Skip to main content

Methyltetrahydrofolate reductase polymorphism influences onset of Huntington’s disease

  • Chapter
Focus on Extrapyramidal Dysfunction

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 68))

Summary

Onset of Huntington’s disease (HD) negatively correlates with CAG repeat length of the HD gene, which encodes the protein huntingtin. This protein interacts with the homocysteine metabolizing enzyme cystathionine β-synthase (CBS). Objective of this study was to analyze the impact of CAG repeats, polymorphisms of various homocysteine metabolizing enzymes, like CBS, Methyltetrahydrofolate Reductase (MTHTR), Methionine Synthase Reductase (MSR) and methionine synthase (MS) on HD onset in 171 patients. The significant impact of CAG repeats on HD onset (χ2 = 25.54, FG = 4, p < 0.0001) with a significant correlation between both (R = −0.521, p = 0.01) was obvious. HD patient s with the homozygous MTHFR-1298-CC significantly (p = 0.024) earlier experienced HD symptoms. There was no influence demonstrable of CBS, MSR and MS. Determination of MTHFR polymorphisms and CAG repeats enables screening for subjects with putative early HD onset in order to study neuroprotective compounds in their efficacy to delay HD symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrich J, Saft C, Arz A, Schneider B, Agelink MW, Kraus PH, Kuhn W, Müller T (2004) Hyperhomocysteinaemia in treated patients with Huntington’s disease. Mov Disord 19: 226–228

    Article  PubMed  Google Scholar 

  • Benitez J, Femandez E, Garcia RP, Robledo M, Ramos C, Yebenes J (1994) Trinucleotide (CAG) repeat expansion in chromosomes of Spanish patients with Huntington’s disease. Hum Genet 94: 563–564

    Article  PubMed  CAS  Google Scholar 

  • Boutell JM, Wood JD, Harper PS, Jones AL (1998) Huntingtin interacts with cystathionine betasynthase. Hum Mol Genet 7: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Chambers JC, McGregor A, Jean-Marie J, Kooner JS (1999) Abnormalities of vascular endothelial function may contribute to increased coronary heart disease risk in UK Indian Asians. Heart 81: 501–504

    PubMed  CAS  Google Scholar 

  • Durand P, Prost M, Loreau N, Lussier-Cancan S, Blache D (2001) Impaired homocysteine metabolism and atherothrombotic disease. Lab Invest 81: 645–672

    Article  PubMed  CAS  Google Scholar 

  • de Boo GM, Tibben A, Lanser JB, Jennekens-Schinkel A, Hermans J, Maat-Kievit A, Roos RA (1997) Early cognitive and motor symptoms in identified carriers of the gene for Huntington disease. Arch Neurol 54: 1353–1357

    Article  PubMed  Google Scholar 

  • Ferrante RJ, Andreassen OA, Dedeoglu A, Ferrante KL, Jenkins BG, Hersch SM, Beal MF (2002) Therapeutic effects of coenzyme QIO and remacemide in transgenic mouse models of Huntington’s disease. J Neurosci 22: 1592–1599

    PubMed  CAS  Google Scholar 

  • Furtado S, Suchowersky O, Rewcastle B, Graham L, Klimek ML, Garber A (1996) Relationship between trinucleotide repeats and neuropathological changes in Huntington’s disease. Ann Neurol 39: 132–136

    Article  PubMed  CAS  Google Scholar 

  • Goyette P, Pai A, Milos R, Frosst P, Tran P, Chen Z, Chan M, Rozen R (1998) Gene structure of human and mouse methyl enetetrahydrofolate reducta se (MTHFR). Mammalian Genome 9: 652–656

    Article  PubMed  CAS  Google Scholar 

  • Geisel J, Zimbelmann I, Schorr H, Knapp JP, Bodis M, Hubner U, Herrmann W (2001) Genetic defects as important factors for moderate hyperhomocysteinemia. Clin Chem Lab Med 39: 698–704

    Article  PubMed  CAS  Google Scholar 

  • Kraus JP, Oliveriusova J, Sokolova J, Kraus E, Vlcek C, de Franchis R, Maclean KN, Bao L, Bukovska G, Patterson D, Paces V, Ansorge W, Kozich V (1998) The human cystathionine beta-synthase (CBS) gene: complete sequence, alternative splicing, and polymorphisms. Genomics 52: 312–324

    Article  PubMed  CAS  Google Scholar 

  • Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, Mattson MP (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20: 6920–6926

    PubMed  CAS  Google Scholar 

  • Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HHQ, Rommens JM, Scherer SW, Rosenblatt DS, Gravel RA (1998) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci 95: 3059–3064

    Article  PubMed  CAS  Google Scholar 

  • Malinow MR (1999) Homocyst(e)ine, vitamins and genetic interactions in vascular disease. Can J Cardiol 15[Suppl B]: 31B–34B

    PubMed  Google Scholar 

  • Malinow MR, Duell PB, Hess DL, Anderson PH, Kruger WD, Phillipson BE, Gluckman RA, Block PC, Upson BM (1998) Reduction of plasma homocyst(e)ine levels by breakfast cereal fortified with folic acid in patients with coronary heart disease [see comments]. N Engl J Med 338: 1009–1015

    Article  PubMed  CAS  Google Scholar 

  • May PC, Gray PN (1985) L-Homocysteic acid as an alternative cytotoxin for studying glutamateinduced cellular degeneration of Huntington’s disease and normal skin fibroblasts. Life Sci 37: 1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Paulsen JS, Zhao H, Stout JC, Brinkman RR, Guttman M, Ross CA, Como P, Manning C, Hayden MR Shoulson I (2001) Clinical markers of early disease in persons near onset of Huntington’s disease. Neurology 57: 658–662

    Article  PubMed  CAS  Google Scholar 

  • PenneyJr JB, Vonsattel JP, MacDonald ME, Gusella JF, Myers RH (1997) CAG repeat number governs the development rate of pathology in Huntington’s disease. Ann Neurol 41: 689–692

    Article  PubMed  Google Scholar 

  • Sanchez-Pemaute R, Kunig G, del Barrio AA, de Yebenes JG, Vontobel P, Leenders KL (2000) Bradykinesia in early Huntington’s disease. Neurology 54: 119–125

    Article  Google Scholar 

  • Schilling G, Becher MW, Sharp AH, Jinnah HA, Duan K, Kotzuk JA, Slunt HH, Ratovitski T, Cooper JK, Jenkins NA, Copeland NG, Price DL, Ross CA, Borchelt DR (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8: 397–407

    Article  PubMed  CAS  Google Scholar 

  • Watkins D, Ru M, Hwang HY, Kim CD, Murray A, Philip NS, Kim W, Legakis H, Wai T, Hilton JF Ge B, Dore C, Hosack A, Wilson A, Gravel RA, Shane B, Hudson TJ, Rosenblatt DS (2002) Hyperhomocysteinemia due to methionine synthase deficiency, cblG: structure of the MTR gene, genotype diversity, and recognition of a common mutation, P1173L. Am J Hum Genet 71: 143–153

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Brune, N. et al. (2004). Methyltetrahydrofolate reductase polymorphism influences onset of Huntington’s disease. In: Müller, T., Riederer, P. (eds) Focus on Extrapyramidal Dysfunction. Journal of Neural Transmission. Supplementa, vol 68. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0579-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0579-5_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-21114-4

  • Online ISBN: 978-3-7091-0579-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics