Skip to main content

Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice

  • Conference paper
Mechanisms of Secondary Brain Damage from Trauma and Ischemia

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 89))

Abstract

Astrocytes play an active role in the brain and spinal cord. For example, they have a function in formation and maintenance of the blood-brain barrier, ion homeostasis, neurotransmitter transport, production of extracellular matrix, and neuromodulation. Moreover, they play a role in preserving or even restoring the structural and physiological integrity after tissue injury. Currently, the function of astrocytes was studied with regard to the controversially discussed aspects of permissivity on the one-hand-side and inhibition of the other side exerted by reactive astrocytes for axonal regrowth in the adult CNS. Accordingly, knock-out mice deficient in vimentin (VIM) and/or glial fibrillary acidic protein (GFAP), the two major IF-proteins of astrocytes, were investigated. In addition, in vitro studies were carried out, on whether the absence of one or both proteins (VIM, GFAP) influences axonal regeneration. In experimental animals, a hemisection of the spinal cord was performed utilizing the above mentioned double-mutant mice. The knock-out mice were generated by gene targeting. Double-mutants were obtained by crossing single null mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bignami A, Dahl D (1976) The astroglia response to stabbing. Immunofluorescence studies with antibodies to astrocytespecific protein (GFA) in mammalian and submammalian vertebrates. Neuropathol Appl Neurol 2: 99–111

    Article  Google Scholar 

  2. Bovolenta P, Liem RK, Mason CA (1984) Development of cerebellar astroglia: transitions in form and cytoskeletal content. Dev Biol 102: 248–259

    Article  CAS  PubMed  Google Scholar 

  3. Brook GA, Perez-Bouza A, Noth J, Nacimiento W (1999) Astrocytes re-express nestin in deafferented target territories of the adult rat hippocampus. Neuroreport 10: 1007–1011

    Article  CAS  PubMed  Google Scholar 

  4. Brown JO, McCough GP (1947) Abortive regeneration of the transected spinal cord. J Comp Neurol 87: 131–137

    Article  CAS  PubMed  Google Scholar 

  5. Clarke SR, Shetty AK, Bradley JL, Turner DA (1994) Reactive astrocytes express the embryonic intermediate neurofilament nestin. Neuroreport 5: 1885–1888

    Article  CAS  PubMed  Google Scholar 

  6. Colucci-Guyon E, Portier MM, Dunia I, Paulin D, Pournin S, Babinet C (1994) Mice lacking vimentin develop and reproduce without an obvious phenotype. Cell 79: 679–694

    Article  CAS  PubMed  Google Scholar 

  7. Dahl D, Bignami A, Weber K, Osborn M (1981) Filament proteins in rat optic nerves undergoing Wallerian degeneration: localization of vimentin, the fibroblastic 100-A filament protein, in normal and reactive astrocytes. Exp Neurol 73: 496–506

    Article  CAS  PubMed  Google Scholar 

  8. Dahlstrand J, Lardelli M, Lendahl U (1995) Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Dev Brain Res 84: 109–129

    Article  CAS  Google Scholar 

  9. Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274: 23996–24006

    Article  CAS  PubMed  Google Scholar 

  10. Frisen J, Johansson CB, Török C, Risling M, Lendahl U (1995) Rapid, widespread, and longlasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131: 453–464

    Article  CAS  PubMed  Google Scholar 

  11. Fröes MM, Campos de Carvalho AC (1998) Gap junctionmediated loops of neuronal-glial interaction. Glia 24: 97–107

    Article  PubMed  Google Scholar 

  12. Gimenez y Ribotta M, Langa F, Menet V, Privat A (2000) Comparative anatomy of the cerebellar cortex in mice lacking Vimentin, GFAP, and both Vimentin and GFAP. Glia 31: 69–83

    Article  Google Scholar 

  13. Gimenez y Ribotta M, Rajaofetra N, Morin-Richaud C Alonso G, Bochelen D, Sandillon F, Legrand A, Mersel M, Privat A (1995) Oxysterol (7β-hydroxycholesteryl-3-oleate) promotes serotonergic reinnervation in the lesioned rat spinal cord by reducing glial reaction. J Neurosci Res 41: 79–95

    Article  Google Scholar 

  14. Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T, Itohara S (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14: 29–41

    Article  CAS  PubMed  Google Scholar 

  15. Hatten ME, Liem RKH, Shelanski ML, Mason CA (1991) Astroglia in CNS injury. Glia 4: 233–243

    Article  CAS  PubMed  Google Scholar 

  16. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U. Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96: 25–34

    Article  CAS  PubMed  Google Scholar 

  17. Lefrancois T, Fages C, Peschanski M, Tardy M (1997) Neuritic outgrowth associated with astroglial phenotypic changes induced by antisense glial fibrillary acidic protein (GFAP) mRNA in injured neuron-astrocyte cocultures. J Neurosci 17: 4121–4128

    CAS  PubMed  Google Scholar 

  18. Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595

    Article  CAS  PubMed  Google Scholar 

  19. Liesi P, Dahl D, Vaheri A (1983) Laminin is produced by early rat astrocytes in primary culture. J Cell Biol 96: 920–924

    Article  CAS  PubMed  Google Scholar 

  20. Liesi P, Silver J (1988) Is astrocyte laminin involved in axon guidance in the mammalian CNS? Dev Biol 130: 774–785

    Article  CAS  PubMed  Google Scholar 

  21. Lin RCS, Matesic DF, Marvin M, McKay RD, Brüstle O (1995) Re-expression of the intermediate filament nestin in reactive astrocytes. Neurobiol Dis 2: 79–85

    Article  CAS  PubMed  Google Scholar 

  22. Liuzzi FJ, Lasek RJ (1987) Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 237: 642–645

    Article  CAS  PubMed  Google Scholar 

  23. Marvin NJ, Dahlstrand J, Lendahl U, McKay RDG (1998) A rod end deletion in the intermediate filament protein nestin alters its subcellular localization in neuroepithelial cells of transgenic mice. J Cell Sci 111: 1951–1961

    CAS  PubMed  Google Scholar 

  24. McKay R (1997) Stem cells in the central nervous system. Science 276: 66–71

    Article  CAS  PubMed  Google Scholar 

  25. McKeon RJ, Hoke A, Silver J (1995) Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136: 32–43

    Article  CAS  PubMed  Google Scholar 

  26. Menet V, Colucci-Guyon E, Babinet C, Privat A, Gimenez y Ribotta M (1998) Astroglial and axonal responses to spinal cord injury in mice deficient for glial fibrillary acidic protein (GFAP) and Vimentin (VIM). Abs Soc Neurosci 710: 6

    Google Scholar 

  27. Menet V, Gimenez y Ribotta M, Sandillon F, Privat A (2000) GFAP null astrocytes are a favourable substrate for neuronal survival and neurite growth. Glia 31: 267–272

    Article  CAS  PubMed  Google Scholar 

  28. Menet V, Gimenez y Ribotta M, Chavet N, Drian MJ, Lannoy J, Colucci-Guyon E, Privat A (2001) Inactivation of the glial fibrillary acidic protein gene, but not that of vimentin, improves neuronal survival and neurite growth by modifying adhesion molecule expression. J Neurosci 21: 6147–6158

    CAS  PubMed  Google Scholar 

  29. Mikucki SA, Oblinger MM (1991) Vimentin mRNA expression increases after corticospinal axotomy in the adult hamster. Metab Brain Dis 6: 33–49

    Article  CAS  PubMed  Google Scholar 

  30. Morin-Richaud C, Feldblum S, Privat A (1998) Astrocytes and oligodendrocytes reactions after a total section of the rat spinal cord. Brain Res 783: 85–101

    Article  CAS  PubMed  Google Scholar 

  31. Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, Van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    Article  CAS  PubMed  Google Scholar 

  32. Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263: 1768–1771

    Article  CAS  PubMed  Google Scholar 

  33. Nieto-Sampedro M, Lewis ER, Cotman CW, Manthorpe M, Skaper SD, Barbin G, Longo FM, Varon S (1982) Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site. Science 271: 860–861

    Article  Google Scholar 

  34. Noble M, FokSeang J, Cohen J (1984) Glia are a unique substrate for the in vitro growth of central nervous system neurons. J Neurosci 4: 1892–1903

    CAS  PubMed  Google Scholar 

  35. Oblinger MM, Singh LD (1993) Reactive astrocytes in neonate brain upregulate intermediate filament gene expression in response to axonal injury. Int J Dev Neurosci 11: 149–156

    Article  CAS  PubMed  Google Scholar 

  36. Pekny M. Johansson CB, Eliasson C, Stakeberg J, Wallen A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH, Frisen J (1999) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145:503–514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Pekny M, Leveen P, Pekna M, Eliasson C, Berthold CH, Westermark B, Betsholtz C (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14: 1590–1598

