Skip to main content

Tribology of Self-Lubricating Metal Matrix Composites

  • Chapter
  • First Online:
Self-Lubricating Composites

Abstract

Self-lubricating metal matrix composites (SLMMCs) are a class of materials that have potential to help engineers meet the demands of global initiatives for green manufacturing and sustainability. While SLMMCs have existed for many decades with traditional lubricant materials like graphite and other lamellar solids, such as MoS2, WS2, h-BN and CaF2, BaF2, scientists have recently incorporated nanostructured versions of the materials (e.g., carbon nanotubes and graphene). At the same time, new manufacturing and processing techniques have come online, such as additive manufacturing techniques that may provide significant innovation for SLMMCs. In this chapter, the current state of SLMMC research is reviewed, including materials, processing methods, and tribological performance. Processing and property relationships are described, such as influence of testing parameters and content of solid lubricants on friction and wear. Improvements in tribological behavior, as much as possible, are interpreted through third-body approach, which emphasizes materials phenomena at the sliding interface – including mechanical, structural, and chemical changes to the parent materials. Based on the review of SLMMCs and their tribology, recommendations for future research are made that emphasize the use of new materials, new processing routes, and research approaches that seek to reveal more completely the mechanisms by which these materials form tribofilms that are effective at lowering friction and reducing wear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Daniel, I.M., Ishai, O.: Engineering Mechanics of Composite Materials. Oxford University Press, New York (1994)

    Google Scholar 

  2. Prasad, S., Asthana, R.: Aluminum metal-matrix composites for automotive applications: tribological considerations. Tribol. Lett. 17(3), 445–453 (2004)

    CAS  Google Scholar 

  3. Miracle, D.B.: Metal matrix composites – from science to technological significance. Compos. Sci. Technol. 65(15–16), 2526–2540 (2005)

    CAS  Google Scholar 

  4. Omrani, E., et al.: Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiency – a review. Int. J. Adv. Manuf. Technol. 83(1–4), 325–346 (2016)

    Google Scholar 

  5. Omrani, E., et al.: New emerging self-lubricating metal matrix composites for tribological applications. In: Davim, P.J. (ed.) Ecotribology: Research Developments, pp. 63–103. Springer International Publishing, Cham (2016)

    Google Scholar 

  6. Dellacorte, C., Fellenstein, J.A.: The effect of compositional tailoring on the thermal expansion and tribological properties of PS300: a solid lubricant composite coating. Tribol. Trans. 40(4), 639–642 (1997)

    CAS  Google Scholar 

  7. Zhang, X., et al.: Carbon nanotube-MoS2 composites as solid lubricants. ACS Appl. Mater. Interfaces. 1(3), 735–739 (2009)

    CAS  Google Scholar 

  8. Chromik, R.R., et al.: In situ tribometry of solid lubricant nanocomposite coatings. Wear. 262(9–10), 1239–1252 (2007)

    CAS  Google Scholar 

  9. Godet, M.: The third-body approach: a mechanical view of wear. Wear. 100(1), 437–452 (1984)

    Google Scholar 

  10. Godet, M.: Third-bodies in tribology. Wear. 136(1), 29–45 (1990)

    Google Scholar 

  11. Rigney, D.A., Karthikeyan, S.: The evolution of tribomaterial during sliding: a brief introduction. Tribol. Lett. 39(1), 3–7 (2010)

    Google Scholar 

  12. Biswas, S.K.: Wear of metals: a material approach. In: Stachowiak, G.W. (ed.) Wear: Materials, Mechanisms and Practice, pp. 21–36. Wiley, West Sussex (2005)

    Google Scholar 

  13. Descartes, S., Busquet, M., Berthier, Y.: An attempt to produce ex situ TTS to understand their mechanical formation conditions – the case of an ultra high purity iron. Wear. 271(9–10), 1833–1841 (2011)

    CAS  Google Scholar 

  14. Tumbajoy-Spinel, D., et al.: Assessment of mechanical property gradients after impact-based surface treatment: application to pure α-iron. Mater. Sci. Eng. A. 667, 189–198 (2016)

    CAS  Google Scholar 

  15. Singer, I.L.: Solid lubrication processes. In: Singer, I.L., Pollock, H.M. (eds.) Fundamentals of Friction, pp. 237–261. Kluwer, Dordrecht (1992)

    Google Scholar 

  16. Chromik, R., Strauss, H., Scharf, T.: Materials phenomena revealed by in situ tribometry. JOM. 64(1), 35–43 (2012)

    CAS  Google Scholar 

  17. Wahl, K.J., Sawyer, W.G.: Observing interfacial sliding processes in solid – solid contacts. MRS Bull. 33(12), 1159–1167 (2008)

    CAS  Google Scholar 

  18. Berthier, Y., Godet, M., Brendle, M.: Velocity accommodation in friction. Tribol. Trans. 32(4), 490–496 (1989)

    Google Scholar 

  19. Scharf, T.W., Singer, I.L.: Role of third bodies in friction behavior of diamond-like nanocomposite coatings studied by in situ tribometry. Tribol. Trans. 45(3), 363–371 (2002)

    CAS  Google Scholar 

  20. Scharf, T.W., Singer, I.L.: Quantification of the thickness of carbon transfer films using Raman tribometry. Tribol. Lett. 14, 137–146 (2003)

    CAS  Google Scholar 

  21. Scharf, T.W., Singer, I.L.: Monitoring transfer films and friction instabilities with in situ Raman tribometry. Tribol. Lett. 14, 3–8 (2003)

    CAS  Google Scholar 

  22. Scharf, T.W., Singer, I.L.: Role of the transfer film on the friction and wear of metal carbide reinforced amorphous carbon coatings during run-in. Tribol. Lett. 36(1), 43–53 (2009)

    CAS  Google Scholar 

  23. Strauss, H.W., et al.: In situ tribology of nanocomposite Ti-Si-C-H coatings prepared by PE-CVD. Wear. 272, 133–148 (2011)

    CAS  Google Scholar 

  24. Wahl, K.J., Chromik, R.R., Lee, G.Y.: Quantitative in situ measurement of transfer film thickness by a Newton’s rings method. Wear. 264(7–8), 731–736 (2008)

    CAS  Google Scholar 

  25. Shockley, J.M., et al.: The influence of Al2O3 particle morphology on the coating formation and dry sliding wear behavior of cold sprayed Al-Al2O3 composites. Surf. Coat. Technol. 270, 324–333 (2015)

    CAS  Google Scholar 

  26. Sriraman, K.R., et al.: Tribological behavior of electrodeposited Zn, Zn-Ni, Cd and Cd-Ti coatings on low carbon steel substrates. Tribol. Int. 56, 107–120 (2012)

    CAS  Google Scholar 

  27. Stoyanov, P., et al.: Combining in situ and online approaches to monitor interfacial processes in lubricated sliding contacts. MRS Commun. 6(3), 301–308 (2016)

    Google Scholar 

  28. Shockley, J.M., et al.: Third body behavior during dry sliding of cold-sprayed Al-Al2O3 composites: in situ tribometry and microanalysis. Tribol. Lett. 54(2), 191–206 (2014)

    Google Scholar 

  29. Shockley, J.M., et al.: In situ tribometry of cold-sprayed Al-Al2O3 composite coatings. Surf. Coat. Technol. 215, 350–356 (2013)

    CAS  Google Scholar 

  30. Berthier, Y.: Experimental evidence for friction and wear modelling. Wear. 139(1), 77–92 (1990)

    Google Scholar 

  31. Alidokht, S.A., et al.: Role of third-bodies in friction and wear of cold-sprayed Ti and Ti-TiC composite coatings. Tribol. Lett. 65, 114 (2017)

    Google Scholar 

  32. Zhang, Y., et al.: Tribological behavior of a cold-sprayed Cu–MoS2 composite coating during dry sliding wear. Tribol. Lett. 62(1), 1–12 (2016)

    Google Scholar 

  33. Yang, M.-S., et al.: Microstructure and wear behaviors of laser clad NiCr/Cr3C2–WS2 high temperature self-lubricating wear-resistant composite coating. Appl. Surf. Sci. 258(8), 3757–3762 (2012)

    CAS  Google Scholar 

  34. Raadnui, S., Mahathanabodee, S., Tongsri, R.: Tribological behaviour of sintered 316L stainless steel impregnated with MoS2 plain bearing. Wear. 265(3), 546–553 (2008)

    CAS  Google Scholar 

  35. Li, J.L., Xiong, D.S.: Tribological properties of nickel-based self-lubricating composite at elevated temperature and counterface material selection. Wear. 265(3), 533–539 (2008)

    CAS  Google Scholar 

  36. Mahathanabodee, S., et al.: Dry sliding wear behavior of SS316L composites containing h-BN and MoS2 solid lubricants. Wear. 316(1), 37–48 (2014)

    CAS  Google Scholar 

  37. Scharf, T.W.: Low friction coatings. In: Bruce, R. (ed.) Handbook of Lubrication and Tribology. CRC Press, Boca Raton (2012)

    Google Scholar 

  38. Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48(2), 511–531 (2012)

    Google Scholar 

  39. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, vol. 1. Oxford University Press, New York (2001)

    Google Scholar 

  40. Erdemir, A., Fontaine, J., Donnet, C.: An overview of superlubricity in diamond-like carbon films. In: Donnet, C., Erdemir, A. (eds.) Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, pp. 237–262. Springer US, Boston (2008)

    Google Scholar 

  41. Fontaine, J., Donnet, C., Erdemir, A.: Fundamentals of the tribology of DLC coatings. In: Donnet, C., Erdemir, A. (eds.) Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, pp. 139–154. Springer US, Boston (2008)

    Google Scholar 

  42. Hoffman, E.E., Marks, L.D.: Graphitic carbon films across systems. Tribol. Lett. 63(3), 32 (2016)

    Google Scholar 

  43. Liu, Y., Erdemir, A., Meletis, E.I.: An investigation of the relationship between graphitization and frictional behavior of DLC coatings. Surf. Coat. Technol. 86, 564–568 (1996)

    Google Scholar 

  44. Liu, Y., Erdemir, A., Meletis, E.I.: A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 82(1), 48–56 (1996)

    CAS  Google Scholar 

  45. Fontaine, J., et al.: Tribological behaviour of metal-DLC nanocomposite coatings: the critical role of tribofilm build-up. In: World Tribology Congress 2009 – Proceedings (Kyoto, Japan) (2009)

    Google Scholar 

  46. Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39(1), 49–61 (2010)

    CAS  Google Scholar 

  47. Al-Azizi, A.A., et al.: Surface structure of hydrogenated diamond-like carbon: origin of run-in behavior prior to superlubricious interfacial shear. Langmuir. 31(5), 1711–1721 (2015)

    CAS  Google Scholar 

  48. Berman, D., et al.: Macroscale superlubricity enabled by graphene nanoscroll formation. Science. 348(6239), 1118–1122 (2015)

    CAS  Google Scholar 

  49. Berman, D., et al.: Nanoscale friction properties of graphene and graphene oxide. Diam. Relat. Mater. 54(1), 91–96 (2015)

    CAS  Google Scholar 

  50. Berman, D., et al.: Extraordinary macroscale wear resistance of one atom thick graphene layer. Adv. Funct. Mater. 24(42), 6640–6646 (2014)

    CAS  Google Scholar 

  51. Berman, D., Erdemir, A., Sumant, A.V.: Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon. 54, 454–459 (2013)

    CAS  Google Scholar 

  52. Spalvins, T.: Lubrication with sputtered MoS2 films: principles, operation, and limitations. J. Mater. Eng. Perform. 1(3), 347–351 (1992)

    CAS  Google Scholar 

  53. McDevitt, N.T., Donley, M.S., Zabinski, J.S.: Utilization of Raman spectroscopy in tribochemistry studies. Wear. 166(1), 65–72 (1993)

    CAS  Google Scholar 

  54. Liang, T., et al.: First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys. Rev. B Condens. Matter Mater. Phys. 77(10), 104105 (2008)

    Google Scholar 

  55. Liang, T., et al.: Energetics of oxidation in MoS2 nanoparticles by density functional theory. J. Phys. Chem. C. 115(21), 10606–10616 (2011)

    CAS  Google Scholar 

  56. Dvorak, S.D., Wahl, K.J., Singer, I.L.: In situ analysis of third body contributions to sliding friction of a Pb-Mo-S coating in dry and humid air. Tribol. Lett. 28(3), 263–274 (2007)

    CAS  Google Scholar 

  57. Wahl, K.J., Belin, M., Singer, I.L.: A triboscopic investigation of the wear and friction of MoS2 in a reciprocating sliding contact. Wear. 214(2), 212–220 (1998)

    CAS  Google Scholar 

  58. Hoffman, E.E., Marks, L.D.: Soft interface fracture transfer in nanoscale MoS2. Tribol. Lett. 64(1), 1 (2016)

    CAS  Google Scholar 

  59. Wahl, K.J., Singer, I.L.: Quantification of a lubricant transfer process that enhances the sliding life of a MoS2 coating. Tribol. Lett. 1(1), 59–66 (1995)

    CAS  Google Scholar 

  60. Lince, J.R., et al.: Tribochemistry of MoS3 nanoparticle coatings. Tribol. Lett. 53(3), 543–554 (2014)

    CAS  Google Scholar 

  61. Spear, J.C., Ewers, B.W., Batteas, J.D.: 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today. 10(3), 301–314 (2015)

    CAS  Google Scholar 

  62. Rohatgi, P.K.: Metal matrix composites. Def. Sci. J. 43(4), 323 (1993)

    CAS  Google Scholar 

  63. Liu, Y., Rohatgi, P.K., Ray, S.: Tribological characteristics of aluminum-50 vol pct graphite composite. Metall. Trans. A. 24(1), 151–159 (1993)

    Google Scholar 

  64. Rohatgi, P.K., Ray, S., Liu, Y.: Tribological properties of metal matrix-graphite particle composites. Int. Mater. Rev. 37, 129 (1992)

    CAS  Google Scholar 

  65. Rohatgi, P.K., et al.: A surface-analytical study of tribodeformed aluminum alloy 319-10 vol.% graphite particle composite. Mater. Sci. Eng. A. 123(2), 213–218 (1990)

    Google Scholar 

  66. Jha, A., et al.: Aluminium alloy-solid lubricant talc particle composites. J. Mater. Sci. 21(10), 3681–3685 (1986)

    CAS  Google Scholar 

  67. Bowden, F., Shooter, K.: Frictional behaviour of plastics impregnated with molybdenum disulphide. Res. Appl. Ind. 3, 384 (1950)

    CAS  Google Scholar 

  68. Lancaster, J.: Composite self-lubricating bearing materials. Proc. Inst. Mech. Eng. 182(1), 33–54 (1967)

    Google Scholar 

  69. Prasad, S., Mecklenburg, K.R.: Self-lubricating aluminum metal-matrix composites dispersed with tungsten disulfide and silicon carbide. Lubr. Eng. 50(7), 511 (1994)

    CAS  Google Scholar 

  70. Das, S., Prasad, S.V., Ramachandran, T.R.: Tribology of Al-Si alloy-graphite composites: triboinduced graphite films and the role of silicon morphology. Mater. Sci. Eng. A. 138(1), 123–132 (1991)

    Google Scholar 

  71. Das, S., Prasad, S.V., Ramachandran, T.R.: Microstructure and wear of cast (Al-Si alloy)-graphite composites. Wear. 133(1), 173–187 (1989)

    CAS  Google Scholar 

  72. Gibson, P.R., Clegg, A.J., Das, A.A.: Wear of cast Al-Si alloys containing graphite. Wear. 95(2), 193–198 (1984)

    CAS  Google Scholar 

  73. Biswas, S.K., Bai, B.N.P.: Dry wear of Al-graphite particle composites. Wear. 68(3), 347–358 (1981)

    CAS  Google Scholar 

  74. Jha, A.K., Prasad, S.V., Upadhyaya, G.S.: Sintered 6061 aluminium alloy – solid lubricant particle composites: sliding wear and mechanisms of lubrication. Wear. 133(1), 163–172 (1989)

    CAS  Google Scholar 

  75. Akhlaghi, F., Mahdavi, S.: Effect of the SiC content on the tribological properties of hybrid Al/Gr/SiC composites processed by in situ powder metallurgy (IPM) method. Adv. Mater. Res. 264–265, 1878–1886 (2011)

    Google Scholar 

  76. Maurya, R., et al.: Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy. Mater. Des. 98, 155–166 (2016)

    CAS  Google Scholar 

  77. Sarmadi, H., Kokabi, A., Reihani, S.S.: Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP). Wear. 304(1), 1–12 (2013)

    CAS  Google Scholar 

  78. Soleymani, S., Abdollah-Zadeh, A., Alidokht, S.: Microstructural and tribological properties of Al5083 based surface hybrid composite produced by friction stir processing. Wear. 278, 41–47 (2012)

    Google Scholar 

  79. Dolatkhah, A., et al.: Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater. Des. 37, 458–464 (2012)

    CAS  Google Scholar 

  80. Alidokht, S.A., et al.: Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing. Mater. Des. 32(5), 2727–2733 (2011)

    CAS  Google Scholar 

  81. Gan, Y., Solomon, D., Reinbolt, M.: Friction stir processing of particle reinforced composite materials. Materials. 3(1), 329 (2010)

    CAS  Google Scholar 

  82. Chen, L.-Y., et al.: Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr. Mater. 67(1), 29–32 (2012)

    CAS  Google Scholar 

  83. Nickchi, T., Ghorbani, M.: Pulsed electrodeposition and characterization of bronze-graphite composite coatings. Surf. Coat. Technol. 203(20), 3037–3043 (2009)

    CAS  Google Scholar 

  84. Algul, H., et al.: The effect of graphene content and sliding speed on the wear mechanism of nickel-graphene nanocomposites. Appl. Surf. Sci. 359, 340–348 (2015)

    CAS  Google Scholar 

  85. Uysal, M., et al.: Structural and sliding wear properties of Ag/Graphene/WC hybrid nanocomposites produced by electroless co-deposition. J. Alloys Compd. 654, 185–195 (2016)

    CAS  Google Scholar 

  86. Pialago, E.J.T., Kwon, O.K., Park, C.W.: Cold spray deposition of mechanically alloyed ternary Cu–CNT–SiC composite powders. Ceram. Int. 41(5), 6764–6775 (2015)

    CAS  Google Scholar 

  87. Pialago, E.J.T., Park, C.W.: Cold spray deposition characteristics of mechanically alloyed Cu-CNT composite powders. Appl. Surf. Sci. 308, 63–74 (2014)

    CAS  Google Scholar 

  88. Cho, S., et al.: Multi-walled carbon nanotube-reinforced copper nanocomposite coating fabricated by low-pressure cold spray process. Surf. Coat. Technol. 206(16), 3488–3494 (2012)

    CAS  Google Scholar 

  89. Bakshi, S.R., et al.: Nanoscratch behavior of carbon nanotube reinforced aluminum coatings. Thin Solid Films. 518(6), 1703–1711 (2010)

    CAS  Google Scholar 

  90. Bakshi, S.R., et al.: Deformation and damage mechanisms of multiwalled carbon nanotubes under high-velocity impact. Scr. Mater. 59(5), 499–502 (2008)

    CAS  Google Scholar 

  91. Bakshi, S.R., et al.: Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf. Coat. Technol. 202(21), 5162–5169 (2008)

    CAS  Google Scholar 

  92. Chen, Y., Bakshi, S.R., Agarwal, A.: Correlation between nanoindentation and nanoscratch properties of carbon nanotube reinforced aluminum composite coatings. Surf. Coat. Technol. 204(16), 2709–2715 (2010)

    CAS  Google Scholar 

  93. Pialago, E.J.T., et al.: Ternary Cu–CNT–AlN composite coatings consolidated by cold spray deposition of mechanically alloyed powders. J. Alloys Compd. 650, 199–209 (2015)

    CAS  Google Scholar 

  94. Pialago, E.J.T., Kwon, O.K., Park, C.W.: Nucleate boiling heat transfer of R134a on cold sprayed CNT–Cu composite coatings. Appl. Therm. Eng. 56(1), 112–119 (2013)

    CAS  Google Scholar 

  95. Rajkumar, K., Aravindan, S.: Tribological performance of microwave sintered copper–TiC–graphite hybrid composites. Tribol. Int. 44(4), 347–358 (2011)

    CAS  Google Scholar 

  96. Rajkumar, K., Aravindan, S.: Tribological studies on microwave sintered copper–carbon nanotube composites. Wear. 270(9), 613–621 (2011)

    CAS  Google Scholar 

  97. Rajkumar, K., Aravindan, S.: Tribological behavior of microwave processed copper–nanographite composites. Tribol. Int. 57, 282–296 (2013)

    CAS  Google Scholar 

  98. Mogonye, J.E., et al.: Solid/self-lubrication mechanisms of an additively manufactured Ni–Ti–C metal matrix composite. Tribol. Lett. 64(3), 37 (2016)

    Google Scholar 

  99. Esawi, A.M.K., et al.: Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater. Sci. Eng. A. 508(1–2), 167–173 (2009)

    Google Scholar 

  100. Kim, K.T., Cha, S.I., Hong, S.H.: Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng. A. 449–451, 46–50 (2007)

    Google Scholar 

  101. Dong, S.R., Tu, J.P., Zhang, X.B.: An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater. Sci. Eng. A. 313(1–2), 83–87 (2001)

    Google Scholar 

  102. Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R. Rep. 74(10), 281–350 (2013)

    Google Scholar 

  103. Scharf, T., et al.: Self-lubricating carbon nanotube reinforced nickel matrix composites. J. Appl. Phys. 106(1), 013508 (2009)

    Google Scholar 

  104. Zhou, S.-m., et al.: Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos. A Appl. Sci. Manuf. 38(2), 301–306 (2007)

    Google Scholar 

  105. Hu, Z., et al.: Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites. Compos. Part B Eng. 93, 352–359 (2016)

    CAS  Google Scholar 

  106. Zhai, W., et al.: Investigation of mechanical and tribological behaviors of multilayer graphene reinforced Ni3Al matrix composites. Compos. Part B Eng. 70, 149–155 (2015)

    CAS  Google Scholar 

  107. Bastwros, M., et al.: Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos. Part B Eng. 60, 111–118 (2014)

    CAS  Google Scholar 

  108. Ghazaly A., Seif B., Salem H.G.: Mechanical and Tribological Properties of AA2124-Graphene Self Lubricating Nanocomposite. In: Sadler B.A. (ed.) Light Metals 2013. The Minerals, Metals & Materials Series. Springer, Cham (2013)

    Google Scholar 

  109. Tyagi, R., et al.: Elevated temperature tribological behavior of Ni based composites containing nano-silver and hBN. Wear. 269(11), 884–890 (2010)

    CAS  Google Scholar 

  110. Selvakumar, N., Narayanasamy, P.: Optimization and effect of weight fraction of MoS2 on the tribological behaviour of Mg-TiC-MoS2 hybrid composites. Tribol. Trans. 59(4), 733–747 (2016)

    Google Scholar 

  111. Kato, H., et al.: Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide. Wear. 255(1), 573–578 (2003)

    CAS  Google Scholar 

  112. Du, L., et al.: Preparation and wear performance of NiCr/Cr3C2–NiCr/hBN plasma sprayed composite coating. Surf. Coat. Technol. 205(12), 3722–3728 (2011)

    CAS  Google Scholar 

  113. Yuan, J., et al.: Fabrication and evaluation of atmospheric plasma spraying WC–Co–Cu–MoS2 composite coatings. J. Alloys Compd. 509(5), 2576–2581 (2011)

    CAS  Google Scholar 

  114. Liu, X.-B., et al.: Development and characterization of laser clad high temperature self-lubricating wear resistant composite coatings on Ti–6Al–4V alloy. Mater. Des. 55, 404–409 (2014)

    CAS  Google Scholar 

  115. Yan, H., et al.: Laser cladding of Co-based alloy/TiC/CaF2 self-lubricating composite coatings on copper for continuous casting mold. Surf. Coat. Technol. 232, 362–369 (2013)

    CAS  Google Scholar 

  116. Zhang, Y., et al.: Cold-sprayed Cu-MoS2 and its fretting wear behavior. J. Therm. Spray Technol. 25(3), 473–482 (2016)

    CAS  Google Scholar 

  117. Neshastehriz, M., et al.: On the bonding mechanism in cold spray of deformable hex-BN-Ni clusters. J. Therm. Spray Technol. 25(5), 982–991 (2016)

    CAS  Google Scholar 

  118. Smid, I., et al.: Cold-sprayed Ni-hBN self-lubricating coatings. Tribol. Trans. 55(5), 599–605 (2012)

    CAS  Google Scholar 

  119. Moridi, A., et al.: Cold spray coating: review of material systems and future perspectives. Surf. Eng. 30(6), 369–395 (2014)

    CAS  Google Scholar 

  120. Hou, X., et al.: Preparation and properties of hexagonal boron nitride fibers used as high temperature membrane filter. Mater. Res. Bull. 49, 39–43 (2014)

    CAS  Google Scholar 

  121. Bi, Q., S. Zhu, and W. Liu, High Temperature Self-Lubricating Materials. In: Pihtili H. (ed.) Tribology in Engineering, pp.109–134. InTech, Rijeka (2013)

    Google Scholar 

  122. Kovalchenko, A., Fushchich, O., Danyluk, S.: The tribological properties and mechanism of wear of Cu-based sintered powder materials containing molybdenum disulfide and molybdenum diselenite under unlubricated sliding against copper. Wear. 290, 106–123 (2012)

    Google Scholar 

  123. Furlan, K.P., et al.: Influence of alloying elements on the sintering thermodynamics, microstructure and properties of Fe–MoS2 composites. J. Alloys Compd. 652, 450–458 (2015)

    CAS  Google Scholar 

  124. Mahathanabodee, S., et al.: Comparative studies on wear behaviour of sintered 316L stainless steels loaded with h-BN and MoS2. Adv. Mater. Res. 747, 307 (2013). Trans Tech Publ

    Google Scholar 

  125. Mahathanabodee, S., et al.: Effects of hexagonal boron nitride and sintering temperature on mechanical and tribological properties of SS316L/h-BN composites. Mater. Des. 46, 588–597 (2013)

    CAS  Google Scholar 

  126. Mahathanabodee, S., et al.: Effect of h-BN content on the sintering of SS316L/h-BN composites. Adv. Mater. Res. 410, 216–219 (2012)

    Google Scholar 

  127. Shi, X., et al.: Tribological behavior of Ni3Al matrix self-lubricating composites containing WS2, Ag and hBN tested from room temperature to 800 °C. Mater. Des. 55, 75–84 (2014)

    CAS  Google Scholar 

  128. Cardenas, A., et al.: Effect of glow discharge sintering in the properties of a composite material fabricated by powder metallurgy. J. Phys. Conf. Ser. 687(1), p. 012025 (2016)

    Google Scholar 

  129. Quazi, M., et al.: A review to the laser cladding of self-lubricating composite coatings. Lasers Manuf. Mater. Process. 3(2), 67–99 (2016)

    Google Scholar 

  130. Xu, J., Liu, W., Zhong, M.: Microstructure and dry sliding wear behavior of MoS2/TiC/Ni composite coatings prepared by laser cladding. Surf. Coat. Technol. 200(14–15), 4227–4232 (2006)

    CAS  Google Scholar 

  131. Lei, Y., et al.: Microstructure and phase transformations in laser clad CrxSy/Ni coating on H13 steel. Opt. Lasers Eng. 66, 181–186 (2015)

    Google Scholar 

  132. Zhang, S., et al.: Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating. Mater. Sci. Eng. A. 491(1), 47–54 (2008)

    Google Scholar 

  133. Zhu, S., et al.: Ni3Al matrix high temperature self-lubricating composites. Tribol. Int. 44(4), 445–453 (2011)

    CAS  Google Scholar 

  134. Liu, X.-B., et al.: Effects of temperature and normal load on tribological behavior of nickel-based high temperature self-lubricating wear-resistant composite coating. Compos. Part B Eng. 53, 347–354 (2013)

    CAS  Google Scholar 

  135. Wang, A., et al.: Ni-based alloy/submicron WS2 self-lubricating composite coating synthesized by Nd: YAG laser cladding. Mater. Sci. Eng. A. 475(1), 312–318 (2008)

    Google Scholar 

  136. Liu, X.-B., et al.: Microstructure and wear behavior of γ/Al4C3/TiC/CaF2 composite coating on γ-TiAl intermetallic alloy prepared by Nd:YAG laser cladding. Appl. Surf. Sci. 255(11), 5662–5668 (2009)

    CAS  Google Scholar 

  137. Liu, W.-G., et al.: Development and characterization of composite Ni–Cr–C–CaF2 laser cladding on γ-TiAl intermetallic alloy. J. Alloys Compd. 470(1), L25–L28 (2009)

    CAS  Google Scholar 

  138. Papyrin, A.: 2 – The development of the cold spray process A2. In: Champagne, V.K. (ed.) The Cold Spray Materials Deposition Process, pp. 11–42. Woodhead Publishing, Cambridge, England (2007)

    Google Scholar 

  139. Du, H., et al.: Structure, mechanical and sliding wear properties of WC–Co/MoS2–Ni coatings by detonation gun spray. Mater. Sci. Eng. A. 445, 122–134 (2007)

    Google Scholar 

  140. Du, H., et al.: Fabrication and evaluation of D-gun sprayed WC–Co coating with self-lubricating property. Tribol. Lett. 23(3), 261–266 (2006)

    CAS  Google Scholar 

  141. Du, L., et al.: Effect of NiCr clad BaF2·CaF2 addition on wear performance of plasma sprayed chromium carbide-nichrome coating. J. Therm. Spray Technol. 19(3), 551–557 (2010)

    CAS  Google Scholar 

  142. Du, L., et al.: Preparation and characterization of plasma sprayed Ni3Al–hBN composite coating. Surf. Coat. Technol. 205(7), 2419–2424 (2010)

    CAS  Google Scholar 

  143. Sahraeinejad, S., et al.: Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters. Mater. Sci. Eng. A. 626, 505–513 (2015)

    CAS  Google Scholar 

  144. Aruri, D., et al.: Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC + Gr) and (SiC + Al2O3)] fabricated by friction stir processing. J. Mater. Res. Technol. 2(4), 362–369 (2013)

    CAS  Google Scholar 

  145. Klinkov, S.V., Kosarev, V.F., Rein, M.: Cold spray deposition: significance of particle impact phenomena. Aerosp. Sci. Technol. 9(7), 582–591 (2005)

    CAS  Google Scholar 

  146. Champagne, V.K.: 1 – Introduction. In: The Cold Spray Materials Deposition Process, pp. 1–7. Woodhead Publishing, Cambridge, England (2007)

    Google Scholar 

  147. Papyrin, A.N.: Preface. In: Cold Spray Technology, pp. x–xii. Elsevier, Oxford (2007)

    Google Scholar 

  148. Assadi, H., et al.: Bonding mechanism in cold gas spraying. Acta Mater. 51(15), 4379–4394 (2003)

    CAS  Google Scholar 

  149. Papyrin, A., et al.: Chapter 1 – Discovery of the cold spray phenomenon and its basic features. In: Cold Spray Technology, pp. 1–32. Elsevier, Oxford (2007)

    Google Scholar 

  150. Botef, I., Villafuerte, J.: Overview. In: Villafuerte, J. (ed.) Modern Cold Spray: Materials, Process, and Applications, pp. 1–29. Springer International Publishing, Cham (2015)

    Google Scholar 

  151. Stark, L., et al.: Self-lubricating cold-sprayed coatings utilizing microscale nickel-encapsulated hexagonal boron nitride. Tribol. Trans. 55(5), 624–630 (2012)

    CAS  Google Scholar 

  152. Moghadam, A.D., et al.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – a review. Compos. Part B Eng. 77, 402–420 (2015)

    Google Scholar 

  153. Wang, J., et al.: Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66(8), 594–597 (2012)

    CAS  Google Scholar 

  154. Bartolucci, S.F., et al.: Graphene–aluminum nanocomposites. Mater. Sci. Eng. A. 528(27), 7933–7937 (2011)

    CAS  Google Scholar 

  155. Stankovich, S., et al.: Graphene-based composite materials. Nature. 442(7100), 282–286 (2006)

    CAS  Google Scholar 

  156. Rafiee, M.A., et al.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano. 3(12), 3884–3890 (2009)

    CAS  Google Scholar 

  157. Xue, B., et al.: Microstructure and functional mechanism of friction layer in Ni3Al matrix composites with graphene nanoplatelets. J. Mater. Eng. Perform. 25(10), 4126–4133 (2016)

    CAS  Google Scholar 

  158. Chmielewski, M., et al.: Tribological behaviour of copper-graphene composite materials. Key Eng. Mater. 674, 219–224 (2016)

    Google Scholar 

  159. Chen, F., et al.: Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon. 96, 836–842 (2016)

    CAS  Google Scholar 

  160. Moghadam, A.D., et al.: Functional metal matrix composites: self-lubricating, self-healing, and nanocomposites-an outlook. JOM. 66(6), 872–881 (2014)

    Google Scholar 

  161. Akhlaghi, F., Zare-Bidaki, A.: Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al2024–graphite composites produced by in situ powder metallurgy method. Wear. 266(1–2), 37–45 (2009)

    CAS  Google Scholar 

  162. Akhlaghi, F., Pelaseyyed, S.A.: Characterization of aluminum/graphite particulate composites synthesized using a novel method termed “in-situ powder metallurgy”. Mater. Sci. Eng. A. 385(1–2), 258–266 (2004)

    Google Scholar 

  163. Ravindran, P., et al.: Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant. Mater. Des. 51, 448–456 (2013)

    CAS  Google Scholar 

  164. Suresha, S., Sridhara, B.K.: Wear characteristics of hybrid aluminium matrix composites reinforced with graphite and silicon carbide particulates. Compos. Sci. Technol. 70(11), 1652–1659 (2010)

    CAS  Google Scholar 

  165. Choi, H.J., Lee, S.M., Bae, D.H.: Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes. Wear. 270(1–2), 12–18 (2010)

    CAS  Google Scholar 

  166. Poirier, D., Gauvin, R., Drew, R.A.L.: Structural characterization of a mechanically milled carbon nanotube/aluminum mixture. Compos. A Appl. Sci. Manuf. 40(9), 1482–1489 (2009)

    Google Scholar 

  167. Venkatesan, S., Anthony Xavior, M.: Investigation of aluminum (Al7050) metal matrix composites reinforced with graphene nanoparticles using stir casting process. Int. J. Appl. Eng. Res. 10(15), 35778–35783 (2015)

    Google Scholar 

  168. Baradeswaran, A., Perumal, A.E.: Wear and mechanical characteristics of Al 7075/graphite composites. Compos. Part B Eng. 56, 472–476 (2014)

    CAS  Google Scholar 

  169. Riahi, A.R., Alpas, A.T.: The role of tribo-layers on the sliding wear behavior of graphitic aluminum matrix composites. Wear. 251(1–12), 1396–1407 (2001)

    Google Scholar 

  170. Basavarajappa, S., et al.: Influence of sliding speed on the dry sliding wear behaviour and the subsurface deformation on hybrid metal matrix composite. Wear. 262(7), 1007–1012 (2007)

    CAS  Google Scholar 

  171. Guo, M.L.T., Tsao, C.Y.A.: Tribological behavior of self-lubricating aluminium/SiC/graphite hybrid composites synthesized by the semi-solid powder-densification method. Compos. Sci. Technol. 60(1), 65–74 (2000)

    CAS  Google Scholar 

  172. Ravindran, P., et al.: Tribological behaviour of powder metallurgy-processed aluminium hybrid composites with the addition of graphite solid lubricant. Ceram. Int. 39(2), 1169–1182 (2013)

    CAS  Google Scholar 

  173. Shanmughasundaram, P., Subramanian, R.: Wear behaviour of eutectic Al-Si alloy-graphite composites fabricated by combined modified two-stage stir casting and squeeze casting methods. Adv. Mater. Sci. Eng. 2013, 8 (2013)

    Google Scholar 

  174. Goldbaum, D., et al.: Tribological behavior of TiN and Ti (Si,C)N coatings on cold sprayed Ti substrates. Surf. Coat. Technol. 291, 264–275 (2016)

    CAS  Google Scholar 

  175. Li, J., et al.: FIB and TEM characterization of subsurfaces of an Al–Si alloy (A390) subjected to sliding wear. Mater. Sci. Eng. A. 421(1–2), 317–327 (2006)

    Google Scholar 

  176. Li, J.L., Xiong, D.S., Huo, M.F.: Friction and wear properties of Ni–Cr–W–Al–Ti–MoS2 at elevated temperatures and self-consumption phenomena. Wear. 265(3), 566–575 (2008)

    CAS  Google Scholar 

  177. Zhang, S., et al.: Preparation and characterization of reactively sintered Ni3Al–hBN–Ag composite coating on Ni-based superalloy. J. Alloys Compd. 473(1), 462–466 (2009)

    CAS  Google Scholar 

  178. Tyagi, R., Xiong, D., Li, J.: Effect of load and sliding speed on friction and wear behavior of silver/h-BN containing Ni-base P/M composites. Wear. 270(7), 423–430 (2011)

    CAS  Google Scholar 

  179. Tsuya, Y., Umeda, K., Kitamura, M.: Optimum concentration of solid lubricant in compact. Lubr. Eng. 32(8), 402–407 (1976)

    CAS  Google Scholar 

  180. Kumar, P.S., Manisekar, K., Vettivel, S.C.: Effect of extrusion on the microstructure and tribological behavior of copper-tin composites containing MoS2. Tribol. Trans. 59(6), 1016–1030 (2016)

    Google Scholar 

  181. Rohatgi, P.K., et al.: Tribology of metal matrix composites. In: Menezes, L.P., et al. (eds.) Tribology for Scientists and Engineers: From Basics to Advanced Concepts, pp. 233–268. Springer, New York (2013)

    Google Scholar 

  182. Lince, J.R.: Tribology of co-sputtered nanocomposite Au/MoS2 solid lubricant films over a wide contact stress range. Tribol. Lett. 17(3), 419–428 (2004)

    CAS  Google Scholar 

  183. Stoyanov, P., Strauss, H.W., Chromik, R.R.: Scaling effects between micro-and macro-tribology for a Ti–MoS2 coating. Wear. 274, 149–161 (2012)

    Google Scholar 

  184. Uemura, M., et al.: Effect of friction mechanisms on friction coefficient of MoS2 in an ultrahigh vacuum. Lubr. Eng. 43(12), 937–942 (1987)

    CAS  Google Scholar 

  185. Rupert, T.J., Schuh, C.A.: Sliding wear of nanocrystalline Ni–W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater. 58(12), 4137–4148 (2010)

    CAS  Google Scholar 

  186. Rupert, T., et al.: Experimental observations of stress-driven grain boundary migration. Science. 326(5960), 1686–1690 (2009)

    CAS  Google Scholar 

  187. Hamilton, G.M.: Explicit equations for the stresses beneath a sliding spherical contact. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 197(1), 53–59 (1983)

    Google Scholar 

  188. Yao, B., Han, Z., Lu, K.: Dry sliding tribological properties and subsurface structure of nanostructured copper at liquid nitrogen temperature. Wear. 301(1), 608–614 (2013)

    CAS  Google Scholar 

  189. Kliemann, J.-O., et al.: Formation of cold-sprayed ceramic titanium dioxide layers on metal surfaces. J. Therm. Spray Technol. 20(1–2), 292–298 (2011)

    CAS  Google Scholar 

  190. Yamada, M., et al.: Cold spraying of TiO2 photocatalyst coating with nitrogen process gas. J. Therm. Spray Technol. 19(6), 1218–1223 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard R. Chromik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Chromik, R.R. (2018). Tribology of Self-Lubricating Metal Matrix Composites. In: Menezes, P., Rohatgi, P., Omrani, E. (eds) Self-Lubricating Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56528-5_2

Download citation

Publish with us

Policies and ethics