Skip to main content

Disorders of Consciousness: Anatomical and Physiological Mechanisms

  • Chapter
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 29))

Abstract

The anatomical and physiological mechanisms of consciousness are reviewed, focussing on the wakefulness mechanisms, which are one aspect, albeit an indispensable one, of consciousness. In trying to understand disorders of consciousness, it must be remembered that wake physiology is linked to sleep physiology and a brief summary of the phenomenology and regulation of the wake sleep cycle is therefore presented.

Wakefulness is produced and maintained by a complex neural network composed of at least ten groups of neurones, which spread out from the medulla oblongata to the telencephalic structures. Some of these elements (reticular formation and diffuse thalamic nuclei) contribute to the arousal and general activation of the brain, while others (aminergic and peptidergic neurones) contribute to the quality of wakefulness, as well as to general activation. Disorders of wakefulness may be due to dysfunction of one or several elements of the wake network or sleep disorders, as well as to sleep deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger BD, Stein L (1969) An analysis of the learning deficits produced by scopolamine. Psychopharmacol 14: 271–283

    Article  CAS  Google Scholar 

  2. Borbely AA, Valatx JL (1984) Sleep mechanisms. Exp Brain Res Suppl 8, Springer-Berlin Heidelberg New York Tokyo

    Google Scholar 

  3. Born J, Hansen K, Marshall L, Molle M, Fehm HL (1999) Timing the end of nocturnal sleep. Nature 397: 29–30

    Article  PubMed  CAS  Google Scholar 

  4. Bremer F (1935) Cerveau isolé et physiologie du sommeil. CR Soc Biol (Paris) 18: 1235–1241

    Google Scholar 

  5. Bremer F (1970) Inhibitions intrathalamiques récurrentielles et physiologie du sommeil. Electroenceph Clin Neurophysiol 28:1–16

    Article  PubMed  CAS  Google Scholar 

  6. Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22: 8850–8859

    PubMed  CAS  Google Scholar 

  7. Buda C, Sastre JP, Jouvet M (1994) Inhibition of the lateral periaqueductal gray induces a dramatic increase in paradoxical sleep. J Sleep Res 3: 34

    Google Scholar 

  8. Charifi C, Paut-Pagano L, Debilly G, Cespuglio R, Jouvet M, Valatx JL (2000) Effect of noradrenergic denervation of the amygdala upon recovery after sleep deprivation in the rat. Neurosci Lett 287: 41–44

    Article  PubMed  CAS  Google Scholar 

  9. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong YM, Kisanuki Y, Fitch TE, Nakazato M, Hammer RE, Saper CB, Yanagisawa M (1999) Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell 98: 437–451

    Article  PubMed  CAS  Google Scholar 

  10. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine containing neurons in the central nervous system. Acta Physiol Scand 62 [Suppl] 230: 224–232

    Google Scholar 

  11. De Lecea L, Kilduff TS, Peyron C, Gao XB, Foye PE, Danielson PE, Fukuhara C, Battenberg ELF, Gaulvik VT, Bartlett FS, Franket WN, Van den Pol AN, Bloom FE, Gaulvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95: 322–327

    Article  PubMed  Google Scholar 

  12. Dement WC (1960) The effect of dream deprivation. Science 131: 1705–1707

    Article  PubMed  CAS  Google Scholar 

  13. Denoyer M, Sallanon M, Kitahama K, Aubert C, Jouvet M (1989) Reversibility of para-chlorophenylalanine-induced insomnia by intrahypothalamic micro-injection of 1-5-hydroxytryptophan. Neuroscience 28: 83–94

    Article  PubMed  CAS  Google Scholar 

  14. Denoyer M, Sallanon M, Buda C, Kitahama K, Jouvet M (1991) Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat. Brain Res 539: 287–303