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Rakic P (1995) Radial glial cells: Scaffolding for brain construction. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 746–762

    Google Scholar 

  39. Ramon Y, Cajal S (1928) Degeneration and regeneration of the nervous system. In: May RM (ed) Oxford University Press, London

    Google Scholar 

  40. Rataboul P, Faucon Biguet N, Vernier P, De Vitry F, Boularand S. Privat A, Mallet J (1988) Identification of a human glial fibrillary acidic protein cDNA: a tool for the molecular analysis of reactive gliosis in the mammalian central nervous system. J Neurosci Res 20: 165–175

    Article  CAS  PubMed  Google Scholar 

  41. Rataboul P, Vernier P, Privat A (1990) Analysis of glial scarring in the mammalian CNS with a GFAP cDNA probe. In: Lauder JM. Privat A, Giacobini E, Timiras PS, Vernadakis A (eds) Molecular aspects of development and aging of the nervous system. Adv Exp Med Biol, vol 265. Plenum Press, New York, pp 23–40

    Chapter  Google Scholar 

  42. Reier PJ, Eng LF, Jakeman L (1989) Reactive astrocyte and axonal outgrowth in the injured CNS: Is gliosis really an impediment to regeneration? In: Seil J (ed) Neural regeneration and transplantation, frontiers of clinical neuroscience, vol 6. Alan R Liss, Inc, New York, pp 183–209

    Google Scholar 

  43. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710

    Article  CAS  PubMed  Google Scholar 

  44. Schiffer D, Giordana MT, Migheli A, Giaccone G, Pezzotta S, Mauro A (1986) Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain. Brain Res 374: 110–118

    Article  CAS  PubMed  Google Scholar 

  45. Schousboe A. Westergaard N (1995) Transport of neuroactive amino acids in astrocytes. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press. New York, pp 246–258

    Google Scholar 

  46. Shafit-Zagardo B. Kume Iwaki A, Goldman JE (1988) Astrocytes regulate GFAP mRNA levels by cyclic AMP and protein kinase C-dependent mechanisms. Glia 1: 346–354

    Article  CAS  PubMed  Google Scholar 

  47. Silver J, Edwards MA, Levitt P (1993) Immunocytochemical demonstration of early appearing astroglial structures that form boundaries and pathways along axon tracts in the fetal brain. J Comp Neurol 328: 415–436

    Article  CAS  PubMed  Google Scholar 

  48. Singer M, Nordlander RH, Egar M (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J Comp Neurol 185: 1–21

    Article  CAS  PubMed  Google Scholar 

  49. Smith GM, Rutishauser U, Silver J, Miller RH (1990) Maturation of astrocytes in vitro alters the extent and molecular basis of neurite outgrowth. Dev Biol 138: 377–390

    Article  CAS  PubMed  Google Scholar 

  50. Stensaas LJ, Partlow LM, Burgess PR, Horch KW (1987) Inhibition of regeneration: the ultrastructure of reactive astrocytes and abortive axon terminals in the transition zone of the dorsal root. In: Seil FJ, Herbert E, Carlson BM (eds) Neural regeneration, progress in brain research, vol. 71. Elsevier. Amsterdam, pp 457–467

    Chapter  Google Scholar 

  51. Steward O, Kelley MS, Torre ER (1993) The process of reinnervation in the dentate gyms of adult rats — Temporal rela-tionship between changes in the levels of glial fibrillary acidic protein (GFAP) and GFAP mRNA in reactive astrocytes. Exp Neurol 124: 167–183

    Article  CAS  PubMed  Google Scholar 

  52. Walz W (1989) Role of glial cells in the regulation of the brain ion microenvironment. Prog Neurobiol 33: 309–333

    Article  CAS  PubMed  Google Scholar 

  53. Weiss S. Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16: 7599–7609

    CAS  PubMed  Google Scholar 

  54. Wolburg H, Risau W (1995) Formation of the blood-brain barrier. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 763–776

    Google Scholar 

  55. Zheng C Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272: 417–419

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this paper

Cite this paper

Ribotta, M.G., Menet, V., Privat, A. (2004). Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice. In: Baethmann, A., Eriskat, J., Lehmberg, J., Plesnila, N. (eds) Mechanisms of Secondary Brain Damage from Trauma and Ischemia. Acta Neurochirurgica Supplements, vol 89. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0603-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0603-7_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7206-3

  • Online ISBN: 978-3-7091-0603-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics