Skip to main content

Mechanical Microgrippers

  • Chapter
  • First Online:
Case Studies in Micromechatronics

Abstract

Technical gripping and holding of objects are necessary and helpful when people can no longer just use their hands to carry out processes. This is the case, for example, when more than two hands are required, when there is a risk of injury (due to very high or low temperatures, harmful substances, heavy loads, etc.), or when very high precision or high process speed is required. In other words, grippers are needed if difficult to approach positions and areas are to be reached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mechatronics is characterized by the cooperation of several domains. These include control engineering, electronics, mechanics, computer science, etc.

  2. 2.

    Iterative means to start with an initial guess and to generate step-by-step solutions for the individual functions. If this process stops at a point, because no solution can be found, one starts again from the beginning.

  3. 3.

    Auxiliary energy is the energy to activate the actuator. For example, a thermomechanical actuator needs the change of temperature, a piezoelectric actuator electric voltage (see next section).

  4. 4.

    Actuator elements directly implement the underlying actuation principle. Devices that already provide the desired form of travel movement are called actuator systems to distinguish between them. The definition of actuation principle, actuator element and actuator system is described in Sect. 4.5.1.

  5. 5.

    “Throw-it-over-the-wall-mentality” means to work separately and to pass the results to the other domains without comments or discussion.

  6. 6.

    “Concurrent Engineering”, on the other hand, means planning, discussing, optimizing and learning without barriers together with the other domains. It is also called “Simultaneous Engineering” or “Integrated Product Development”.

  7. 7.

    High aspect ratio describes the relationship between the maximum possible structure height and the minimum possible structure width. For example, the aspect ratio of a 20 µm wide structure having a height of 360 µm (= full wafer thickness) is 18.

  8. 8.

    Temperature of overheating means the maximum temperature an SMA element can tolerate without changing the previously imprinted shape.

  9. 9.

    Borosilicate glass was developed by the German glassmaker Otto Schott in the late 19th century. In 1915 Corning Glass Works introduced Pyrex, which became synonymous with borosilicate glass in the English-speaking world. In the 1990s Schott set up the first production line for the fabrication of floated borosilicate glass, called borofloat.

  10. 10.

    Another photoresist suitable for UV depth lithography is the AZ resist. The focus in this chapter is on the SU-8 resist, as it has very good mechanical properties and is therefore well suited for the production of 3D structures.

  11. 11.

    The exposure dose is the amount of energy per unit area, equal to the light intensity times the exposure time. The unit of the exposure dose is \( \frac{{\text{mJ}}}{{\text{cm}^{2} }} \).

  12. 12.

    There is the fundamental question whether dampers can also be described as actuators. If yes, there are also other forms of energy at the output of the actuator (e.g. heat).

  13. 13.

    For example, a macroactuator is dimensioned for its weight force and all dependent variables. If its dimensions were reduced, the adhesive and friction forces would possibly be so strong that the actuator force would not be sufficient to move the microactuator.

  14. 14.

    Since the expansion of gases and thus their pressure are strongly temperature-dependent, this process can also be thermally induced. This is referred to as the thermopneumatic actuation principle.

  15. 15.

    Colloquially, the short word “piezo effect” is often used. Since this wording is inconclusive, as there is also the piezoresistve effect (see Sect. 2.2.2), the term is always written out in full.

  16. 16.

    Above the Curie temperature, the structure of the crystallites converts into a symmetrical one and the piezoelectric effect disappears. But fortunately, this behavior is reversible.

References

  1. S. Fatikow, Mikroroboter und Mikromontage. Vieweg + Teubner, 2000.

    Google Scholar 

  2. Femto Tools AG, “FT-G microgripper.” [Online]. Available: www.femtotools.com/previousproducts/ft-g-microgripper. [Accessed: 14-Jan-2020].

  3. SmarAct, “SmarAct grippers.” [Online]. Available: www.smaract.com/products/micro-grippers/. [Accessed: 14-Jan-2020].

  4. Festo, “Compact parallel microgripper.” [Online]. Available: www.festo.com/cat/de_de/products_010804. [Accessed: 14-Jan-2020].

  5. G. Greitmann and R. A. Buser, “Tactile microgripper for automated handling of microparts,” Sensors Actuators, A Phys., vol. 53, no. 1–3, pp. 410–415, 1996.