    Article  PubMed  CAS  Google Scholar 

  15. Deutsch JA, Rocklin KW (1967) Amnesia induced by scopolamine and its temporal variations. Nature. 216: 89–90

    Article  PubMed  CAS  Google Scholar 

  16. von Economo C (1929) Schlaftheorie. Ergebn Physiol 28: 312–339

    Article  Google Scholar 

  17. Freund TF, Meskenaite V (1992) y-aminobutyric acid-containing basal forebrain neurons innervate inhibitory interneurons in the neocortex. Proc Natl Acad Sci USA 89: 738–742

    Article  PubMed  CAS  Google Scholar 

  18. Gonzalez MM, Debilly G, Valatx JL, Jouvet M (1995) Sleep increase after immobilization stress: role of the noradrenergic locus coeruleus system in the rat. Neurosci Lett 202: 5–8

    Article  PubMed  CAS  Google Scholar 

  19. Gonzalez MM, Valatx JL (1997) Effect of intracerebroventricular administration of a-helical CRH (9-41) on the sleep/waking cycle in rats under normal conditions or after subjection to an acute stressful stimulus. J Sleep Res 6: 164–170

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalez MM, Valatx JL (1998a) Involvement of stress in the sleep rebound mechanism induced by sleep deprivation in the rat: use of alpha-helical CRH (9-41). Behav Pharmacol 9: 655–662

    Article  PubMed  CAS  Google Scholar 

  21. Gonzalez MM, Debilly G, Valatx JL (1998b) Noradrenaline neurotoxin DSP-4 effects on sleep and brain temperature in the rat. Neurosci Lett 248: 93–96

    Article  PubMed  CAS  Google Scholar 

  22. Griffond B, Colard C, Deray A, Fellmann D, Bugnon C (1994) Evidence of the expression of dynorphin gene in the prolactin-immunoreactive neurons of the rat lateral hypothalamus. Neurosci Lett 165: 89–92

    Article  PubMed  CAS  Google Scholar 

  23. Hagan JJ, Leslie RA, Patel S, Evans ML, Wattam TA, Holmes S, Benham CD, Taylor SG, Routeledge C, Hemmati P, Munton RP, Ashmeade TE, Shah AS, Hatcher JP, Hatcher PD, Jones DN, Smith MI, Piper DC, Hunter A J, Porter RA, Upton N (1999) Orexin-A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA 96: 10911–10916

    Article  PubMed  CAS  Google Scholar 

  24. Heinrichs SC, Menzaghi F, Merlo Pich E, Baldwin HA, Rassnick S, Britton KT, Koob GF (1994) Anti-stress action of a corticotropin-releasing factor antagonist on behavioral reactivity to stressors of varying type and intensity. Neuropsychopharmacol 11: 179–186

    Article  CAS  Google Scholar 

  25. Jones BE (1993) The organization of central cholinergic systems and their functional importance in sleep-waking states. In: Cuello AC (ed) Progress in Brain Research, Vol 98. Elsevier Science Publishers, Amsterdam, pp 61–71

    Google Scholar 

  26. Jones BE, Muhlethaler M (1999) Cholinergic and GAB Aergic neurons of the basal forebrain: role in cortical activation. In: Lydic R, Baghdoyan HA (eds) Handbook of behavioral state control: cellular and molecular mechanisms. CRC Press, Florida, pp 213–233

    Google Scholar 

  27. Jouvet M, Michel F, Courjon J (1959) Sur un stade d’activité électrique cérebrale rapide au cours du sommeil physiologique. CR Soc Biol Paris 153: 1024–1028

    CAS  Google Scholar 

  28. Jouvet M (1962) Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch Ital Biol 100: 125–206

    PubMed  CAS  Google Scholar 

  29. Jouvet M (1967) Neurophysiology of the states of sleep. Physiol Rev 47:117–177

    PubMed  CAS  Google Scholar 

  30. Jouvet M (1972) The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergebn Physiol 64: 166–307

    PubMed  CAS  Google Scholar 

  31. Jouvet M (1991) Le sommeil paradoxal est-il le gardien de l’individuation psychologique? Rev Canad Psychol 45: 148–168

    Article  CAS  Google Scholar 

  32. Khateb A, Serafin M, Mühlethaler M (1990) Histamine excites pedunculo- pontine neurones in guinea pig brainstem slices. Neurosci Lett 112: 257–262

    Article  PubMed  CAS  Google Scholar 

  33. Kleitmann N (1939) Sleep and wakefulness, Chicago University Press

    Google Scholar 

  34. Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21: 467–476

    Article  PubMed  CAS  Google Scholar 

  35. Lin JS, Sakai K, Jouvet M (1988) Evidence for histaminergic arousal mechanisms in the hypothalamus of cats. Neuropharmacology 27: 111–122

    Article  PubMed  CAS  Google Scholar 

  36. Lin JS, Sakai K, Vanni-Mercier G, Jouvet M (1989) A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479: 225–240

    Article  PubMed  CAS  Google Scholar 

  37. Lin JS (2000) Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev 4: 471–503

    Article  PubMed  CAS  Google Scholar 

  38. Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1998) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98: 365–376

    Article  Google Scholar 

  39. Longo VG (1966) Mechanisms of the behavioral and electroencephalographic effects of atropine and related compounds. Pharmacol Rev 18: 965–996

    PubMed  CAS  Google Scholar 

  40. Morimoto A, Nakamori T, Morimoto K, Tan N, Murikami N (1993) The central role of corticotropin-releasing factor (CRF-41) in psychological stress in rats. J Physiol 460: 211–229

    Google Scholar 

  41. McGinty D, Sterman MB (1968) Sleep suppression after basal forebrain lesions in the cat. Science 160: 1253–1255

    Article  PubMed  CAS  Google Scholar 

  42. Moore RY (1982) Organization and function of a central nervous system oscillator: the suprachiasmatic nucleus. Fed Proc 42: 2783–2789

    Google Scholar 

  43. Moore RY (1992) The organization of the human circadian timing system. In: Schwaab DF, Hofman MA, Mirmiran M, Ravid R, Van Leeuwen FW (eds) The human hypothalamus in health and disease. Progress in Brain Research. Elsevier, Amsterdam 93: 101–117

    Google Scholar 

  44. Morimoto A, Nakamori T, Morimoto K, Tan N, Murakami N (1993) The central role of corticotrophin-releasing factor (CRF-41) in psychological stress in rats. J Physiol 460: 221–229

    PubMed  CAS  Google Scholar 

  45. Moruzzi G (1972) The sleep-waking cycle. Ergebn Physiol 64: 1–165

    PubMed  CAS  Google Scholar 

  46. Moruzzi G, Magoun HW (1949) Brainstem reticular formation and activation of the EEG. Electroenceph. Clin Neurophysiol 1: 455–473

    CAS  Google Scholar 

  47. Nauta WJH (1946) Hypothalamic regulation of sleep in rats: an experimental study. J Neurophysiol 9: 285–316

    PubMed  CAS  Google Scholar 

  48. Parmentier R, Hotsu H, Djebarra-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 22: 7695–7711

    PubMed  CAS  Google Scholar 

  49. Paut Pagano L, Roky R, Valatx JL, Kitahama K, Jouvet M (1993) Anatomical distribution of prolactin-like immunoreactivity in the rat brain. Neuroendocrinol 58: 682–695

    Article  CAS  Google Scholar 

  50. Peyron C, Tighe DK, Van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff AJ (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18: 9996–10015

    PubMed  CAS  Google Scholar 

  51. Puizillout JJ, Gaudin-Chazal G, Bras H (1984) Vagal mechanisms in sleep regulation. In: Borbley AA, Valatx JL (eds) Sleep mechanisms. Springer, Berlin Heidelberg New York Tokyo, pp 19–38

    Chapter  Google Scholar 

  52. Rampin C, Cespuglio R, Chastrette N, Jouvet M (1991) Immobilization stress induces a paradoxical rebound in rat. Neurosci Lett 126: 113–118

    Article  PubMed  CAS  Google Scholar 

  53. Ranson SW (1939) Somnolence caused by hypothalamic lesion in the monkey. Arch Neurol Psychiat 41: 1–23

    Article  Google Scholar 

  54. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring system to sleep stages of human subjects. UCLA Brain Information Services

    Google Scholar 

  55. Rees G, Greiman G, Koch C (2002) Neural correlates of consciousness in humans. Nature Rev Neurosci 3: 261–270

    Article  CAS  Google Scholar 

  56. Reiner PB, Kamondi A (1989) Mechanisms of antihistamine-induced sedation in the human brain: H1 receptor activation reduces a background leakage potassium current. Neuroscience 59: 579–588

    Article  Google Scholar 

  57. Rougeul A, Verdeaux J, Letalle A (1969) Effects électrographiques et comportementaux de divers hallucinogenes chez le chat. Rev Neurol 120: 391–394

    PubMed  CAS  Google Scholar 

  58. Sakai K, El Mansari M, Lin JS, Zhang JG, Vanni-Mercier G (1990) The posterior hypothalamus in the regulation of wakefulness and paradoxical sleep. In: Mancia M, Marini G (eds) The diencephalon and sleep. Raven Press, New York, pp 171–198

    Google Scholar 

  59. Sakai K, Crochet S, Onoe H (2001) Pontine structures and mechanisms involved in the generation of paradoxical (REM) sleep. Arch Ital Biol 139: 93–107

    PubMed  CAS  Google Scholar 

  60. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamix neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92: 573–585

    Article  PubMed  CAS  Google Scholar 

  61. Sallanon M, Denoyer M, Kitahama K, Aubert C, Gay N, Jouvet M (1989) Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience 32: 669–6839

    Article  PubMed  CAS  Google Scholar 

  62. Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71: 1–51

    PubMed  CAS  Google Scholar 

  63. Steininger LT, Alam MN, Gong H, Szymusiak R, McGinty D (1999) Sleep- waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 840: 198–147

    Article  Google Scholar 

  64. Stériade M, Buszacki G (1991) Parallel activation of thalamic and cortical neurons by brainstem and basal forebrain cholinergic systems. In: Steriade M, Biesold D (eds) Brain cholinergic systems. Oxford University Press, Oxford, pp 3–64

    Google Scholar 

  65. Thakkar MM, Ramesh V, Strecker RE, McCarley RW (2001) Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats. Arch Ital Biol 139: 313–328

    PubMed  CAS  Google Scholar 

  66. Urbain N, Rentero N, Gervasoni D, Renaud B, Chouvet G (2002) The switch of subthalamic neurons from an irregular to a bursting pattern does not solely depend on their GABAergic inputs in the anesthetic-free rat. J Neurosci 22: 8665–8675

    PubMed  CAS  Google Scholar 

  67. Valatx JL (1988) La privation de sommeil. Méd Hyg 46: 2248–2253

    Google Scholar 

  68. Valatx JL (1995a) Genetique du sommeil. In: Bonoit O, Foret J (eds) Le sommeil humain. Bases expérimentales physiologiques et physiopathologiques. Masson, Paris, pp 17–24

    Google Scholar 

  69. Valatx JL (1995b) Regulation du cycle veille sommeil. In: Bonoit O, Foret J (eds) Le sommeil humain. Bases expérimentales physiologiques et physiopathologiques. Masson, Paris, pp 25–37

    Google Scholar 

  70. Valatx JL (2001) Economie énergétique et sommeil. In: Barré H, Chatonnet J, Le Maho Y, Valatx JL (eds) Physiologie energetique. BelinSup Sciences, Paris, pp 315–381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Valatx, J.L. (2004). Disorders of Consciousness: Anatomical and Physiological Mechanisms. In: Pickard, J.D., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 29. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0558-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0558-0_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7192-9

  • Online ISBN: 978-3-7091-0558-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics