Skip to main content

Structure Sensitive Tier Projection: Applications and Formal Properties

  • Conference paper
  • First Online:
Formal Grammar (FG 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11668))

Included in the following conference series:

Abstract

The subregular approach has revealed that the phonological surface patterns found in natural language are much simpler than previously assumed. Most patterns belong to the subregular class of tier-based strictly local languages (TSL), which characterizes them as the combination of a strictly local dependency with a tier-projection mechanism that masks out irrelevant segments. Some non-TSL patterns have been pointed out in the literature, though. We show that these outliers can be captured by rendering the tier projection mechanism sensitive to the surrounding structure. We focus on a specific instance of these structure-sensitive TSL languages: input-local TSL (ITSL), in which the tier projection may distinguish between identical segments that occur in different local contexts in the input string. This generalization of TSL establishes a tight link between tier-based language classes and ISL transductions, and is motivated by several natural language phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A comment regarding edge markers. For S to be k-local, it needs to contain only factors of length k. Thus, strings are augmented with enough edge markers to ensure that this requirement is satisfied. However, it is often convenient to shorten the k-factors in the definition of strictly k-local grammars and write down only one instance of each edge marker. with the implicit understanding that it must be augmented to the correct amount. So \(\rtimes \rtimes a\) is truncated to \(\rtimes a\). We adopt this simpler notation throughout the paper, unless required to make a definition clearer.

References

  1. Aksenova, A., Deshmukh, S.: Formal restrictions on multiple tiers. Proc. Soc. Comput. Linguist. (SCiL) 20(18), 64–73 (2018)

    Google Scholar 

  2. Applegate, R.: Ineseno chumash grammar. Ph.D. thesis, UC Berkeley (1972)

    Google Scholar 

  3. Baek, H.: Computational representation of unbounded stress patterns: tiers with structural features. In: Proceedings of the 53rd Meeting of the Chicago Linguistic Society (CLS53) (2017)

    Google Scholar 

  4. Brzozowski, J.A., Knast, R.: The dot-depth hierarchy of star-free languages is infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978)

    Article  MathSciNet  Google Scholar 

  5. Chandlee, J.: Strictly local phonological processes. Ph.D. thesis, University of Delaware (2014)

    Google Scholar 

  6. Chandlee, J., Eyraud, R., Heinz, J.: Learning strictly local subsequential functions. Trans. ACL 2, 491–503 (2014)

    Google Scholar 

  7. Chandlee, J., Heinz, J.: Strict locality and phonological maps. Linguist. Inq. 49, 23–60 (2018)

    Article  Google Scholar 

  8. De Santo, A.: Commentary: developmental constraints on learning artificial grammars with fixed, flexible, and free word order. Front. Psychol. 9, 276 (2018)

    Article  Google Scholar 

  9. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc., Cambridge (1974)

    MATH  Google Scholar 

  10. Fu, J., Heinz, J., Tanner, H.G.: An algebraic characterization of strictly piecewise languages. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 252–263. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-5_26

    Chapter  MATH  Google Scholar 

  11. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)

    Article  MathSciNet  Google Scholar 

  12. Goldsmith, J.: Autosegmental phonology. Ph.D. thesis, MIT, Cambridge (1976)

    Google Scholar 

  13. Graf, T.: The power of locality domains in phonology. Phonology 34(2), pp. 385–405 (2017). https://doi.org/10.1017/S0952675717000197

    Article  Google Scholar 

  14. Graf, T.: Locality domains and phonological c-command over strings. In: 2017 Proceedings of NELS (2018). http://ling.auf.net/lingbuzz/004080

  15. Graf, T., Mayer, C.: Sanskrit n-retroflexion is input-output tier-based strictly local. In: 2018 Proceedings of SIGMORPHON (2018)

    Google Scholar 

  16. Heinz, J.: The computational nature of phonological generalizations. In: Hyman, L., Plank, F. (eds.) Phonological Typology, chap. 5, pp. 126–195. Phonetics and Phonology, Mouton De Gruyter (2018)

    Google Scholar 

  17. Heinz, J., Rawal, C., Tanner, H.: Tier-based strictly local constraints for phonology. In: Proceedings of the ACL 49th: Human Language Technologies: Short Papers - vol. 2, pp. 58–64 (2011). http://dl.acm.org/citation.cfm?id=2002736.2002750

  18. Heinz, J., Riggle, J.: Learnability. In: van Oostendorp, M., Ewen, C., Hume, B., Rice, K. (eds.) Blackwell Companion to Phonology. Wiley-Blackwell, Hoboken (2011)

    Google Scholar 

  19. Jäger, G., Rogers, J.: Formal language theory: refining the chomsky hierarchy. Philos. Trans. R. Soc. B: Biol. Sci. 367(1598), 1956–1970 (2012)

    Article  Google Scholar 

  20. Jardine, A.: Computationally, tone is different. Phonology (2016). http://udel.edu/~ajardine/files/jardinemscomputationallytoneisdifferent.pdf

  21. Jardine, A., Heinz, J.: Learning tier-based strictly 2-local languages. Trans. ACL 4, 87–98 (2016). https://aclweb.org/anthology/Q/Q16/Q16-1007.pdf

    Article  Google Scholar 

  22. Jardine, A., McMullin, K.: Efficient learning of tier-based strictly k-local languages. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 64–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7_4

    Chapter  Google Scholar 

  23. Mayer, C., Major, T.: A challenge for tier-based strict locality from Uyghur backness harmony. In: Foret, A., Kobele, G., Pogodalla, S. (eds.) FG 2018. LNCS, vol. 10950, pp. 62–83. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-57784-4_4

    Chapter  Google Scholar 

  24. McMullin, K.: Tier-based locality in long-distance phonotactics?: learnability and typology. Ph.D. thesis, University of British Columbia, February (2016). https://doi.org/10.14288/1.0228114

  25. McMullin, K., Aksënova, A., De Santo, A. (2019): Learning phonotactic restrictions on multiple tiers. Proc. SCiL 2(1), pp. 377–378 (2019). https://doi.org/10.7275/s8ym-bx57

  26. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)

    MATH  Google Scholar 

  27. Pin, J.E.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)

    Book  Google Scholar 

  28. Rogers, J., et al.: On languages piecewise testable in the strict sense. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 2007/2009. LNCS (LNAI), vol. 6149, pp. 255–265. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14322-9_19

    Chapter  Google Scholar 

  29. Rogers, J., Heinz, J., Fero, M., Hurst, J., Lambert, D., Wibel, S.: Cognitive and sub-regular complexity. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-2013. LNCS, vol. 8036, pp. 90–108. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39998-5_6

    Chapter  Google Scholar 

  30. Rogers, J., Pullum, G.K.: Aural pattern recognition experiments and the subregular hierarchy. J. Logic Lang. Inf. 20(3), 329–342 (2011)

    Article  MathSciNet  Google Scholar 

  31. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4_23

    Chapter  Google Scholar 

  32. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_7

    Chapter  Google Scholar 

  33. Walker, R.: Yaka nasal harmony: spreading or segmental correspondence? Annu. Meet. Berkeley Linguist. Soc. 26(1), 321–332 (2000). https://doi.org/10.3765/bls.v26i1.1164

    Article  Google Scholar 

  34. Yli-Jyrä, A.: Contributions to the theory of finite-state based linguistic grammars. Ph.D. thesis, University of Helsinki (2005). http://www.ling.helsinki.fi/~aylijyra/dissertation/contribu.pdf

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. BCS-1845344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniello De Santo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De Santo, A., Graf, T. (2019). Structure Sensitive Tier Projection: Applications and Formal Properties. In: Bernardi, R., Kobele, G., Pogodalla, S. (eds) Formal Grammar. FG 2019. Lecture Notes in Computer Science(), vol 11668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59648-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59648-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59647-0

  • Online ISBN: 978-3-662-59648-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics