Skip to main content

Biomaterials for Regeneration of Tendons and Ligaments

  • Chapter
Biomaterials for Tissue Engineering Applications

Abstract

Ligaments and tendons play an important role in mediating normal movement and stability of joints in the musculoskeletal system, and their inability to undergo endogenous repair following injury leads to significant joint instability, injury of other tissues, and the development of degenerative joint disease. To restore their normal structure and function and address these clinical challenges, biomaterial scaffolds are being developed that incorporate cellular, morphogenetic, and mechanical cues into defined architectures that may be implanted as part of regenerative medicine therapies. This chapter explores the field of biomaterials for regeneration of tendons and ligaments with an emphasis on: (1) native tissue structure, function, mechanical properties, and interfaces with other orthopaedic tissues; (2) mechanisms of injury, healing responses, and limitations of current clinical approaches for repair; and (3) contemporary biomaterials-based approaches for tissue engineering of tendons and ligaments, including cell types used, design strategies, and results of their application in vitro and in vivo. Several challenges remain in achieving a successful biomaterial for tendon/ligament regeneration, yet significant design and engineering improvements have continued to enhance their functional sophistication and hold much promise for future tissue engineering strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.L. Butler, M. Dessler, and H. Awad. Functional tissue engineering: Assessment of function in tendon and ligament repair. In: Guilak F, Butler DL, Goldstein SA, Mooney DJ, editors. Functional tissue engineering. New York: Springer; 2003. p. 213–26

    Google Scholar 

  2. S. Woo, K. Hildebrand, N. Watanabe, J. Fenwick, C. Papageorgiou, and J. Wang. Tissue engineering of ligament and tendon healing. Clin Orthop. 1999; 367(Suppl):S312–23.

    Google Scholar 

  3. M. Khatod, W.H. Akeson, and D. Amiel. Ligament injury and repair. In: Pedowitz RA, O’Connor JJ, Akeson WH, editors. Daniel’s knee injuries. 2 ed. Philadelphia: Lippincott Williams and Wilkins; 2003. p. 185–201.

    Google Scholar 

  4. S.L. Woo, S.D. Abramowitch, R. Kilger, and R. Liang. Biomechanics of knee ligaments: Injury, healing, and repair. J Biomech. 2006; 39(1):1–20.

    Google Scholar 

  5. C.T. Laurencin, and J.W. Freeman. Ligament tissue engineering: An evolutionary materials science approach. Biomaterials. 2005; 26(36):7530–6.

    CAS  Google Scholar 

  6. R. Langer, and J. Vacanti. Tissue engineering. Science. 1993; 260(5110):920–6.

    CAS  Google Scholar 

  7. B. MacArthur, and R. Oreffo. Bridging the gap. Nature. 2005; 433(7021):19.

    CAS  Google Scholar 

  8. M. Khatod, and D. Amiel. Ligament biochemistry and physiology. In: Pedowitz R, O’Connor JJ, Akeson WH, editors. Daniel’s knee injuries. 2 ed. Philadelphia: Lippincott Williams and Wilkins; 2003. p. 31–42.

    Google Scholar 

  9. P.V. Komi. Relevance of in vivo force measurements to human biomechanics. J Biomech. 1990; 23(Suppl 1):23–34.

    Google Scholar 

  10. P.V. Komi, S. Fukashiro, and M. Jarvinen. Biomechanical loading of achilles tendon during normal locomotion. Clin Sports Med. 1992; 11(3):521–31.

    CAS  Google Scholar 

  11. D.M. Doroski, K.S. Brink, and J.S. Temenoff. Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials. 2007; 28(2):187–202.

    CAS  Google Scholar 

  12. E.H. Chen, and J. Black. Materials design analysis of the prosthetic anterior cruciate ligament. J Biomed Mater Res. 1980; 14(5):567–86.

    CAS  Google Scholar 

  13. F.R. Noyes, and E.S. Grood. The strength of the anterior cruciate ligament in humans and rhesus monkeys. J Bone Joint Surg Am. 1976; 58(8):1074–82.

    CAS  Google Scholar 

  14. R.B. Martin, D.B. Burr, and N.A. Sharkey. Mechanical properties of ligament and tendon. In: Martin RB, Burr DB, Sharkey NA, editors. Skeletal tissue mechanics. New York: Springer; 1998. p. 309–46.

    Google Scholar 

  15. J.H. Wang. Mechanobiology of tendon. J Biomech. 2006; 39(9):1563–82.

    Google Scholar 

  16. N.G. Shrive, G.M. Thornton, D.A. Hart, and C.B. Frank. Ligament mechanics. In: Pedowitz RA, O’Connor JJ,Akeson WH, editors. Daniel’s knee injuries. 2 ed. Philadelphia: Lippincott Williams and Wilkins; 2003. p. 97–112.

    Google Scholar 

  17. A.P. Rumian, A.L. Wallace, and H.L. Birch. Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features – A comparative study in an ovine model. J Orthop Res. 2007; 25(4):458–64.

    CAS  Google Scholar 

  18. S.L. Woo, K. An, C. Frank, G. Livesay, A. Ma, J. Zeminski, et al. Anatomy, biology, and biomechanics of tendon and ligament. In: Buckwalter J, Einhorn T, Simon S, editors. Orthopaedic basic science: Biology and biomechanics of the musculoskeletal system. 2nd ed. Rosemont: American Academy of Orthopaedic Surgeons; 2000. p. 582–616.

    Google Scholar 

  19. F. Silver, J. Freeman, and G. Seehra. Collagen self-assembly and the development of tendon mechanical properties. J Biomech. 2003; 36(10):1529–53.

    Google Scholar 

  20. M. Benjamin, and J. Ralphs. The cell and developmental biology of tendons and ligaments. Int Rev Cytol. 2000; 196:85–130.

    CAS  Google Scholar 

  21. C.T. Laurencin, A.M. Ambrosio, M.D. Borden, and J.A. Cooper, Jr. Tissue engineering: Orthopedic applications. Annu Rev Biomed Eng. 1999; 1:19–46.

    CAS  Google Scholar 

  22. C. McNeilly, A. Banes, M. Benjamin, and J. Ralphs. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat. 1996; 189:593–600.

    Google Scholar 

  23. J. Ralphs, M. Benjamin, A. Waggett, D. Russell, K. Messner, and J. Gao. Regional differences in cell shape and gap junction expression in rat achilles tendon: Relation to fibrocartilage differentiation. J Anat. 1998; 193(2):215–22.

    CAS  Google Scholar 

  24. J. Ralphs, A. Waggett, and M. Benjamin. Actin stress fibers and cell–cell adhesion molecules in tendons: Organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biol. 2002; 21(1):67–74.

    CAS  Google Scholar 

  25. Z. Ge, J.C. Goh, and E.H. Lee. Selection of cell source for ligament tissue engineering. Cell Transplant. 2005; 14(8):573–83.

    Google Scholar 

  26. T.W. Lin, L. Cardenas, and L.J. Soslowsky. Biomechanics of tendon injury and repair. J Biomech. 2004; 37(6):865–77.

    Google Scholar 

  27. S.L. Woo, R.E. Debski, J. Zeminski, S.D. Abramowitch, S.S. Saw, and J.A. Fenwick. Injury and repair of ligaments and tendons. Annu Rev Biomed Eng. 2000; 2:83–118.

    CAS  Google Scholar 

  28. V. Duthon, C. Barea, S. Abrassart, J. Fasel, D. Fritschy, and J. Menetrey. Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2006; 14(3):204–13.

    CAS  Google Scholar 

  29. S. Fukuta, M. Oyama, K. Kavalkovich, F. Fu, and C. Niyibizi. Identification of types II, IX and X collagens at the insertion site of the bovine achilles tendon. Matrix Biol. 1998; 17(1):65–73.

    CAS  Google Scholar 

  30. D. Suzuki, M. Takahashi, M. Abe, and A. Nagano. Biochemical study of collagen and its crosslinks in the anterior cruciate ligament and the tissues used as a graft for reconstruction of the anterior cruciate ligament. Connect Tissue Res. 2008; 49(1):42–7.

    CAS  Google Scholar 

  31. B. Wang, W. Liu, Y. Zhang, Y. Jiang, W. Zhang, G. Zhou, et al. Engineering of extensor tendon complex by an ex vivo approach. Biomaterials. 2008; 29(20):2954–61.

    CAS  Google Scholar 

  32. D. Butler, E. Grood, F. Noyes, and R. Zernicke. Biomechanics of ligaments and tendons. Exerc Sport Sci Rev. 1978; 6:125–81.

    CAS  Google Scholar 

  33. L. Jozsa, M. Lehto, P. Kannus, M. Kvist, A. Reffy, T. Vieno, et al. Fibronectin and laminin in achilles tendon. Acta Orthop Scand. 1989; 60(4):469–71.

    CAS  Google Scholar 

  34. I.F. Williams, K.G. McCullagh, and I.A. Silver. The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res. 1984; 12(3–4):211–27.

    CAS  Google Scholar 

  35. F. Grinnell. Fibronectin and wound healing. J Cell Biochem. 1984; 26(2):107–16.

    CAS  Google Scholar 

  36. K. Kadler, A. Hill, and E. Canty-Laird. Collagen fibrillogenesis: Fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol. 2008; 20:495–501.

    CAS  Google Scholar 

  37. S. Takahashi, M. Leiss, M. Moser, T. Ohashi, T. Kitao, D. Heckmann, et al. The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol. 2007; 178(1):167–78.

    CAS  Google Scholar 

  38. F. Elefteriou, J.Y. Exposito, R. Garrone, and C. Lethias. Binding of tenascin-X to decorin. FEBS Lett. 2001; 495(1–2):44–7.

    CAS  Google Scholar 

  39. M. Chiquet, A. Renedo, F. Huber, and M. Fluck. How do fibroblasts translate mechanical signals into changes in extracellular matrix production?. Matrix Biol. 2003; 22(1):73–80.

    CAS  Google Scholar 

  40. R. Chiquet-Ehrismann, and R. Tucker. Connective tissues: Signalling by tenascins. Int J Biochem Cell Biol. 2004; 36(6):1085–9.

    CAS  Google Scholar 

  41. R. Probstmeier, and P. Pesheva. Tenascin-C inhibits beta1 integrin-dependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism. Glycobiology. 1999; 9(2):101–14.

    CAS  Google Scholar 

  42. M.Z. Ilic, P. Carter, A. Tyndall, J. Dudhia, and C.J. Handley. Proteoglycans and catabolic products of proteoglycans present in ligament. Biochem J. 2005; 385(Pt 2):381–8.

    CAS  Google Scholar 

  43. K.G. Vogel. What happens when tendons bend and twist? Proteoglycans. J Musculoskelet Neuronal Interact. 2004; 4(2):202–3.

    CAS  Google Scholar 

  44. M. Campbell, A. Winter, M. Ilic, and C. Handley. Catabolism and loss of proteoglycans from culture of bovine collateral ligament. Arch Biochem Biophys. 1996; 328(1):64–72.

    CAS  Google Scholar 

  45. N. Hey, C. Handley, C. Ng, and B. Oakes. Characterization and synthesis of macromolecules by adult collateral ligament. Biochim Biophys Acta. 1990; 1034(1):73–80.

    CAS  Google Scholar 

  46. G.D. Pins, D.L. Christiansen, R. Patel, and F.H. Silver. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys J. 1997; 73(4):2164–72.

    CAS  Google Scholar 

  47. J.H. Yoon, and J. Halper. Tendon proteoglycans: Biochemistry and function. J Musculoskelet Neuronal Interact. 2005; 5(1):22–34.

    CAS  Google Scholar 

  48. S. Woo, D. Smith, K. Hildebrand, J. Zemininski, and L. Johnson. Engineering the healing of the rabbit medial collateral ligament. Med Biol Eng Comput. 1998; 36(3):359–64.

    CAS  Google Scholar 

  49. P. Yang, and J. Temenoff. Engineering orthopaedic tissue interfaces. Tissue Eng B Rev. 2009; 15(2):127–41.

    CAS  Google Scholar 

  50. M. Benjamin, and J. Ralphs. Fibrocartilage in tendons and ligaments – An adaptation to compressive load. J Anat. 1998; 193(4):481–94.

    Google Scholar 

  51. J. Tidball. Force transmission across muscle cell membranes. J Biomech. 1991; 24(Suppl 1):43–52.

    Google Scholar 

  52. J. Trotter. Structure-function considerations of muscle-tendon junctions. Comp Biochem Physiol A. 2002; 133(4):1127–33.

    Google Scholar 

  53. J. Tidball. Myotendinous junction injury in relation to junction structure and molecular composition. Exerc Sport Sci Rev. 1991; 19:419–45.

    CAS  Google Scholar 

  54. T. Andriacchi, P. Sabiston, K. DeHaven, L. Dahners, S. Woo, C. Frank, et al. Ligament: Injury and repair. In: Woo S, Buckwalter J, editors. Injury and repair of the musculoskeletal soft tissues. Park Ridge: American Academy of Orthopaedic Surgeons; 1988. p. 103–28.

    Google Scholar 

  55. J. Hyman, and S. Rodeo. Injury and repair of tendons and ligaments. Phys Med Rehabil Clin N Am. 2000; 11(2):267–88.

    CAS  Google Scholar 

  56. S. Thomopolous, G. Hattersley, V. Rosen, M. Mertens, L. Galatz, G. Williams, et al. The localized expression of extracellular matrix components in healing tendon insertion sites: An in situ hybridization study. J Orthop Res. 2002; 20(3):454–63.

    Google Scholar 

  57. Y. Xu, and G. Murrell. The basic science of tendinopathy. Clin Orthop Relat Res. 2008; 466(7):1528–38.

    Google Scholar 

  58. G. Vunjak-Novakovic, G. Altman, R. Horan, and D.L. Kaplan. Tissue engineering of ligaments. Annu Rev Biomed Eng. 2004; 6:131–56.

    CAS  Google Scholar 

  59. S.A. Fenwick, B.L. Hazleman, and G.P. Riley. The vasculature and its role in the damaged and healing tendon. Arthritis Res. 2002; 4(4):252–60.

    Google Scholar 

  60. R.H. Gelberman, C.R. Chu, C.S. Williams, J.G. Seiler, 3rd, and D. Amiel. Angiogenesis in healing autogenous flexor-tendon grafts. J Bone Joint Surg Am. 1992; 74(8):1207–16.

    CAS  Google Scholar 

  61. S.H. Liu, R.S. Yang, R. al-Shaikh, and J.M. Lane. Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res. 1995; 318:265–78.

    Google Scholar 

  62. M.A. Gomez. The physiology and biochemistry of soft tissue healing. In: Griffin LY, editor. Rehabilitation of the injured knee. 2nd ed. St. Louis: Mosby Company; 1995. p. 34–44.

    Google Scholar 

  63. G. Baer, and C. Harner. Clinical outcomes of allograft versus autograft in anterior cruciate ligament reconstruction. Clin Sports Med. 2007; 26(4):661–81.

    Google Scholar 

  64. J. Carey, W. Dunn, D. Dahm, S. Zeger, and K. Spindler. A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. J Bone Joint Surg Am. 2009; 91(9):2242–50.

    Google Scholar 

  65. A. Krych, J. Jackson, T. Hoskin, and D. Dahm. A meta-analysis of pattelar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy. 2008; 24(3):292–8.

    Google Scholar 

  66. R. Miller, and F. Azar. Knee injuries. In: Canale S,Beaty J, editors. Campbell’s Operative Orthopaedics. Philadelphia: Mosby Elsevier; 2008. p. 2346–575.

    Google Scholar 

  67. K. Spindler, J. Kuhn, K. Freedman, C. Matthews, R. Dittus, and F.J. Harrell. Anterior cruciate ligament reconstruction autograft choice: Bone-tendon-bone versus hamstring: Does it really matter? A systematic review. Am J Sports Med. 2004; 32(8):1986–95.

    Google Scholar 

  68. F.A. Petrigliano, D.R. McAllister, and B.M. Wu. Tissue engineering for anterior cruciate ligament reconstruction: A review of current strategies. Arthroscopy. 2006; 22(4):441–51.

    Google Scholar 

  69. F. Barber. Should allografts be used for routine anterior cruciate ligament reconstructions? Arthroscopy. 2003; 19(4):421.

    Google Scholar 

  70. D. Jackson, J. Corsetti, and T. Simon. Biologic incorporation of allograft anterior cruciate ligament replacements. Clin Orthop Relat Res. 1996; 324:126–33.

    Google Scholar 

  71. G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002; 23(20):4131–41.

    CAS  Google Scholar 

  72. T. Funakoshi, T. Majima, N. Iwasaki, S. Yamane, T. Masuko, A. Minami, et al. Novel chitosan-based hyaluronan hybrid polymer fibers as a scaffold in ligament tissue engineering. J Biomed Mater Res A. 2005; 74(3):338–46.

    Google Scholar 

  73. S. Guelcher, A. Srinivasan, J. Dumas, J. Didier, S. McBride, and J. Hollinger. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials. 2008; 29(12):1762–75.

    CAS  Google Scholar 

  74. D.S. Torres, T.M. Freyman, I.V. Yannas, and M. Spector. Tendon cell contraction of collagen-GAG matrices in vitro: Effect of cross-linking. Biomaterials. 2000; 21(15):1607–19.

    CAS  Google Scholar 

  75. C. Hwang, Y. Park, J. Park, K. Lee, K. Sun, A. Khademhosseini, et al. Controlled cellular orientation on PLGA microfibers with defined diameters. Biomed Microdevices. 2009; 11(4):739–46.

    CAS  Google Scholar 

  76. K. Moffat, A. Kwei, J. Spalazzi, S. Doty, W. Levine, and H. Lu. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng A. 2009; 15(1):115–26.

    CAS  Google Scholar 

  77. G. Schulze-Tanzil, A. Mobasheri, P.D. Clegg, J. Sendzik, T. John, and M. Shakibaei. Cultivation of human tenocytes in high-density culture. Histochem Cell Biol. 2004; 122(3):219–28.

    CAS  Google Scholar 

  78. M. Chiquet, L. Gelman, R. Lutz, and S. Maier. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta. 2009; 1793(5):911–20.

    CAS  Google Scholar 

  79. Z. Feng, M. Ishibashi, Y. Nomura, T. Kitajima, and T. Nakamura. Constraint stress, microstructural characteristics, and enhanced mechanical properties of a special fibroblast-embedded collagen construct. Artif Organs. 2006; 30(11):870–7.

    Google Scholar 

  80. D.R. Henshaw, E. Attia, M. Bhargava, and J.A. Hannafin. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res. 2006; 24(3):481–90.

    CAS  Google Scholar 

  81. S. Joshi, and K. Webb. Variation of cyclic strain parameters regulates development of elastic modulus in fibroblast/substrate constructs. J Orthop Res. 2008; 26(8):1105–13.

    Google Scholar 

  82. C.H. Lee, H.J. Shin, I.H. Cho, Y.M. Kang, I.A. Kim, K.D. Park, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblasts. Biomaterials. 2005; 26(11):1261–70.

    CAS  Google Scholar 

  83. J. Cooper, J. Sahota, W. Gorum, J. Carter, S. Doty, and C. Laurencin. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci U S A. 2007; 104(9):3049–54.

    CAS  Google Scholar 

  84. J. Freeman, M. Woods, D. Cromer, L. Wright, and C. Laurencin. Tissue engineering of the anterior cruciate ligament: The viscoelastic behavior and cell viability of a novel braid-twist scaffold. J Biomater Sci Polym Ed. 2009; 20(12):1709–28.

    CAS  Google Scholar 

  85. P. Vavken, and M.M. Murray. Translational studies in ACL repair. Tissue Eng B. 2010; 16(1):5–11.

    Google Scholar 

  86. L.D. Bellincampi, R.F. Closkey, R. Prasad, J.P. Zawadsky, and M.G. Dunn. Viability of fibroblast-seeded ligament analogs after autogenous implantation. J Orthop Res. 1998; 16(4):414–20.

    CAS  Google Scholar 

  87. K.G. Cornwell, B.R. Downing, and G.D. Pins. Characterizing fibroblast migration on discrete collagen threads for applications in tissue regeneration. J Biomed Mater Res A. 2004; 71(1):55–62.

    Google Scholar 

  88. K.G. Cornwell, P. Lei, S.T. Andreadis, and G.D. Pins. Crosslinking of discrete self-assembled collagen threads: Effects on mechanical strength and cell–matrix interactions. J Biomed Mater Res A. 2007; 80(2):362–71.

    Google Scholar 

  89. D. Deng, W. Liu, F. Xu, Y. Yang, G. Zhou, W. Zhang, et al. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials. 2009; 30(35):6724–30.

    CAS  Google Scholar 

  90. E. Gentleman, A.N. Lay, D.A. Dickerson, E.A. Nauman, G.A. Livesay, and K.C. Dee. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials. 2003; 24(21):3805–13.

    CAS  Google Scholar 

  91. E. Gentleman, G.A. Livesay, K.C. Dee, and E.A. Nauman. Development of ligament-like structural organization and properties in cell-seeded collagen scaffolds in vitro. Ann Biomed Eng. 2006; 34(5):726–36.

    Google Scholar 

  92. T. Tischer, S. Vogt, S. Aryee, E. Steinhauser, C. Adamczyk, S. Milz, et al. Tissue engineering of the anterior cruciate ligament: A new method using acellularized tendon allografts and autologous fibroblasts. Arch Orthop Trauma Surg. 2007; 127(9):735–41.

    Google Scholar 

  93. A. Caplan. Mesenchymal stem cells. J Orthop Res. 1991; 9(5):641–50.

    CAS  Google Scholar 

  94. M. Pittenger, A. Mackay, S. Beck, R. Jaiswal, R. Douglas, J. Mosca, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411):143–7.

    CAS  Google Scholar 

  95. H.A. Awad, G.P. Boivin, M.R. Dressler, F.N. Smith, R.G. Young, and D.L. Butler. Repair of patellar tendon injuries using a cell–collagen composite. J Orthop Res. 2003; 21(3):420–31.

    CAS  Google Scholar 

  96. D.L. Butler, and H.A. Awad. Perspectives on cell and collagen composites for tendon repair. Clin Orthop Relat Res. 1999; 367(Suppl):S324–32.

    Google Scholar 

  97. G.H. Altman, R.L. Horan, I. Martin, J. Farhadi, P.R. Stark, V. Volloch, et al. Cell differentiation by mechanical stress. FASEB J. 2002; 16(2):270–2.

    CAS  Google Scholar 

  98. J. Chen, G.H. Altman, V. Karageorgiou, R. Horan, A. Collette, V. Volloch, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A. 2003; 67(2):559–70.

    Google Scholar 

  99. S. Cristino, F. Grassi, S. Toneguzzi, A. Piacentini, B. Grigolo, S. Santi, et al. Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11-based prototype ligament scaffold. J Biomed Mater Res A. 2005; 73(3):275–83.

    CAS  Google Scholar 

  100. H.W. Ouyang, S.L. Toh, J. Goh, T.E. Tay, and K. Moe. Assembly of bone marrow stromal cell sheets with knitted poly (l-lactide) scaffold for engineering ligament analogs. J Biomed Mater Res B Appl Biomater. 2005; 75(2):264–71.

    Google Scholar 

  101. J. Moreau, D. Bramano, R. Horan K, D.L. Kaplan, and G. Altman. Sequential biochemical and mechanical stimulation in the development of tissue engineered ligaments. Tissue Eng A. 2008; 14(7):1161–72.

    CAS  Google Scholar 

  102. J. Moreau, J. Chen, D. Kaplan, and G. Altman. Sequential growth factor stimulation of bone marrow stromal cells in extended culture. Tissue Eng. 2006; 12(10):2905–12.

    CAS  Google Scholar 

  103. J.E. Moreau, J. Chen, D.S. Bramono, V. Volloch, H. Chernoff, G. Vunjak-Novakovic, et al. Growth factor induced fibroblast differentiation from human bone marrow stromal cells in vitro. J Orthop Res. 2005; 23(1):164–74.

    CAS  Google Scholar 

  104. J.E. Moreau, J. Chen, R.L. Horan, D.L. Kaplan, and G.H. Altman. Sequential growth factor application in bone marrow stromal cell ligament engineering. Tissue Eng. 2005; 11(11–12):1887–97.

    CAS  Google Scholar 

  105. G.H. Altman, H.H. Lu, R.L. Horan, T. Calabro, D. Ryder, D.L. Kaplan, et al. Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng. 2002; 124(6):742–9.

    Google Scholar 

  106. J. Chen, R.L. Horan, D. Bramono, J.E. Moreau, Y. Wang, L.R. Geuss, et al. Monitoring mesenchymal stromal cell developmental stage to apply on-time mechanical stimulation for ligament tissue engineering. Tissue Eng. 2006; 12(11):3085–95.

    CAS  Google Scholar 

  107. A. Engler, S. Sen, H. Sweeney, and D. Discher. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126(4):677–89.

    CAS  Google Scholar 

  108. M. Chicurel, C. Chen, and D. Ingber. Cellular control lies in the balance of forces. Curr Opin Cell Biol. 1998; 10(2):232–9.

    CAS  Google Scholar 

  109. D. Ingber. Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol. 2008; 97(2–3):163–79.

    Google Scholar 

  110. P. Janmey, J. Winer, M. Murray, and Q. Wen. The hard life of soft cells. Cell Motil Cytoskeleton. 2009; 66(8):597–605.

    Google Scholar 

  111. X. Chen, X. Song, Z. Yin, X. Zou, L. Wang, H. Hu, et al. Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells. 2009; 27(6):1276–87.

    CAS  Google Scholar 

  112. Y. Bi, D. Ehirchiou, T. Kilts, C. Inkson, M. Embree, W. Sonoyama, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007; 13(10):1219–27.

    CAS  Google Scholar 

  113. M. Cheng, H. Yang, T. Chen, and O. Lee. Isolation and characterization of multipotent stem cells from human cruciate ligaments. Cell Prolif. 2009; 42(4):448–60.

    CAS  Google Scholar 

  114. Z. Yin, X. Chen, J. Chen, W. Shen, T. Hieu Nguyen, L. Gao, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2009; 31(8):2163–75.

    Google Scholar 

  115. J. Zhang, and J. Wang. Mechanobiological response of tendon stem cells: Implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res. 2009; 28(5):639–43.

    Google Scholar 

  116. S.J. Hollister. Porous scaffold design for tissue engineering. Nat Mater. 2005; 4(7):518–24.

    CAS  Google Scholar 

  117. L.E. Freed, F. Guilak, X.E. Guo, M.L. Gray, R. Tranquillo, J.W. Holmes, et al. Advanced tools for tissue engineering: Scaffolds, bioreactors, and signaling. Tissue Eng. 2006; 12(12):3285–305.

    CAS  Google Scholar 

  118. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, et al. Silk-based biomaterials. Biomaterials. 2003; 24(3):401–16.

    CAS  Google Scholar 

  119. T.J. Koob. Biomimetic approaches to tendon repair. Comp Biochem Physiol A Mol Integr Physiol. 2002; 133(4):1171–92.

    Google Scholar 

  120. S. Woo. Tissue engineering: Use of scaffolds for ligament and tendon healing and regeneration. Knee Surg Sports Traumatol Arthrosc. 2009; 17(6):559–60.

    Google Scholar 

  121. A. Vieira, R. Guedes, and A. Marques. Development of ligament tissue biodegradable devices: A review. J Biomech. 2009; 42(15):2421–30.

    CAS  Google Scholar 

  122. Y. Liu, H. Ramanath, and D.-A. Wang. Tendon tissue engineering using scaffold enhancing strategies. Trends Biotechnol. 2008; 26(4):201–9.

    CAS  Google Scholar 

  123. S. Kumbar, R. James, S. Nukavarapu, and C. Laurencin. Electrospun nanofiber scaffolds: Engineering soft tissues. Biomed Mater. 2008; 3(3):1–15.

    Google Scholar 

  124. Z. Ge, F. Yang, J. Goh, S. Ramakrishna, and E. Lee. Biomaterials and scaffolds for ligament tissue engineering. J Biomed Mater Res A. 2006; 77(3):639–52.

    Google Scholar 

  125. D. Hutmacher. Scaffold design and fabrication technologies for engineering tissues – State of the art and future perspectives. J Biomater Sci Polym Ed. 2001; 12(1):107–24.

    CAS  Google Scholar 

  126. S. Yang, K. Leong, Z. Du, and C. Chua. The design of scaffolds for use in tissue engineering. Part I: Traditional factors. Tissue Eng. 2001; 7(6):679–89.

    CAS  Google Scholar 

  127. G. Ryan, A. Pandit, and D. Apatsidis. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 2006; 27(13):2651–70.

    CAS  Google Scholar 

  128. P. Bagnaninchi, Y. Yang, N. Zghoul, N. Maffulli, R. Wang, and A. El Haj. Chitosan microchannel scaffolds for tendon tissue engineering characterized using optical coherence tomography. Tissue Eng. 2007; 13(2):323–31.

    CAS  Google Scholar 

  129. C. Agrawal, and B. Ray. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001; 55(2):141–50.

    CAS  Google Scholar 

  130. S. Yang, K. Leong, Z. Du, and C. Chua. The design of scaffolds for use in tissue engineering. Part II: Rapid prototyping techniques. Tissue Eng. 2001; 8(1):1–11.

    Google Scholar 

  131. L. Moroni, J. de Wijn, and C. van Blitterswijk. Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polym Ed. 2008; 19(5):543–72.

    CAS  Google Scholar 

  132. B. Lanfer, F. Seib, U. Freudenberg, D. Stamov, T. Bley, M. Bornhauser, et al. The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials. 2009; 30(30):5950–8.

    CAS  Google Scholar 

  133. D. Zeugolis, G. Paul, and G. Attenburrow. Cross-linking of extruded collagen fibers – A biomimetic three-dimensional scaffold for tissue engineering applications. J Biomed Mater Res A. 2009; 89(4):895–908.

    Google Scholar 

  134. D. Zeugolis, R. Paul, and G. Attenburrow. Extruded collagen-polyethylene glycol fibers for tissue engineering applications. J Biomed Mater Res B. 2007; 85(2):343–52.

    Google Scholar 

  135. J. Guan, K. Fujimoto, M. Sacks, and W. Wagner. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005; 26(18):3961–71.

    CAS  Google Scholar 

  136. H.A. Awad, D.L. Butler, M.T. Harris, R.E. Ibrahim, Y. Wu, R.G. Young, et al. In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: Effects of initial seeding density on contraction kinetics. J Biomed Mater Res. 2000; 51(2):233–40.

