, London

    Google Scholar 

  • Fuxe K, Agnati LF (1991) Volume transmission in the brain. Novel mechanisms for neural transmission, Raven Press, New York

    Google Scholar 

  • Fuxe K, Fredholm B, Agnati LF, Corrodi H (1978) Dopamine receptors and ergot drugs. Evidence that an ergolene derivative is a differential agonist at subcortical limbic dopamine receptors. Brain Res 146: 295–311

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati LF, Ögren S, Andersson K, Benfenati F (1983) Neurobiology of central monoamine neurotransmission: Functional neuroanatomy and noradrenaline and 5-hydroxytryptamine involvement in learning and memory. In: Caputto R, Marsan C (eds) Neural transmission, learning and memory. Raven Press, New York, pp 237–255

    Google Scholar 

  • Fuxe K, Ferré S, Zoli M, Agnati LF (1998) Integrated events in central dopamine transmission as analyzed at multiple levels. Evidence for intramembrane adenosine A2A/dopamine D2 and adenosine Al/dopamine Dl receptor interactions in the basal ganglia. Brain Res Rev 26: 258–273

    Article  PubMed  CAS  Google Scholar 

  • Gazzaniga M (2000) The new cognitive neuroscience. MIT Press, Cambridge, Mass

    Google Scholar 

  • Gerfen CR (2000) Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci 23: S64–S70

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Swanson LW, Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, vol 12. Elsevier Science, Amsterdam, pp 371–468

    Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning. Addison Wesley, Reading, Mass

    Google Scholar 

  • Goldman-Rakic PS (1996) Memory: recording experience in cells and circuits: diversity in memory research. Proc Natl Acad Sci USA 93: 13435–13437

    Article  PubMed  CAS  Google Scholar 

  • Graves L, Pack A, Abel T (2001) Sleep and memory: a molecular perspective. Trends Neurosci 24: 237–243

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM (1995) Building action repertoires: memory and learning functions of the basal ganglia. Curr Opin Neurobiol 5: 733–741

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Canales JJ, Capper-Loup C (2000) Levodopa-induced dyskinesias and dopamine-dependent stereotypies: a new hypothesis. Trends Neurosci 23: S71–S77.

    Article  PubMed  CAS  Google Scholar 

  • Greengard P, Nairn AC, Girault JA, Ouimet CC, Snyder GL, Fisone G, Allen PB, Fienberg A, Nishi A (1998) The DARPP-32/protein phosphatase-1 cascade: a model for signal integration. Brain Res Brain Res Rev 26: 274–284

    Article  PubMed  CAS  Google Scholar 

  • Greengard P, Allen PB, Nairn AC (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 23: 435–447

    Article  PubMed  CAS  Google Scholar 

  • Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411: 86–89

    Article  PubMed  CAS  Google Scholar 

  • Gutkind JS, Coso OA and Xu N (1998) Gαl2 and Gαl3-subunits of heterotrimeric G proteins: a novel family of oncogenes. In: Spiegel AM (ed) G proteins, receptors and disease. Humana Press, pp 101–117

    Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20: 3993–4001

    PubMed  CAS  Google Scholar 

  • Hebb D (1949) The organization of behaviour. John Wiley & Sons, New York

    Google Scholar 

  • Heyser CJ, Fienberg AA, Greengard P, Gold LH (2000) DARPP-32 knockout mice exhibit impaired reversal learning in a discriminated operant task. Brain Res 867: 122–130

    Article  PubMed  CAS  Google Scholar 

  • Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399: 697–700

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER, Pittenger C (1999) The past, the future and the biology of memory storage. Phil Trans R Soc Lond B Biol Sci 354: 2027–2052

    Article  CAS  Google Scholar 

  • Kauffman A (1993) The origins of order. Oxford University Press, New York

    Google Scholar 

  • Kenakin T (1997) Agonist-specific receptor conformations. Trends Pharmacol Sci 18: 416–417

    PubMed  CAS  Google Scholar 

  • Kenakin T (1999) Efficacy in drug receptor theory: outdated concept or under-valued tool? Trends Pharmacol Sci 20: 400–405

    Article  PubMed  CAS  Google Scholar 

  • Konorski J (1967) Integrative activity of the brain: an interdisciplinary approach. University Press, Chicago

    Google Scholar 

  • Lee CJ, Whitsel BL (1992) Mechanisms underlying somatosensory cortical dynamics. I. In vivo studies. Cereb Cortex 2: 81–106

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ (2000) The superfamily of heptahelical receptors. Nat Cell Biol 2: E133–136

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Wan Q, Pristupa ZB, Yu XM, Wang YT, Niznik HB (2000) Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature 403: 274–280

    Article  PubMed  CAS  Google Scholar 

  • Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242: 1654–1664

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1999) Long-term potentiation — a decade of progress? Science 285: 1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Marder E, Abbott LF, Turrigiano GG, Liu Z, Golowasch J (1996) Memory from the dynamics of intrinsic membrane currents. Proc Natl Acad Sci USA 93: 13481–13486

    Article  PubMed  CAS  Google Scholar 

  • Marshall FH (2001) Heterodimerization of G-protein-coupled receptors in the CNS. Curr Opin Pharmacol 1: 40–44

    Article  PubMed  CAS  Google Scholar 

  • Marshall FH, Jones KA, Kaupmann K, Bettler B (1999) GABA B receptors — the first 7TM heterodimers. Trends Pharmacol Sci 20: 396–399

    Article  PubMed  CAS  Google Scholar 

  • Marshall FH, White J, Main M, Green A, Wise A (1999) GABA(B) receptors function as heterodimers. Biochem Soc Trans 27: 530–535

    PubMed  CAS  Google Scholar 

  • McGaugh JL (2000) Memory — a century of consolidation. Science 287: 248–251

    Article  PubMed  CAS  Google Scholar 

  • Milgram N, MacLeod C, Petit T (1987) Neuroplasticity, learning and memory. In: Milgram N, MacLeod C, Petit T (eds) Neuroplasticity, learning and memory. Alan R Liss, New York, pp 1–16

    Google Scholar 

  • Nader K, Schafe GE, LeDoux JE (2000a) The labile nature of consolidation theory. Nat Rev Neurosci 1: 216–219

    Article  PubMed  CAS  Google Scholar 

  • Nader K, Schafe GE, Le Doux JE (2000b) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406: 722–726

    Article  PubMed  CAS  Google Scholar 

  • Onaran HO, Costa T (1997) Agonist efficacy and allosteric models of receptor action. Ann NY Acad Sci 812: 98–115

    Article  PubMed  CAS  Google Scholar 

  • Popoli P, Pezzola A, Torvinen M, Reggio R, Pintor A, Scarchilli L, Fuxe K, Ferre S (2001) The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology 25: 505–513

    Article  PubMed  CAS  Google Scholar 

  • Rimondini R, Fuxe K, Ferré S (1999) Multiple intramembrane receptor-receptor interactions in the regulation of striatal dopamine D2 receptors. NeuroReport 10: 2051–2054

    Article  PubMed  CAS  Google Scholar 

  • Rivera A, Cuéllar B, Giron FJ, Grandy DK, de la Calle A, Moratalla R (2002) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 80: 219–229

    Article  PubMed  CAS  Google Scholar 

  • Salahpour A, Angers S, Bouvier M (2000) Functional significance of oligomerization of G-protein-coupled receptors. Trends Endocrinol Metab 11: 163–168

    Article  PubMed  CAS  Google Scholar 

  • Sara SJ (2000a) Strengthening the shaky trace through retrieval. Nat Rev Neurosci 1:212–213

    Article  PubMed  CAS  Google Scholar 

  • Sara SJ (2000b) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 7: 73–84

    Article  PubMed  CAS  Google Scholar 

  • Schachter DL (1996) Illusory memories: a cognitive neuroscience analysis. Proc Natl Acad Sci USA 93: 13527–13533

    Article  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Schwartz JC, Diaz J, Pilon C, Sokoloff P (2000) Possible implications of the dopamine D(3) receptor in schizophrenia and in antipsychotic drug actions. Brain Res Brain Res Rev 31: 277–287

    Article  PubMed  CAS  Google Scholar 

  • Singer W (1995) Development and plasticity of cortical processing architectures. Science 270: 758–764

    Article  PubMed  CAS  Google Scholar 

  • Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18: 555–586

    Article  PubMed  CAS  Google Scholar 

  • Tonegawa S (1988) Nobel lecture in physiology or medicine — 1987. Somatic generation of immune diversity. In Vitro Cell Dev Biol 24: 253–265

    Article  PubMed  CAS  Google Scholar 

  • Trias S, Rivera A, Megias M, Peñafiel A, Marin-Giron F, de la Calle A (2002) D4 and Dl/D5 dopamine receptors interact synergistically in the rat striatum. Int J Dev Biol 45(S1): S93–S94

    Google Scholar 

  • Wade C, Tavris C (1998) Psychology. Longman, New York

    Google Scholar 

  • White NM (1997) Mnemonic functions of the basal ganglia. Curr Opin Neurobiol 7:164–169

    Article  PubMed  CAS  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine Dl receptors in prefrontal cortex. Nature 376: 572–575

    Article  PubMed  CAS  Google Scholar 

  • Xu M, Koeltzow TE, Santiago GT, Moratalla R, Cooper DC, Hu XI, White NM, Graybiel AM, White FJ, Tonegawa S (1997) Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of Dl and D2 receptors. Neuron 19: 837–848

    Article  PubMed  CAS  Google Scholar 

  • Zoli M, Agnati LF, Hedlund P, Li X, Ferré S, Fuxe K (1993) Receptor-receptor interactions as an integrative mechanism in nerve cells. Mol Neurobiol 7: 293–334

    Article  PubMed  CAS  Google Scholar 

  • Zoli M, Guidolin D, Fuxe K, Agnati LF (1996) The receptor mosaic hypothesis of the engram: possible relevance of Boolean network modeling. Int J Neural Syst 7: 363–368

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this paper

Cite this paper

Agnati, L.F., Franzen, O., Ferré, S., Leo, G., Franco, R., Fuxe, K. (2003). Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia. In: Horowski, R., et al. Advances in Research on Neurodegeneration. Journal of Neural Transmission. Supplementa, vol 65. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0643-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0643-3_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83907-2

  • Online ISBN: 978-3-7091-0643-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics