Skip to main content

Modifications of ribosomal RNA: From enzymes to function

  • Chapter
Ribosomes

Abstract

Modified nucleosides are present in all kinds of stable RNA molecules, tRNAs being particularly rich in them (Auffinger and Westhof, 1998). Ribosomal RNA (rRNA) from all organisms contains modifications, and there is a correlation between the overall complexity of an organism and the number of modified nucleosides in its rRNA. The rRNA of the most primitive bacteria, such as some Mycoplasma species, may possess only 14 modified nucleosides (de Crécy-Lagard et al., 2007). In Escherichia coli, there are 36 modified nucleosides in rRNA (Table I). Yeast ribosomes possess about one hundred rRNA modifications, human rRNA over two hundred (Ofengand and Fournier, 1998; Decatur and Fournier, 2002). Eukaryotes and archaea use snoRNA guided rRNA modification mechanism. This mechanism allows archaea and eukarya to use a limited number of modification enzymes, mainly pseudouridine synthase and 2′-O-methyltransferase to introduce the majority of their rRNA modifications (Decatur and Fournier, 2002). By contrast, bacteria have developed specific enzymes for each one of the (fewer) modifications they have. Nevertheless, there are many different rRNA modifications in bacteria. Despite intensive study for several decades, many open questions remain regarding the functional role of modified rRNA nucleosides. In this review we will focus on rRNA modifications in E. coli and discuss their possible functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdi NM, Fredrick K (2005) Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA 11: 1624–1632

    PubMed  CAS  Google Scholar 

  • Abeydeera ND, Chow CS (2009) Synthesis and characterization of modified nucleotides in the 970 hairpin loop of Escherichia coli 16S ribosomal RNA. Bioorg Med Chem 17: 5887–5893

    PubMed  CAS  Google Scholar 

  • Agarwalla S, Kealey JT, Santi DV, Stroud RM (2002) Characterization of the 23S ribosomal RNA m5U1939 methyltransferase from Escherichia coli. J Biol Chem 277: 8835–8840

    PubMed  CAS  Google Scholar 

  • Amitai S, Kolodkin-Gal I, Hananya-Meltabashi M, Sacher A, Engelberg-Kulka H (2009) Escherichia coli MazF leads to the simultaneous selective synthesis of both “death proteins” and “survival proteins”. PLoS Genet 5: e1 000 390

    Google Scholar 

  • Andersen NM, Douthwaite S (2006) YebU is a m5C methyltransferase specific for 16S rRNA nucleotide 1407. J Mol Biol 359: 777–786

    PubMed  CAS  Google Scholar 

  • Andersen TE, Porse BT, Kirpekar F (2004) A novel partial modification at C2501 in Escherichia coli 23S ribosomal RNA. RNA 10: 907–913

    PubMed  Google Scholar 

  • Atherly AG (1974) Ribonucleic acid regulation in amino acid-limited cultures of Escherichia coli grown in a chemostat. J Bacteriol 120: 1322–1330

    PubMed  CAS  Google Scholar 

  • Auffinger P, Westhof E (1998) Location and distribution of modified nucleotides in tRNA. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp 569–576

    Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knock-out mutants the Keio collection. Mol Syst Biol 2: 2006–2008

    Google Scholar 

  • Backendorf C, Ravensbergen CJ, Van der Plas J, van Boom JH, Veeneman G, Van Duin J (1981) Basepairing potential of the 3′ terminus of 16S RNA: dependence on the functional state of the 30S subunit and the presence of protein S21. Nucleic Acids Res 9: 1425–1444

    PubMed  CAS  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905–920

    PubMed  CAS  Google Scholar 

  • Basturea GN, Rudd KE, Deutscher MP (2006) Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family. RNA 12: 426–434

    PubMed  CAS  Google Scholar 

  • Basturea GN, Deutscher MP (2007) Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA 13: 1969–1976

    CAS  Google Scholar 

  • Björk GR, Isaksson LA (1970) Isolation of mutants of Escherichia coli lacking 5-methyluracil in transfer ribonucleic acid or 1-methylguanine in ribosomal RNA. J Mol Biol 51: 83–100

    PubMed  Google Scholar 

  • Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1462

    PubMed  CAS  Google Scholar 

  • Bowman CM, Dahlberg JE, Ikemura T, Konisky J, Nomura M (1971) Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo. Proc Natl Acad Sci USA 68: 964–968

    PubMed  CAS  Google Scholar 

  • Brimacombe R, Mitchell P, Osswald M, Stade K, Bochkariov D (1993) Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA. FASEB J 7: 161–167

    PubMed  CAS  Google Scholar 

  • Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103: 1143–1154

    PubMed  CAS  Google Scholar 

  • Bugl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JCA, Jakob U (2000) RNA methylation under heat shock control. Mol Cell 6: 349–360

    PubMed  CAS  Google Scholar 

  • Bunner AE, Nord S, Wikström PM, Williamson JR (2010a) The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution. J Mol Biol 398: 1–7

    PubMed  CAS  Google Scholar 

  • Bunner AE, Beck AH, Williamson JR (2010b) Kinetic cooperativity in Escherichia coli 30S ribosomal subunit reconstitution reveals additional complexity in the assembly landscape. Proc Natl Acad Sci USA 107: 5417–5422

    PubMed  CAS  Google Scholar 

  • Butler JS, Springer M, Grunberg-Manago M (1987) AUU-to-AUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene (infC) in vivo. Proc Natl Acad Sci USA 84: 4022

    PubMed  CAS  Google Scholar 

  • Caldas T, Binet E, Bouloc P, Costa A, Desgres J, Richarme G (2000a) The FtsJ/RrmJ heat shock protein of Escherichia coli is a 23S ribosomal RNA methyltransferase. J Biol Chem 275: 16414–16419

    PubMed  CAS  Google Scholar 

  • Caldas T, Binet E, Bouloc P, Richarme G (2000b) Translational defects of Escherichia coli mutants deficient in the Um(2552) 23S ribosomal RNA methyltransferase RrmJ/FTSJ. Biochem Biophys Res Commun 271: 714–718

    PubMed  CAS  Google Scholar 

  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, MÜller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The Comparative RNA Web (CRW) Site: An Online Database of Comparative Sequence and Structure Information for Ribosomal, Intron, and Other RNAs. BioMed Central Bioinformatics 3: 2

    PubMed  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340–348

    PubMed  CAS  Google Scholar 

  • Chan CM, Zhou C, Huang RH (2009) Reconstituting bacterial RNA repair and modification in vitro. Science 326: 247

    PubMed  CAS  Google Scholar 

  • Charette M, Gray MW (2000) Pseudouridine in RNA: what, where, how, and why. IUBMB Life 49: 341–351

    PubMed  CAS  Google Scholar 

  • Connolly K, Rife JP, Culver G (2008) Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol Microbiol 70: 1062–1075

    PubMed  CAS  Google Scholar 

  • Conrad J, Sun D, Englund N, Ofengand J (1998) The rluC gene of Escherichia coli codes for a pseudouridine synthase that is solely responsible for synthesis of pseudouridine at positions 955, 2504, and 2580 in 23S ribosomal RNA. J Biol Chem 273: 18562–18566

    PubMed  CAS  Google Scholar 

  • Cundliffe E (1978) Mechanism of resistance to thiostrepton in the producing-organism Streptomyces azureus. Nature 272: 792–795

    PubMed  CAS  Google Scholar 

  • de Crécy-Lagard V, Marck C, Brochier-Armanet C, Grosjean H (2007) Comparative RNomics and modomics in Mollicutes: prediction of gene function and evolutionary implications. IUBMB Life 59: 634–658

    PubMed  Google Scholar 

  • Das G, Thotala DK, Kapoor S, Karunanithi S, Thakur SS, Singh NS, Varshney U (2008) Role of 16S ribosomal RNA methylations in translation initiation in Escherichia coli. EMBO J 27: 840–851

    PubMed  CAS  Google Scholar 

  • Datsenko KA Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640–6655

    PubMed  CAS  Google Scholar 

  • Davis DR (1995) Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res 23: 5020–5026

    PubMed  CAS  Google Scholar 

  • Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27: 344–351

    PubMed  CAS  Google Scholar 

  • Del Campo M, Kaya Y, Ofengand J (2001) Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. RNA 7: 1603–1615

    PubMed  Google Scholar 

  • Desai PM, Rife JP (2006) The adenosine dimethyltransferase KsgA recognizes a specific conformational state of the 30S ribosomal subunit. Arch Biochem Biophys 449: 57–63

    PubMed  CAS  Google Scholar 

  • Desaulniers JP, Chang YC, Aduri R, Abeysirigunawardena SC, SantaLucia J Jr, Chow CS (2008) Pseudouridines in rRNA helix 69 play a role in loop stacking interactions. Org Biomol Chem 6: 3892–3895

    PubMed  CAS  Google Scholar 

  • Douthwaite S, Kirpekar F (2007) Identifying modifications in RNA by MALDI mass spectrometry. Meth Enzymol 425: 1–20

    Google Scholar 

  • Dutca LM, Culver GM (2008) Assembly of the 5′ and 3′ minor domains of 16S ribosomal RNA as monitored by tethered probing from ribosomal protein S20. J Mol Biol 376: 92–108

    PubMed  CAS  Google Scholar 

  • Ero R, Peil L, Liiv A, Remme J (2008) Identification of pseudouridine methyltransferase in Escherichia coli. RNA 14: 2223–2233

    PubMed  CAS  Google Scholar 

  • Fahlman RP, Dale T, Uhlenbeck OC (2004) Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. Mol Cell 16: 799–805

    PubMed  CAS  Google Scholar 

  • Ferber, D (1998) New hunt for roots of resistance. Science 280: 27

    PubMed  CAS  Google Scholar 

  • Foster PG, Nunes CR, Greene P, Moustakas D, Stroud RM (2003) The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate. Structure 11: 1609–1620

    PubMed  CAS  Google Scholar 

  • Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326: 694–699

    PubMed  CAS  Google Scholar 

  • Green R, Noller HF (1996) In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. RNA 2: 1011–1021

    PubMed  CAS  Google Scholar 

  • Gu XR, Gustafsson C, Ku J, Yu M, Santi DV (1999) Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli. Biochemistry 38: 4053–4057

    PubMed  CAS  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb-Viewer: an environment for comparative protein modeling. Electrophoresis 18: 2714–2723

    PubMed  CAS  Google Scholar 

  • Gustafsson C, Persson BC (1998) Identification of the rrmA gene encoding the 23S rRNA m1G745 methyltransferase in Escherichia coli and characterization of an m1G745-deficient mutant. J Bacteriol 180: 359–365

    PubMed  CAS  Google Scholar 

  • Gutgsell NS, Del Campo M, Raychaudhuri S, Ofengand J (2001) A second function for pseudouridine synthases: A point mutant of RluD unable to form pseudouridines 1911, 1915, and 1917 in Escherichia coli 23S ribosomal RNA restores normal growth to an RluD-minus strain. RNA 7: 990–998

    PubMed  CAS  Google Scholar 

  • Gutgsell NS, Deutscher MP, Ofengand J (2005) The pseudouridine synthase RluD is required for normal ribosome assembly and function in Escherichia coli. RNA 11: 1141–1152

    PubMed  CAS  Google Scholar 

  • Hager J, Staker BL, Bugl H, Jakob U (2002) Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem 277: 41978–41986

    PubMed  CAS  Google Scholar 

  • Hager J, Staker BL, Jakob U (2004) Substrate binding analysis of the 23S rRNA methyltransferase RrmJ. J Bacteriol 186: 6634–6642

    PubMed  CAS  Google Scholar 

  • Helser TL, Davies JE, Dahlberg JE (1972) Mechanism of kasugamycin resistance in Escherichia coli. Nat New Biol 235: 6–9

    PubMed  CAS  Google Scholar 

  • Holmes DJ, Cundliffe E (1991) Analysis of a ribosomal RNA methylase gene from Streptomyces tenebrarius which confers resistance to gentamicin. Mol Gen Genet 229: 229–237

    PubMed  CAS  Google Scholar 

  • Huang L, Ku J, Pookanjanatavip M, Gu X, Wang D, Greene PJ, Santi DV (1998) Identification of two Escherichia coli pseudouridine synthases that show multisite specificity for 23S RNA. Biochemistry 37: 15951–15957

    PubMed  CAS  Google Scholar 

  • Jemiolo DK, Taurence JS, Giese S (1991) Mutations in 16S rRNA in Escherichia coli at methyl-modified sites: G966, C967, and G1207. Nucleic Acids Res 19: 4259–4265

    PubMed  CAS  Google Scholar 

  • Jenner LB, Demeshkina N, Yusupova G, Yusupov M (2010) Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat Struct Mol Biol 17: 555–560

    PubMed  CAS  Google Scholar 

  • Johansen SK, Maus CE, Plikaytis BB, Douthwaite S (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol Cell 23: 173–182

    PubMed  CAS  Google Scholar 

  • Kimura S, Suzuki T (2010) Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA. Nucleic Acids Res 38: 1341–1352

    PubMed  CAS  Google Scholar 

  • Kirpekar F, Hansen LH, Rasmussen A, Poehlsgaard J, Vester B (2005) The archaeon Haloarcula marismortui has few modifications in the central parts of its 23S ribosomal RNA. J Mol Biol 348: 563–573

    PubMed  CAS  Google Scholar 

  • Komili S, Farny NG, Roth FP, Silver PA (2007) Functional specificity among ribosomal proteins regulates gene expression. Cell 131: 557–571

    PubMed  CAS  Google Scholar 

  • Korostelev A, Trakhanov S, Laurberg M, Noller HF (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126: 1065–1077

    PubMed  CAS  Google Scholar 

  • Krishnan K, Flower AM (2008) Suppression of ΔbipA phenotypes in Escherichia coli by abolishment of pseudouridylation at specific sites on the 23S rRNA. J Bacteriol 190: 7675–7683

    PubMed  CAS  Google Scholar 

  • Krzyzosiak W, Denman R, Nurse K, Hellmann W, Boublik M, Gehrke CW, Agris PF, Ofengand J (1987) In vitro synthesis of 16S ribosomal RNA containing single base changes and assembly into a functional 30S ribosome. Biochemistry 26: 2353–2364

    PubMed  CAS  Google Scholar 

  • Kunin CM (1985) The responsibility of the infectious disease community for the optimal use of antimicrobial agents. J Infect Dis 151: 388–398

    PubMed  CAS  Google Scholar 

  • Lafontaine D, Vandenhaute J, Tollervey D (1995) The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast. Genes Dev 9: 2470–2481

    PubMed  CAS  Google Scholar 

  • Lafontaine DL, Preiss T, Tollervey D (1998) Yeast 18S rRNA dimethylase Dim1p: a quality control mechanism in ribosome synthesis? Mol Cell Biol 18: 2360–2370

    PubMed  CAS  Google Scholar 

  • Lancaster L, Noller HF (2005) Involvement of 16S rRNA nucleotides G1338 and A1339 in discrimination of initiator tRNA. Mol Cell 20: 623–632

    PubMed  CAS  Google Scholar 

  • LaRiviere FJ, Wolfson AD, Uhlenbeck OC (2001) Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation. Science 294: 165–168

    PubMed  CAS  Google Scholar 

  • Leppik M, Peil L, Kipper K, Liiv A, Remme J (2007) Substrate specificity of the pseudouridine synthase RluD in Escherichia coli. FEBS J 274: 5759–5766

    PubMed  CAS  Google Scholar 

  • Lesnyak DV, Osipiuk J, Skarina T, Sergiev PV, Bogdanov AA, Edwards A, Savchenko A, Joachimiak A, Dontsova OA (2007) Methyltransferase that modifies guanine 966 of the 16S rRNA: functional identification and tertiary structure. J Biol Chem 282: 5880–5887

    PubMed  CAS  Google Scholar 

  • Lesnyak DV, Sergiev PV, Bogdanov RA, Dontsova OA (2006) Identification of Escherichia coli m2G methyltransferases. I. The ycbY gene encodes a methyltransferase specific for G2445 of the 23S rRNA. J Mol Biol 364: 20–25

    PubMed  CAS  Google Scholar 

  • Li J, McConkey GA, Rogers MJ, Waters AP, McCutchan TR (1994) Plasmodium: the developmentally regulated ribosome. Exp Parasitol 78: 437–441

    PubMed  CAS  Google Scholar 

  • Liu M, Novotny GW, Douthwaite S (2004) Methylation of 23S rRNA nucleotide G745 is a secondary function of the RlmAI methyltransferase. RNA 10: 1713–1720

    PubMed  CAS  Google Scholar 

  • Lovgren JM, Wikstrom PM (2001) The rlmB gene is essential for formation of Gm2251 in 23S rRNA but not for ribosome maturation in Escherichia coli. J Bacteriol 183: 6957–6960

    PubMed  CAS  Google Scholar 

  • Luo X, Hsiao HH, Bubunenko M, Weber G, Court DL, Gottesman ME, Urlaub H, Wahl MC (2008) Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex. Mol Cell 32: 791–802

    PubMed  CAS  Google Scholar 

  • Madsen CT, Mengel-Jorgensen J, Kirpekar F, Douthwaite S (2003) Identifying the methyltransferases for m5U747 and m5U1939 in 23S rRNA using MALDI mass spectrometry. Nucleic Acids Res 31: 4738–4746

    PubMed  CAS  Google Scholar 

  • Makarova KS, Ponomarev VA, Koonin EV (2001) Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins. Genome Biol 2: 0033

    Google Scholar 

  • Mangat CS, Brown ED (2008) Ribosome biogenesis; the KsgA protein throws a methyl-mediated switch in ribosome assembly. Mol Microbiol 70: 1051–1053

    PubMed  CAS  Google Scholar 

  • Meyuhas O (2008) Physiological roles of ribosomal protein S6: one of its kind. Int Rev Cell Mol Biol 268: 1–37

    PubMed  CAS  Google Scholar 

  • Micura R, Pils W, Höbartner C, Grubmayr K, Ebert MO, Jaun B (2001) Methylation of the nucleobases in RNA oligonucleotides mediates duplex-hairpin conversion. Nucleic Acids Res 29: 3997–4005

    PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1986) Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell 47: 985–994

    PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930

    PubMed  CAS  Google Scholar 

  • O’Connor M, Lee WM, Mankad A, Squires CL, Dahlberg AE (2001) Mutagenesis of the peptidyltransferase center of 23S rRNA: the invariant U2449 is dispensable. Nucleic Acids Res 29: 710–715

    CAS  Google Scholar 

  • Ofengand J, Bakin A, Wrzesinski J, Nurse K, Lane BG (1995) The pseudouridine residues of ribosomal RNA. Biochem Cell Biol 73: 915–924

    PubMed  CAS  Google Scholar 

  • Ofengand J, Fournier MJ (1998) The pseudouridine residues of rRNA: number, location, biosynthesis, and function. In: Grosjean H, Benne R (eds) Modification and editing of RNA. ASM Press, Washington, pp 229–253

    Google Scholar 

  • Ofengand J, Malhotra A, Remme J, Gutgsell NS, Del Campo M, Jean-Charles S, Peil L, Kaya Y (2001) Pseudouridines and pseudouridine synthases of the ribosome. Cold Spring Harb Symp Quant Biol 66: 147–159

    PubMed  CAS  Google Scholar 

  • Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V (2002) Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111: 721–732

    PubMed  CAS  Google Scholar 

  • Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63: 1096–1106

    PubMed  CAS  Google Scholar 

  • Pfennig PL, Flower AM (2001) BipA is required for growth of Escherichia coli K12 at low temperature. Mol Genet Genomics 266: 313–317

    PubMed  CAS  Google Scholar 

  • Poehlsgaard J, Douthwaite S (2005) The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol 3: 870–881

    PubMed  CAS  Google Scholar 

  • Poldermans B, Roza L, Van Knippenberg PH (1979) Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3′ end of 16S ribosomal RNA of Escherichia coli. III. Purification and properties of the methylating enzyme and methylase-30S interactions. J Biol Chem 254: 9094–9100

    PubMed  CAS  Google Scholar 

  • Powers T, Changchien LM, Craven GR, Noller HF (1988) Probing the assembly of the 3′ major domain of 16 S ribosomal RNA. Quaternary interactions involving ribosomal proteins S7, S9 and S19. J Mol Biol 200: 309–319

    PubMed  CAS  Google Scholar 

  • Powers T, Daubresse G, Noller HF (1993) Dynamics of in vitro assembly of 16 S rRNA into 30 S ribosomal subunits. J Mol Biol 232: 362–374

    PubMed  CAS  Google Scholar 

  • Powers T, Noller HF (1995) Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA. RNA 1: 194–209

    PubMed  CAS  Google Scholar 

  • Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Douthwaite S (2008a) YbeA is the m3Ψ methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA. RNA 14: 2234–2244

    PubMed  CAS  Google Scholar 

  • Purta E, O’Connor M, Bujnicki J, Douthwaite S (2008b) YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962. J Mol Biol 383: 641–651

    PubMed  CAS  Google Scholar 

  • Purta E, O’Connor M, Bujnicki JM, Douthwaite S (2009) YgdE is the 2′-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA. Mol Microbiol 72: 1147–1158

    PubMed  CAS  Google Scholar 

  • Ramagopal S (1992) Are eukaryotic ribosomes heterogeneous? Affirmations on the horizon. Biochem Cell Biol 70: 269–272

    PubMed  CAS  Google Scholar 

  • Raychaudhuri S, Conrad J, Hall BG, Ofengand J (1998) A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA 4: 1407–1417

    PubMed  CAS  Google Scholar 

  • Richmond CS, Glasner JD, Mau R, Jin H, Blattner FR (1999) Genome wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 27: 3821–3835

    PubMed  CAS  Google Scholar 

  • Sacerdot C, Fayat G, Dessen P, Springer M, Plumbridge JA, Grunberg-Manago M, Blanquet S (1982) Sequence of a 1.26-kb DNA fragment containing the structural gene for E. coli initiation factor IF3: presence of an AUU initiator codon. EMBOJ 1:311–315

    CAS  Google Scholar 

  • Sacerdot C, Chiaruttini C, Engst K, Graffe M, Milet M, Mathy N, Dondon J, Springer M (1996) The role of the AUU initiation codon in the negative feedback regulation of the gene for translation initiation factor IF3 in Escherichia coli. Mol Microbiol 21: 331–346

    PubMed  CAS  Google Scholar 

  • Samaha RR, Green R, Noller HF (1995) A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377: 309–314

    PubMed  CAS  Google Scholar 

  • Saraiya AA, Lamichhane TN, Chow CS, SantaLucia J Jr, Cunningham PR (2008) Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA. J Mol Biol 376: 645–657

    PubMed  CAS  Google Scholar 

  • Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102: 615–623

    PubMed  CAS  Google Scholar 

  • Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV 4 th, Weir JR, Ramakrishnan V (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326: 688–694

    PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 Å resolution. Science 310: 827–834

    PubMed  CAS  Google Scholar 

  • Senior BW, Holland IB (1971) Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc Natl Acad Sci USA 68: 959–963

    PubMed  CAS  Google Scholar 

  • Sergiev PV, Bogdanov AA, Dontsova OA (2007) Ribosomal RNA guanine-(N2)-methyltransferases and their targets. Nucleic Acids Res 35: 2295–2301

    PubMed  CAS  Google Scholar 

  • Sergiev PV, Lesnyak DV, Bogdanov AA, Dontsova OA (2006) Identification of Escherichia coli m(2)G methyltransferases: II. The ygjO gene encodes a methyltransferase specific for G1835 of the 23 S rRNA. J Mol Biol 364: 26–31

    PubMed  CAS  Google Scholar 

  • Sergiev PV, Serebryakova MV, Bogdanov AA, Dontsova OA (2008) The ybiN gene of Escherichia coli encodes adenine-N6 methyltransferase specific for modification of A1618 of 23S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel. J Mol Biol 375: 291–300

    PubMed  CAS  Google Scholar 

  • Song X, Nazar RN (2002) Modification of rRNA as a ‘quality control mechanism’ in ribosome biogenesis. FEBS Lett 523: 182–186

    PubMed  CAS  Google Scholar 

  • Stern S, Wilson RC, Noller HF (1986) Localization of the binding site for protein S4 on 16 S ribosomal RNA by chemical and enzymatic probing and primer extension. J Mol Biol 192: 101–110

    PubMed  CAS  Google Scholar 

  • Sykes MT, Williamson JR (2009) A complex assembly landscape for the 30S ribosomal subunit. Annu Rev Biophys 38: 197–215

    PubMed  CAS  Google Scholar 

  • Tan J, Jakob U, Bardwell JC (2002) Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol 184: 2692–2698

    PubMed  CAS  Google Scholar 

  • Toh SM, Mankin AS (2008) An indigenous posttranscriptional modification in the ribosomal peptidyl transferase center confers resistance to an array of protein synthesis inhibitors. J Mol Biol 380: 593–597

    PubMed  CAS  Google Scholar 

  • Toh S-M, Xiong L, Bae T, Mankin AS (2008) The methyltransferase YfgB/RlmN is responsible for modification of adenosine 2503 in 23S rRNA. RNA 14: 98–106

    PubMed  CAS  Google Scholar 

  • Treede I, Jakobsen L, Kirpekar F, Vester B, Weitnauer G, Bechthold A, Douthwaite S (2003) The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Mol Microbiol 49: 309–318

    PubMed  CAS  Google Scholar 

  • Tscherne JS, Nurse K, Popienick P, Michel H, Sochacki M, Ofengand J (1999a) Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli. Biochemistry 38: 1884–1892

    PubMed  CAS  Google Scholar 

  • Tscherne JS, Nurse K, Popienick P, Ofengand J (1999b) Purification, cloning, and characterization of the 16S RNA m2G1207 methyltransferase from Escherichia coli. J Biol Chem 274: 924–929

    PubMed  CAS  Google Scholar 

  • Vaidyanathan PP, Deutscher MP, Malhotra A (2007) RluD, a highly conserved pseudouridine synthase, modifies 50S subunits more specifically and efficiently than free 23S rRNA. RNA 13: 1868–1876

    PubMed  CAS  Google Scholar 

  • Van Duin J, Wijnands R (1981) The function of ribosomal protein S21 in protein synthesis. Eur J Biochem 118: 615–619

    PubMed  Google Scholar 

  • Weitzmann C, Tumminia SJ, Boublik M, Ofengand J (1991) A paradigm for local conformational control of function in the ribosome: binding of ribosomal protein S19 to Escherichia coli 16S rRNA in the presence of S7 is required for methylation of m2G966 and blocks methylation of m5C967 by their respective methyltransferases. Nucleic Acids Res 19: 7089–7095

    PubMed  CAS  Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons WM Jr, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V (2000) Structure of the 30S ribosomal subunit. Nature 407: 327–339

    PubMed  CAS  Google Scholar 

  • Wrzesinski J, Bakin A, Nurse K, Lane BG, Ofengand J (1995a) Purification, cloning, and properties of the 16S RNA pseudouridine 516 synthase from Escherichia coli. Biochemistry 34: 8904–8913

    PubMed  CAS  Google Scholar 

  • Wrzesinski J, Nurse K, Bakin A, Lane BG, Ofengand J (1995b) A dual-specificity pseudouridine synthase: an Escherichia coli synthase purified and cloned on the basis of its specificity for Ψ746 in 23S RNA is also specific for Ψ32 in tRNAphe. RNA 1: 437–448

    PubMed  CAS  Google Scholar 

  • Xu Z, O’Farrell HC, Rife JP, Culver GM (2008) A conserved rRNA methyltransferase regulates ribosome biogenesis. Nat Struct Mol Biol 15: 534–536

    PubMed  CAS  Google Scholar 

  • Yarian CS, Basti MM, Cain RJ, Ansari G, Guenther RH, Sochacka E, Czerwinska G, Malkiewicz A, Agris PF (1999) Structural and functional roles of the N1-and N3-protons of psi at tRNA’s position 39. Nucleic Acids Res 27: 3543–3549

    PubMed  CAS  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292: 883–896

    PubMed  CAS  Google Scholar 

  • Yusupova G, Jenner L, Rees B, Moras D, Yusupov M (2006) Structural basis for messenger RNA movement on the ribosome. Nature 444: 391–394

    PubMed  CAS  Google Scholar 

  • Zalacain M, Cundliffe E (1989) Methylation of 23S rRNA caused by tlrA (ermSF), a tylosin resistance determinant from Streptomyces fradiae. J Bacteriol 171: 4254–4260

    PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M (2003) MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell 12: 913–923

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sergiev, P.V. et al. (2011). Modifications of ribosomal RNA: From enzymes to function. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_9

Download citation

Publish with us

Policies and ethics