    Google Scholar 

  6. M. Kohl, B. Krevet, and E. Just, “SMA microgripper system,” Sensors Actuators, A Phys., vol. 97–98, no. 1, pp. 646–652, 2002.

    Google Scholar 

  7. K. Mølhave and O. Hansen, “Electro-thermally actuated microgrippers with integrated force-feedback,” J Micromech Microeng, vol. 15, no. 6, pp. 1265–1270, 2005.

    Google Scholar 

  8. T. C. Duc, G. K. Lau, J. F. Creemer, and P. M. Sarro, “Electrothermal microgripper with large jaw displacement and integrated force sensors,” J Microelectromech Syst, vol. 17, no. 6, pp. 1546–1555, 2008.

    Google Scholar 

  9. X. Chen, T.; Sun, L.; Chen, L.; Rong, W.; Li, “A hybrid-type electrostatically driven microgripper with an integrated vacuum tool,” Sensors Actuators, A Phys., vol. 158, no. 2, pp. 320–327, 2010.

    Google Scholar 

  10. B. Hoxhold, Mikrogreifer und aktive Mikromontagehilfsmittel mit integrierten Antrieben. Shaker, 2010.

    Google Scholar 

  11. S. A. Bazaz, F. Khan, and R. I. Shakoor, “Design, simulation and testing of electrostatic SOI MUMPs based microgripper integrated with capacitive contact sensor,” Sensors Actuators, A Phys., vol. 167, no. 1, pp. 44–53, 2011.

    Google Scholar 

  12. R. Keoschkerjan and H. Wurmus, “A novel micro gripper with parallel movement of gripping arms,” in 8th International Conference on New Actuators, 2002, pp. 321–324.

    Google Scholar 

  13. I. Roch, P. Bidaud, D. Collard, and L. Buchaillot, “Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film,” J Micromech Microeng, vol. 13, no. 2, p. 330,336, 2003.

    Google Scholar 

  14. A. Alogla, P. Scanlan, W. M. Shu, and R. L. Reuben, “A scalable syringe-actuated microgripper for biological manipulation,” Sensors Actuators, A Phys., vol. 202, no. 1, pp. 135–139, 2012.

    Google Scholar 

  15. F. Qiao, “Biologisch inspirierte mikrotechnische Werkzeuge für die Mikromontage und die Minimal-Invasive Chirugie,” Ph. D. thesis, Technische Universität Ilmenau, 2003.

    Google Scholar 

  16. R. Wierzbicki et al., “Design and fabrication of an electrostatically driven microgripper for blood vessel manipulation,” Microelectron. Eng., vol. 83, no. 4–9, pp. 1651–1654, 2006.

    Google Scholar 

  17. P. Dario, “Design and fabrication of an electrostatically driven microgripper for blood vessel manipulation,” Microelectron. Eng., vol. 83, no. 4–9, pp. 1651–1654, 2006.

    Google Scholar 

  18. E. Rodriguez and W. Chitwood, “Robotics in cardiac surgery,” Scand. J. Surg., vol. 98, pp. 120–124, 2009.

    Google Scholar 

  19. M. Garcés-Schröder et al., “Characterization of skeletal muscle passive mechanical properties by novel micro-force sensor a tissue micro-dissection by femtosecond laser ablation,” Microelectron. Eng., vol. 192, pp. 70–76, 2018.

    Google Scholar 

  20. M. Garcés-Schröder, M. Leester-Schädel, M. Schulz, M. Böl, and A. Dietzel, “Micro-Gripper: A new concept for a monolithic single-cell manipulation device,” Sensors Actuators, A Phys., vol. 236, pp. 130–139, 2015.

    Google Scholar 

  21. K. Ehrlenspiel and H. Meerkamp, Integrierte Produktentwicklung. Carl Hanser Verlag, 2017.

    Google Scholar 

  22. DRM Associates, “The Principles of Integrated Product Development,” 2016. [Online]. Available: www.npd-solutions.com/principles.html. [Accessed: 14-Jan-2020].

  23. Y. Ma, G. Chen, and G. Thimm, “Paradigm Shift: Unified and Associative Feature-based Concurrent Engineering and Collaborative Engineering,” J. Intell. Manuf., vol. 19, no. 6, pp. 625–641, 2008.

    Google Scholar 

  24. MicroChem Corporation, “NANO SU-8 Negative Tone Photoresist Formulations 2-25,” 2015. [Online]. Available: www.microchem.com. [Accessed: 14-Jan-2020].

  25. Topas, “Cyclic Olefin Copolyer (COC),” 2014. [Online]. Available: https://topas.com/sites/default/files/files/TOPAS_Brochure_E_2014_06(1).pdf. [Accessed: 14-Jan-2020].

  26. D. Metz, N. Ferreira, and A. Dietzel, “3D piezoresistive silicon microprobes with stacked suspensions for tailored mechanical anisotropies,” Sensors Actuators, A Phys., vol. 267, pp. 164–176, 2017.

    Google Scholar 

  27. S. Jaehong, K. C. Won, and H. K. Kyung, “Design and analysis of an electro-magnetic micro gripper for grasping miniature sized objects,” in Proc. ICCAS, 2001, pp. 772–775.

    Google Scholar 

  28. D. C. Lagoudas, Ed., Shape Mememory Alloys, Modelling and Engineering Applications. Springer US, 2008.

    Google Scholar 

  29. Memry, “Shape Memory Alloys.” [Online]. Available: www.memry.com. [Accessed: 14-Jan-2020].

  30. J. J. Gill, D. T. Chang, L. A. Momoda, and G. P. Carman, “Manufacturing issues of thin film NiTi microwrapper,” Sensors Actuators, A Phys., vol. 93, no. 2, pp. 148–156, 2001.

    Google Scholar 

  31. Wikipedia, “Borosilicate Glass.” [Online]. Available: www.wikipedia.org/wiki/Borosilicate_glass. [Accessed: 14-Jan-2020].

  32. Schott, “Borofloat 33 - Borosilicate glass.” [Online]. Available: www.schott.com/borofloat/english/index.html. [Accessed: 14-Jan-2020].

  33. Kunststoffe.de, “Acrylnitril-Butadien-Syrol-Copolymer (ABS).” [Online]. Available: www.kunststoffe.de/themen/basics/technische-kunststoffe/acrylnitril-butadien-styrol-abs/artikel/acrylnitril-butadien-styrol-copolymer-abs-2915695.html. [Accessed: 14-Jan-2020].

  34. BASF, “Technical data sheet of TDS-Innofil3D-PLA.” [Online]. Available: www.innofil3d.com/wp-content/uploads/2016/05/TDS-Innofil3D-PLA-160608.pdf. [Accessed: 14-Jan-2020].

  35. BASF, “Technical data sheet of EPR InnoPET by Innofil3D BV.” [Online]. Available: www.innofil3d.com/wp-content/uploads/2016/06/TDS-EPR-InnoPET-160608-1.pdf. [Accessed: 14-Jan-2020].

  36. M. Heckele and W. K. Schomburg, “Review on micro molding of thermoplastic polymers,” J Micromech Microeng, vol. 14, pp. R1–R14, 2004.

    Google Scholar 

  37. G. Wang, G. Zhao, H. Li, and Y. Guan, “Research on a New Variotherm Injection Molding Technology and its Application on the Molding of a Large LCD Panel,” Polym. Plast. Technol. Eng., vol. 48, no. 7, pp. 671–681, Jun. 2009.

    Google Scholar 

  38. L. Xie, S. Kirchberg, L. Steuernagel, and G. Ziegmann, “A mechanism influencing micro injection molded weld lines of hybrid nano filled polypropylene,” Microsyst. Technol., vol. 16, no. 11, pp. 1855–1859, 2010.

    Google Scholar 

  39. TPK Kunststofftechnik GmbH, “Microgripper designed for injection molding,” Nörten-Hardenber, Germany, 2019.

    Google Scholar 

  40. B. Denkena and H. W. Hoffmeister, “Micro-machining processes for microsystem technology,” Microsyst. Technol., vol. 12, pp. 659–664, 2006.

    Google Scholar 

  41. Hoffmann Group, “Micro milling cutter.” [Online]. Available: www.hoffmann-group.com/DE/de/hom/Monozerspanung/VHM-Fräser/VHM-Microfräser-Diamant/p/209700-0,1X0,3. [Accessed: 14-Jan-2020].