    CAS  Google Scholar 

  137. E. Place, N. Evans, and M. Stevens. Complexity in biomaterials for tissue engineering. Nat Mater. 2009; 8(6):457–70.

    CAS  Google Scholar 

  138. D. Williams. On the nature of biomaterials. Biomaterials. 2009; 30(30):5897–909.

    CAS  Google Scholar 

  139. E. Place, J. George, C. Williams, and M. Stevens. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev. 2009; 38(4):1139–51.

    CAS  Google Scholar 

  140. P. Ma. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008; 60(2):184–98.

    CAS  Google Scholar 

  141. W. Grayson, T. Martens, G. Eng, M. Radisic, and G. Vunjak-Novakovic. Biomimetic approach to tissue engineering. Semin Cell Dev Biol. 2009; 20(6):665–73.

    CAS  Google Scholar 

  142. S. Badylak, D. Freytes, and T. Gilbert. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2009; 5(1):1–13.

    CAS  Google Scholar 

  143. S. Guelcher. Biodegradable polyurethanes: Synthesis and applications in regenerative medicine. Tissue Eng B. 2008; 14(1):3–17.

    CAS  Google Scholar 

  144. K. Webb, R.W. Hitchcock, R.M. Smeal, W. Li, S.D. Gray, and P.A. Tresco. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech. 2006; 39(6):1136–44.

    Google Scholar 

  145. B. Cole, A. Gomoll, A. Yanke, T. Pylawka, P. Lewis, J. MacGillivray, et al. Biocompatibility of a polymer patch for rotator cuff repair. Knee Surg Sports Traumatol Arthrosc. 2007; 15(5):632–7.

    Google Scholar 

  146. C. Bashur, R. Shaffer, L. Dahlgren, S. Guelcher, and A. Goldstein. Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng A. 2009; 15(9):2435–45.

    CAS  Google Scholar 

  147. P. Gunatillake, R. Mayadunne, and R. Adhikare. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. 2006; 12:301–47.

    CAS  Google Scholar 

  148. L. Heckman, J. Fiedler, T. Mattes, M. Dauner, and R. Brenner. Interactive effects of growth factors and three-dimensional scaffolds on multipotent mesenchymal stromal cells. Biotechnol Appl Biochem. 2008; 49(3):185–94.

    Google Scholar 

  149. H.H. Lu, J.A. Cooper, Jr., S. Manuel, J.W. Freeman, M.A. Attawia, F.K. Ko, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: In vitro optimization studies. Biomaterials. 2005; 26(23):4805–16.

    CAS  Google Scholar 

  150. L. Heckman, H. Schlenker, J. Fiedler, R. Brenner, M. Dauner, G. Bergenthal, et al. Human mesenchymal progenitor cell responses to a novel textured poly(l-lactide) scaffold for ligament tissue engineering. J Biomed Mater Res B. 2006; 81(1):82–90.

    Google Scholar 

  151. J.A. Cooper, Jr., L.O. Bailey, J.N. Carter, C.E. Castiglioni, M.D. Kofron, F.K. Ko, et al. Evaluation of the anterior cruciate ligament, medial collateral ligament, achilles tendon and patellar tendon as cell sources for tissue-engineered ligament. Biomaterials. 2006; 27(13):2747–54.

    CAS  Google Scholar 

  152. J.A. Cooper, H.H. Lu, F.K. Ko, J.W. Freeman, and C.T. Laurencin. Fiber-based tissue-engineered scaffold for ligament replacement: Design considerations and in vitro evaluation. Biomaterials. 2005; 26(13):1523–32.

    CAS  Google Scholar 

  153. J. Freeman, M. Woods, and C. Laurencin. Tissue engineering of the anterior cruciate ligament using a braid-twist scaffold design. J Biomech. 2007; 40(9):2029–36.

    Google Scholar 

  154. F. van Eijk, D. Saris, L. Creemers, J. Riesle, W. Willems, C. van Blitterswijk, et al. The effect of timing of mechanical stimulation on proliferation and differentiation of goat bone marrow stem cells cultured on braided PLGA scaffolds. Tissue Eng A. 2008; 14(8):1425–33.

    Google Scholar 

  155. F. van Eijk, D. Saris, N. Fedorovich, M. Kruyt, W. Willems, A. Verbout, et al. In vivo matrix production by bone marrow stromal cells seeded on PLGA scaffolds for ligament tissue engineering. Tissue Eng A. 2009; 15(10):3109–17.

    Google Scholar 

  156. J. Jenner, F. van Eijk, D. Saris, W. Willems, W. Dhert, and L. Creemers. Effect of transforming growth factor-beta and growth differentiation factor-5 on proliferation and matrix production by human bone marrow stromal cells cultured on braided poly lactic-co-glycolic acid scaffolds for ligament tissue engineering. Tissue Eng. 2007; 13(7):1573–82.

    CAS  Google Scholar 

  157. Z. Feng, Y. Tateishi, Y. Nomura, T. Kitajima, and T. Nakamura. Construction of fibroblast-collagen gels with orientated fibrils induced by static or dynamic stress: Toward the fabrication of small tendon grafts. J Artif Organs. 2006; 9(4):220–5.

    CAS  Google Scholar 

  158. N. Juncosa-Melvin, G. Boivin, M. Galloway, C. Gooch, J. West, and D. Butler. Effects of cell-to-collagen ratio in stem cell-seeded constructs for achilles tendon repair. Tissue Eng. 2006; 12(4):681–9.

    CAS  Google Scholar 

  159. N. Juncosa-Melvin, K. Matlin, R. Holdcraft, V. Nirmalanandhan, and D. Butler. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell–collagen sponge constructs for patellar tendon repair. Tissue Eng. 2007; 13(6):1219–26.

    CAS  Google Scholar 

  160. N. Juncosa-Melvin, J. Shearn, G. Boivin, C. Gooch, M. Galloway, J. West, et al. Effects of mechanical stimulation on the biomechanics and histology of stem cell–collagen sponge constructs for rabbit pattelar tendon repair. Tissue Eng. 2006; 12(8):2291–300.

    CAS  Google Scholar 

  161. C. Kuo, and R. Tuan. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng A. 2008; 14(10):1615–27.

    CAS  Google Scholar 

  162. L. McMahon, V. Campbell, and P. Prendergast. Involvement of stretch-activated ion channels in strain regulated glycosaminoglycan synthesis in mesenchymal stem cell-seeded 3D scaffolds. J Biomech. 2008; 41(9):2055–9.

    Google Scholar 

  163. V. Nirmalanandhan, M. Dressler, J. Shearn, N. Juncosa-Melvin, M. Rao, C. Gooch, et al. Mechanical stimulation of tissue engineered tendon constructs: Effect of scaffold materials. J Biomech Eng. 2007; 129(6):919–23.

    Google Scholar 

  164. V. Nirmalanandhan, M. Rao, M. Sacks, B. Haridas, and D. Butler. Effect of length of the engineered tendon construct on its structure–function relationships in culture. J Biomech. 2007; 40(11):2523–9.

    Google Scholar 

  165. V. Nirmalanandhan, J. Shearn, N. Juncosa-Melvin, M. Rao, C. Gooch, A. Jain, et al. Improving linear stiffness of the cell-seeded collagen sponge constructs by varying the components of the mechanical stimulus. Tissue Eng A. 2008; 14(11):1883–91.

    CAS  Google Scholar 

  166. J. Shearn, N. Juncosa-Melvin, G. Boivin, M. Galloway, W. Goodwin, C. Gooch, et al. Mechanical stimulation of tendon tissue engineered constructs: Effects on construct stiffness, repair biomechanics, and their correlation. J Biomech Eng. 2007; 129(6):848–54.

    Google Scholar 

  167. X. Cheng, U. Gurkan, C. Dehen, M. Tate, H. Hillhouse, G. Simpson, et al. An electrochemical fabrication process for the assembly of anisotropically oriented collagen bundles. Biomaterials. 2008; 29(22):3278–88.

    CAS  Google Scholar 

  168. S. Liao, C. Chan, and S. Ramakrishna. Stem cells and biomimetic materials strategies for tissue engineering. Mater Sci Eng C. 2008; 28(8):1189–202.

    CAS  Google Scholar 

  169. S. Hankemeier, C. Hurschler, J. Zeichen, M. van Griensven, B. Miller, R. Meller, et al. Bone marrow stromal cells in a liquid fibrin matrix improve the healing process of patellar tendon window defects. Tissue Eng A. 2009; 15(5):1019–30.

    CAS  Google Scholar 

  170. S. Hankemeier, M. van Griensven, M. Ezechieli, T. Barkhausen, M. Austin, M. Jagodzinski, et al. Tissue engineering of tendons and ligaments by human bone marrow stromal cells in a liquid fibrin matrix in immunodeficient rats: Results of a histologic study. Arch Orthop Trauma Surg. 2007; 127(9):815–21.

    Google Scholar 

  171. M.M. Murray, B. Forsythe, F. Chen, S.J. Lee, J.J. Yoo, A. Atala, et al. The effect of thrombin on ACL fibroblast interactions with collagen hydrogels. J Orthop Res. 2006; 24(3):508–15.

    CAS  Google Scholar 

  172. M.M. Murray, S.D. Martin, and M. Spector. Migration of cells from human anterior cruciate ligament explants into collagen-glycosaminoglycan scaffolds. J Orthop Res. 2000; 18(4):557–64.

    CAS  Google Scholar 

  173. M.M. Murray, and M. Spector. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials. 2001; 22(17):2393–402.

    CAS  Google Scholar 

  174. H. Fan, H. Liu, S. Toh, and J. Goh. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 2009; 30(28):4967–77.

    CAS  Google Scholar 

  175. H. Fan, H. Liu, E. Wong, S. Toh, and J. Goh. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold. Biomaterials. 2008; 29(33):3324–37.

    CAS  Google Scholar 

  176. R. Horan, I. Toponarski, H. Boepple, P. Weitzel, J. Richmond, and G. Altman. Design and characterization of a scaffold for anterior cruciate ligament engineering. J Knee Surg. 2009; 22(1):82–92.

    Google Scholar 

  177. H. Liu, H. Fan, S. Toh, and J. Goh. A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials. 2008; 29(10):1443–53.

    CAS  Google Scholar 

  178. H. Liu, H. Fan, Y. Wang, S. Toh, and J. Goh. The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials. 2008; 29(6):662–74.

    CAS  Google Scholar 

  179. H. Liu, Z. Ge, Y. Wang, S. Toh, V. Sutthikhum, and J. Goh. Modification of sericin-free silk fibers for ligament tissue engineering application. J Biomed Mater Res B. 2007; 82(1):129–38.

    Google Scholar 

  180. C. Craig, and C. Riekel. Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders. Comp Biochem Physiol B Biochem Mol Biol. 2002; 133(4):493–507.

    Google Scholar 

  181. J. Perez-Rigueiro, C. Viney, J. Llorca, and M. Elices. Mechanical properties of silkworm silk in liquid media. Polymer. 2000; 41(23):8433–9.

    CAS  Google Scholar 

  182. P. Basile, T. Dadali, J. Jacobson, S. Hasslund, M. Ulrich-Vinther, K. Soballe, et al. Freeze-dried tendon allografts as tissue engineering scaffolds for Gdf-5 gene delivery. Mol Ther. 2008; 16(3):466–73.

    CAS  Google Scholar 

  183. A. Chong, J. Riboh, R. Smith, D. Lindsey, H. Pham, and J. Chang. Flexor tendon tissue engineering: Acellularized and reseeded tendon constructs. Plast Reconstr Surg. 2009; 123(6):1759–66.

    CAS  Google Scholar 

  184. J. Ingram, S. Korossis, G. Howling, J. Fisher, and E. Ingham. The use of ultrasonication to aid recellularization of acellular natural tissue scaffolds for use in anterior cruciate ligament reconstruction. Tissue Eng. 2007; 13(7):1561–72.

    CAS  Google Scholar 

  185. F. Li, H. Jia, and C. Yu. ACL reconstruction in a rabbit model using irradiated achilles allograft seeded with mesenchymal stem cells or PDGF-BB gene transfected mesenchymal stem cells. Knee Surg Sports Traumatol Arthrosc. 2007; 15(10):1219–27.

    Google Scholar 

  186. M. Mahirogullari, C. Ferguson, P. Whitlock, K. Stabile, and G. Poehling. Freeze-dried allografts for anterior cruciate ligament reconstruction. Clin Sports Med. 2007; 26(4):625–37.

    Google Scholar 

  187. H. Omae, C. Zhao, Y. Sun, K. An, and P. Amadio. Multilayer tendon slices seeded with bone marrow stromal cells: A novel composite for tendon engineering. J Orthop Res. 2009; 27(7):937–42.

    CAS  Google Scholar 

  188. P. Vavken, S. Joshi, and M. Murrary. TRITON-X is the most effective among three decellularization agents for ACL tissue engineering. J Orthop Res. 2009; 27(12):1612–8.

    CAS  Google Scholar 

  189. P. Whitlock, T. Smith, G. Poehling, J. Shilt, and M. van Dyke. A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration. Biomaterials. 2007; 28(29):4321–9.

    CAS  Google Scholar 

  190. J. Chen, C. Willers, J. Xu, A. Wang, and M. Zheng. Autologous tenocyte therapy using porcine-derived bioscaffolds for massive rotator cuff defect in rabbits. Tissue Eng. 2007; 13(7):1479–91.

    CAS  Google Scholar 

  191. T. Gilbert, A. Stewart-Akers, A. Simmons-Byrd, and S. Badylak. Degradation and remodeling of small intestinal submucosa in canine achilles tendon repair. J Bone Joint Surg Am. 2007; 89(3):621–30.

    Google Scholar 

  192. R. Liang, S. Woo, T. Nguyen, P. Liu, and A. Almarza. Effects of a bioscaffold on collagen fibrillogenesis in healing medial collateral ligament in rabbits. J Orthop Res. 2008; 26(8):1098–104.

    CAS  Google Scholar 

  193. T. Zantop, T. Gilbert, M. Yoder, and S. Badylak. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon repair. J Orthop Res. 2006; 24(6):1299–309.

    Google Scholar 

  194. C. Androjna, R. Spragg, and K. Derwin. Mechanical conditioning of cell-seeded small intestinal submucosa: A potential tissue-engineering strategy for tendon repair. Tissue Eng. 2007; 13(2):233–43.

    CAS  Google Scholar 

  195. S. Woo, Y. Takakura, R. Liang, F. Jia, and D. Moon. Treatment with bioscaffold enhances the fibril morphology and the collagen composition of healing medial collateral ligament in rabbits. Tissue Eng. 2006; 12(1):159–66.

    CAS  Google Scholar 

  196. K. Murphy, I. Mushkudiani, D. Kao, A. Levesque, H. Hawkins, and L. Gould. Successful incorporation of tissue-engineered porcine small-intestinal submucosa as substitute flexor tendon graft is mediated by elevated TGF-beta1 expression in the rabbit. J Hand Surg Am. 2008; 33(7):1168–78.

    Google Scholar 

  197. R. Abousleiman, Y. Reyes, P. McFetridge, and V. Sikavitsas. Tendon tissue engineering using cell-seeded umbilical veins cultured in a mechanical stimulator. Tissue Eng A. 2009; 15(4):787–95.

    CAS  Google Scholar 

  198. S. Badhe, T. Lawrence, F. Smith, and P. Lunn. An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg. 2008; 17(1 Suppl):35S–9S.

    Google Scholar 

  199. D. Coons, and F. Barber. Tendon graft substitutes – Rotator cuff patches. Sports Med Arthrosc Rev. 2006; 14(3):185–90.

    Google Scholar 

  200. K. Derwin, A. Baker, R. Spragg, D. Leigh, and J. Iannotti. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. J Bone Joint Surg Am. 2006; 88(12):2665–72.

    Google Scholar 

  201. M. Fini, P. Torricelli, G. Giavaresi, R. Rotini, A. Castagna, and R. Giardino. In vitro study comparing two collagenous membranes in view of their clinical application for rotator cuff tendon regeneration. J Orthop Res. 2007; 25(1):98–107.

    CAS  Google Scholar 

  202. H. Fan, H. Liu, S. Toh, and J. Goh. Enhanced differentiation of mesenchymal stem cells co-cultured with ligament fibroblasts on gelatin/silk fibroin scaffold. Biomaterials. 2008; 29(8):1017–27.

    CAS  Google Scholar 

  203. J. Hayami, D. Surrao, S. Waldman, and B. Amsden. Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J Biomed Mater Res A. 2009; 92(4):1407–20.

    Google Scholar 

  204. Y. Kimura, A. Hokugo, T. Takamoto, Y. Tabata, and H. Kurosawa. Regeneration of anterior cruciate ligament by biodegradable scaffold combined with local controlled release of basic fibroblast growth factor and collagen wrapping. Tissue Eng C. 2008; 14(1):47–57.

    CAS  Google Scholar 

  205. J. Spalazzi, E. Dagher, S. Doty, X. Guo, S. Rodeo, and H. Lu. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A. 2008; 86(1):1–12.

    Google Scholar 

  206. J. Spalazzi, S. Doty, K. Moffat, W. Levine, and H. Lu. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng. 2006; 12(12):3497–508.

    CAS  Google Scholar 

  207. X. Li, J. Xie, J. Lipner, X. Yuan, S. Thomopolous, and Y. Xia. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 2009; 9(7):2763–8.

    Google Scholar 

  208. J. Paxton, K. Donnelly, R. Keatch, and K. Baar. Engineering bone-ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng A. 2009; 15(6):1201–9.

    CAS  Google Scholar 

  209. J. Phillips, K. Burns, J. Le Doux, R. Guldberg, and A. Garcia. Engineering graded tissue interfaces. Proc Natl Acad Sci U S A. 2008; 105(34):12170–5.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by an Aircast Foundation grant. We also would like to graciously thank Dr. Yongzhi Qiu, Mr. Derek M. Doroski, and Mr. Peter J. Yang for their contributions to the figures depicted in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnna S. Temenoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Hammoudi, T.M., Temenoff, J.S. (2011). Biomaterials for Regeneration of Tendons and Ligaments. In: Burdick, J.A., Mauck, R.L. (eds) Biomaterials for Tissue Engineering Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0385-2_11

Download citation

Publish with us

Policies and ethics