  42. J. Edelmann, “Spanende Mikrobearbeitung.” [Online]. Available: www.iwu.fraunhofer.de/content/dam/iwu/de/documents/Infoblatt/Infoblatt-Spanende-Mikrobearbeitung.pdf. [Accessed: 14-Jan-2020].

  43. M. Schlesinger and M. Paunivic, Modern Electroplating. John Wiley & Sons, Ltd, 2011.

    Google Scholar 

  44. Keyence, “Keyence Agilista.” [Online]. Available: www.keyence.de/ss/products/3d-printer/agilista/product/high_definition/. [Accessed: 14-Jan-2020].

  45. K. H. J. Buschow et al., Eds., “Encyclopedia of Materials: Science and Technology.” Elsevier Inc., 2001.

    Google Scholar 

  46. W. Duerig, K. N. Melton, D. Stöckel, and C. M. Wayman, Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann-Ltd., 1990.

    Google Scholar 

  47. M. Garcés-Schröder, L. Hecht, A. Vierheller, M. Leester-Schädel, M. Böl, and A. Dietzel, “Micro-Grippers with Femtosecond-Laser Machined In-Plane Agonist-Antagonist SMA Actuators Integrated on Wafer-Level by Galvanic Riveting,” in MDPI, 2017, pp. 385–390.

    Google Scholar 

  48. M. Garcés-Schröder, T. Zimmermann, C. Siemers, M. Leester-Schädel, M. Böl, and A. Dietzel, “Shape memory alloy actuators for silicon microgrippers,” IEEE/ASME J. Microelectromechanical Syst., vol. 28, no. 5, 2019.

    Google Scholar 

  49. D. A. Miller and D. C. Lagoudas, “Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains,” Smart Mater. Struct., vol. 9, no. 5, pp. 640–652, 2000.

    Google Scholar 

  50. S. Bütefisch, V. Seidemann, and S. Büttgenbach, “A New Micro Pneumatic Actuator for Micromechanical Systems,” in 11th Int. Conf. on Soilid-State Sensors and Actuators (Transducers ’01), 2001, pp. 722–725.

    Google Scholar 

  51. S. Bütefisch, Entwicklung von Greifern für die automatisierte Montage hybrider Mikrosysteme. Dissertation. Shaker, 2003.

    Google Scholar 

  52. B. Hoxhold and S. Büttgenbach, “Micro Tools with Pneumatic Actuators for Deskstop Factories,” Sensors & Transducers, vol. 7, pp. 160–169, 2009.

    Google Scholar 

  53. R. W. Johnstone and M. Parameswaran, “Electrostatic Actuators BT - An Introduction to Surface-Micromachining,” R. W. Johnstone and M. Parameswaran, Eds. Boston, MA: Springer US, 2004, pp. 135–152.

    Google Scholar 

  54. S. J. Rupitsch, Piezoelectric Sensors and Actuators. Springer, Berlin, Heidelberg, 2017.

    Google Scholar 

  55. R. S. Fearing, “Micro Mechanical Systems,” in Handbook of Sensors and Actuators, T. Fukada and W. Menz, Eds. Elsevier Inc., 1998.

    Google Scholar 

  56. H.-D. Stölting, “Electromagnetic Actuators BT - Actuators: Basics and Applications,” H. Janocha, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 85–153.

    Google Scholar 

  57. W. Riethmuller and W. Benecke, “Thermally excited silicon microactuators,” IEEE Trans. Electron Devices, vol. 35, no. 6, pp. 758–763, 1988.

    Google Scholar 

  58. M. Matysek, P. Lotz, T. Winterstein, and H. F. Schlaak, “Dielectric elastomer actuators for tactile displays,” in World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2009, pp. 290–295.

    Google Scholar 

  59. F. Carpi, D. De Rossi, R. Kornbluh, R. Pelrine, and P. Sommer-Larsen, Eds., Dielectric Elastomers as Electromechanical Transducers Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Elsevier Inc., 2008.

    Google Scholar 

  60. A. E. Gruber, V. Saile, and K. F. Weibezahn, “Mikrostrukturtechnik und Biomaterialien,” in Medizintechnik Life Science Engineering, Springer Berlin Heidelberg, 2008.

    Google Scholar 

  61. R. Pitschellis, Mechanische Miniaturgreifer mit Formgedächtnisantrieb. VDI-Verlag, 1998.

    Google Scholar 

  62. B. Gursky, S. Bütefisch, Mo. Leester-Schädel, B. Li, Kanggi, Matheis, and A. Dietzel, “A disposable Pneumatic Microgripper for Cell Manipulation with Image-Based Force Sensing,” Micromachines, vol. 10, no. 707, 2019.

    Google Scholar 

  63. Faulhaber, “electromagnetic brushless DC micromotors.” [Online]. Available: www.faulhaber.com/Download/FAULHABER_BXT_mini_catalogue_EN.pdf. [Accessed: 14-Jan-2020].

  64. Faulhaber, “Diagnostic and therapy capsules.” [Online]. Available: www.faulhaber.com/en/markets/medical-laboratory-equipment/diagnostic-and-therapy-capsules. [Accessed: 14-Jan-2020].

  65. BioFluidix GmbH, “Inkjet Printing.” [Online]. Available: www.biofluidix.com/home.html. [Accessed: 14-Jan-2020].

  66. PI Ceramic GmbH, “Inkjet Printing.” [Online]. Available: www.piceramic.com/en/. [Accessed: 14-Jan-2020].

  67. J. L. Staymates, M. E. Staymates, and G. Gillen, “Evaluation of a drop-on-demand micro-dispensing system for development of artificial fingerprints,” Anal. Methods, vol. 5, no. 1, pp. 180–186, 2013.

    Google Scholar 

  68. microdrop, “Solenoid valve.” [Online]. Available: www.microdrop.de/home.html. [Accessed: 14-Jan-2020].

  69. Y. K. Yong, S. S. Aphale, and S. O. Reza Moheimani, “Design, identification, and control of a flexure-based XY stage for fast nanoscale positioning,” IEEE Trans. Nanotechnol., vol. 8, no. 1, pp. 46–54, 2009.

    Google Scholar 

  70. M. G. Ruppert, A. G. Fowler, M. Maroufi, and S. O. R. Moheimani, “On- Chip Dynamic Mode Atomic Force Microscopy: A Silicon-on-Insulator MEMS Approach,” J. Microelectromechanical Syst., vol. 26, no. 1, pp. 215–225, 2017.

    Google Scholar 

  71. N. Besse, S. Rosset, J. J. Zarate, and H. Shea, “Soft Robotics: Flexible Active Skin: Large Reconfigurable Arrays of Individually Addressed Shape Memory Polymer Actuators (Adv. Mater. Technol. 10/2017),” Adv. Mater. Technol., vol. 2, no. 10, Oct. 2017.

    Google Scholar 

  72. R. Bastaits et al., “Segmented bimorph mirrors for adaptive optics: segment design and experiment,” Appl. Opt., vol. 53, no. 29, pp. 6635–6642, 2014.

    Google Scholar 

  73. M. T. Chikhaoui and J. Burgner-Kahrs, “Control of Continuum Robots for Medical Applications: State of the Art (Invited Review),” in International Conference on New Actuators, ACTUATOR 18, 2018.

    Google Scholar 

  74. Cambridge Mechatronics, “Optical Image Stabilization for Mobile Phone Cameras.” [Online]. Available: www.cambridgemechatronics.com/en/cml-technology/applications/. [Accessed: 14-Jan-2020].

  75. Straubmedical, “high-tech catheters.” [Online]. Available: www.straubmedical.com/en/physicians/rotarexs/wissenschaftliche-dokumente.html. [Accessed: 14-Jan-2020].

  76. J. Perret, Q. Parent, and B. Giudicelli, “HGlove: A wearable force-feedback device for the hand,” in 14th annual EuroVR conference, 2017.

    Google Scholar 

  77. C. Pacchierotti, S. Sinclair, M. Solazzi, A. Frisoli, V. Hayward, and D. Prattichizzo, “Wearable Haptic Systems for the Fingertip and the Hand: Taxonomy, Review, and Perspectives.,” IEEE Trans. Haptics, vol. 10, no. 4, pp. 580–600, 2017.

    Google Scholar 

  78. Go Touch VR, “Touch Virtual Reality.” [Online]. Available: www.gotouchvr.com/. [Accessed: 14-Jan-2020].

  79. DextaRobotics, “Exoskeletons, force feedback glove.” [Online]. Available: www.dextarobotics.com. [Accessed: 14-Jan-2020].

  80. X. Gu, Y. Zhang, W. Sun, Y. Bian, D. Zhou, and P. Kristensson, “Dexmo: An Inexpensive and Lightweight Mechanical Exoskeleton for Motion Capture and Force Feedback in VR,” in CHI ’16 Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 2016, pp. 1991–1995.

    Google Scholar 

  81. haptx, “HaptX Gloves, exoskeletons.” [Online]. Available: https://haptx.com/. [Accessed: 14-Jan-2020].

  82. senseglove, “Feel Real, exoskeletons.” [Online]. Available: www.senseglove.com. [Accessed: 14-Jan-2020].

  83. H. Ren and S. T. Wu, Introduction to adaptive lenses. Wiley Blackwell, 2012.

    Google Scholar 

  84. D. Brugger, M. Kohl, U. Hollenbach, A. Kapp, and C. Stiller, “Ferromagnetic shape memory microscanner system for automotive applications,” Int. J. Appl. Electromagn. Mech., vol. 23, no. 1–2, pp. 107–112, 2006.

    Google Scholar 

  85. PI Ceramic GmbH, “Magnetic Levitation PIMag.” [Online]. Available: www.physikinstrumente.com/en/technology/electromagnetic-drives/pimag-6d-magnetic-levitation/. [Accessed: 14-Jan-2020].

  86. Faulhaber, “prosthetics lifehand.” [Online]. Available: www.faulhaber.com/en/markets/medical-laboratory-equipment/prosthetics-lifehand/. [Accessed: 14-Jan-2020].

  87. TDK Europe - Epcos, “Piezoelectric joystick.” [Online]. Available: https://en.tdk.eu. [Accessed: 14-Jan-2020].

  88. M. Hill, G. Rizzello, and S. Seelecke, “Development and Experimental Characterization of a Pneumatic Valve Actuated by a Dielectric Elastomer Membrane,” Smart Mater. Struct., vol. 26, no. 8, p. 85023, 2017.

    Google Scholar 

  89. MedstreamTM and Brochure, “Codman Neuro Science,” 2013.

    Google Scholar 

  90. M. Kohl, “Shape Memory Microvalves,” in Thin Film Shape Memory Alloys, S. Miyazaki, Y. Q. Fu, and W. M. Huang, Eds. 2009.

    Google Scholar 

  91. C. Megnin and M. Kohl, “Shape memory microvalves for a fluidic control system,” J. Micromechanics Microengineering, vol. 24, no. 2, 2014.

    Google Scholar 

  92. FHG EMFT, “Brochure Microdosing systems and micropumps for medical technology.” [Online]. Available: www.emft.fraunhofer.de. [Accessed: 14-Jan-2020].

  93. A. Saren, A. R. Smith, and K. Ullakko, “Integratable magnetic shape memory micropump for high-pressure, precision microfluidic applications,” Microfluid. Nanofluidics, vol. 22, no. 4, 2018.

    Google Scholar 

  94. S. Büttgenbach, “Electromagnetic micromotors - design, fabrication and applications,” Micromachines, vol. 5, 2014.

    Google Scholar 

  95. A. Al-Halhouli, N. A. Rawashdeh, M. Sanna, S. Büttgenbach, and A. Dietzel, “Development of a Novel Electromagnetic Double Action Meso-scale Pump,” in 16th International Conference on Research and Education in Mechatronics, REM 2015, 2016, pp. 250–254.

    Google Scholar 

  96. A. Balck, Mikrofluidische Komponenten für die Medizintechnik und Biotechnologie. Shaker, 2012.

    Google Scholar 

  97. A. Balck, C. Kirsch, U. Schmid, H. Seidel, M. Leester-Schädel, and S. Büttgenbach, “Bistable Microvalve for Biomedical Usage,” in Design and Manufacturing of Active Microsystems, S. Büttgenbach, A. Burisch, and J. Hesselbach, Eds. Springer Berlin Heidelberg New York, 2011, pp. 375–392.

    Google Scholar 

  98. C. Robohm, Mikrotechnische Entwicklung eines biochemischen Analysegerätes zur Blutalkoholbestimmung. Shaker, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanus Büttgenbach .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Büttgenbach, S., Constantinou, I., Dietzel, A., Leester-Schädel, M. (2020). Mechanical Microgrippers. In: Case Studies in Micromechatronics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61320-7_4

Download citation

Publish with us

Policies and ethics