Skip to main content

The Role of Orthobiologics in Return to Play

  • Chapter
  • First Online:
Return to Play in Football

Abstract

Bioactive proteins and growth factors are an integral component of healing processes and have the potential to affect metabolic cascades that impact tissue regeneration at all stages. These factors can be used in athletes for a wide variety of musculoskeletal injuries in the form of such biologics as platelet-rich plasma, or in conjunction with cellular therapies, to facilitate return to play. Cellular therapies, most often used in the form of mesenchymal stem cell isolates, are increasingly being used to treat athletic injury. In addition to tendinous or ligamentous injury, mesenchymal stem cell therapies are used to treat articular cartilage lesions. In combination with biologic scaffolding, mesenchymal stem cell isolates can be used to treat cartilage lesions of wide ranging sizes and severity. Orthobiologic therapies are advancing rapidly and are used to treat a large spectrum of injuries, helping to facilitate return to play at all levels of football competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Top Five Evidence Based References

  • Caplan AI (2016) MSCs: the sentinel and safe-guards of injury. J Cell Physiol 231(7):1413–1416

    Article  CAS  PubMed  Google Scholar 

  • Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  PubMed  Google Scholar 

  • Filardo G, Kon E, Roffi A, Di Matteo B, Merli ML, Marcacci M (2015) Platelet-rich plasma: why intra-articular? A systematic review of preclinical studies and clinical evidence on PRP for joint degeneration. Knee Surg Sports Traumatol Arthrosc 23(9):2459–2474

    Article  CAS  PubMed  Google Scholar 

  • Gobbi A, Bathan L, Boldrini L (2009) Primary repair combined with bone marrow stimulation in acute anterior cruciate ligament lesions results in a group of athletes. Am J Sports Med 37(3):571–578

    Article  PubMed  Google Scholar 

  • Gobbi A, Whyte GP (2016) One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med 44(11):2846–2854

    Article  PubMed  Google Scholar 

References

  1. Andia I, Sanchez M, Maffulli N (2010) Tendon healing and platelet-rich plasma therapies. Expert Opin Biol Ther 10(10):1415–1426

    Article  PubMed  Google Scholar 

  2. Aspenberg P, Forslund C (1999) Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand 70(1):51–54

    Article  CAS  PubMed  Google Scholar 

  3. Black LL, Gaynor J, Adams C, Dhupa S, Sams AE, Taylor R, Harman S, Gingerich DA, Harman R (2007) Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther 9(3):192–200

    Google Scholar 

  4. Black LL, Gaynor J, Gahring D, Adams C, Aron D, Harman S, Gingerich DA, Harman R (2007) Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther 8(4):272–284

    PubMed  Google Scholar 

  5. Bosetti M, Borrone A, Follenzi A, Messaggio F, Tremolada C, Cannas M (2016) Human lipoaspirate as autologous injectable active scaffold for one-step repair of cartilage defects. Cell Transplant 25(6):1043–1056

    Article  PubMed  Google Scholar 

  6. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  CAS  PubMed  Google Scholar 

  7. Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429–435

    CAS  PubMed  Google Scholar 

  8. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347

    Article  CAS  PubMed  Google Scholar 

  9. Caplan AI (2015) Adult mesenchymal stem cells: when, where, and how. Stem Cells Int 2015:628767. https://doi.org/10.1155/2015/628767

    Article  PubMed  PubMed Central  Google Scholar 

  10. Caplan AI (2016) MSCs: the sentinel and safe-guards of injury. J Cell Physiol 231(7):1413–1416

    Article  CAS  PubMed  Google Scholar 

  11. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749

    Article  CAS  PubMed  Google Scholar 

  13. Chen CH (2009) Strategies to enhance tendon graft--bone healing in anterior cruciate ligament reconstruction. Chang Gung Med J 32(5):483–493

    PubMed  Google Scholar 

  14. Chen CH, Cao Y, YF W, Bais AJ, Gao JS, Tang JB (2008) Tendon healing in vivo: gene expression and production of multiple growth factors in early tendon healing period. J Hand Surg [Am] 33(10):1834–1842

    Article  Google Scholar 

  15. Chen WC, Corselli M, Péault B, Huard J (2012) Human blood-vessel-derived stem cells for tissue repair and regeneration. J Biomed Biotechnol 2012:597439. https://doi.org/10.1155/2012/597439

    PubMed  PubMed Central  Google Scholar 

  16. Chen WC, Péault B, Huard J (2015) Regenerative translation of human blood-vessel-derived MSC precursors. Stem Cells Int 2015:375187. https://doi.org/10.1155/2015/375187

    PubMed  PubMed Central  Google Scholar 

  17. Cheng M, Wang H, Yoshida R, Murray MM (2010) Platelets and plasma proteins are both required to stimulate collagen gene expression by anterior cruciate ligament cells in three-dimensional culture. Tissue Eng Part A 16(5):1479–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen M, Amaro JT, Ejnisman B, Carvalho RT, Nakano KK, Peccin MS, Teixeira R, Laurino CF, Abdalla RJ (2007) Anterior cruciate ligament reconstruction after 10 to 15 years: association between meniscectomy and osteoarthrosis. Arthroscopy 23(6):629–634

    Article  PubMed  Google Scholar 

  19. Cole BJ, Seroyer ST, Filardo G, Bajaj S, Fortier LA (2010) Platelet-rich plasma: where are we now and where are we going? Sports Health 2(3):203–210

    Article  PubMed  PubMed Central  Google Scholar 

  20. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  CAS  PubMed  Google Scholar 

  21. Date H, Furumatsu T, Sakoma Y, Yoshida A, Hayashi Y, Abe N, Ozaki T (2010) GDF-5/7 and bFGF activate integrin alpha2-mediated cellular migration in rabbit ligament fibroblasts. J Orthop Res 28(2):225–231

    CAS  PubMed  Google Scholar 

  22. de Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, Brini AT, D’Amico G, Fagioli F, Ferrero I, Locatelli F, Maccario R, Marazzi M, Parolini O, Pessina A, Torre ML, Italian Mesenchymal Stem Cell Group (2013) Mesenchymal stem/stromal cells: a new “cells as drugs” paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 19(13):2459–2473

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T (2008) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leukocyte and platelet-rich fibrin (L-PRF). Trends Biotechnol 27(3):158–167

    Article  Google Scholar 

  24. Gimble JM, Guilak F, Nuttall ME, Sathishkumar S, Vidal M, Bunnell BA (2008) In vitro differentiation potential of mesenchymal stem cells. Transfus Med Hemother 35(3):228–238

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gobbi A, Bathan L, Boldrini L (2009) Primary repair combined with bone marrow stimulation in acute anterior cruciate ligament lesions results in a group of athletes. Am J Sports Med 37(3):571–578

    Article  PubMed  Google Scholar 

  26. Gobbi A, Karnatzikos G, Mahajan V, Malchira S (2012) Platelet-rich plasma treatment in symptomatic patients with knee osteoarthritis: preliminary results in a group of active patients. Sports Health 4(2):162–172

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gobbi A, Karnatzikos G, Sankineani SR, Petrera M (2013) Biological augmentation of ACL refixation in partial lesions in a group of athletes: results at the 5-Year follow-up. Tech Orthopaed 28(2):180–184

    Article  Google Scholar 

  28. Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM (2017) One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc 25:2494. https://doi.org/10.1007/s00167-016-3984-6

    Article  PubMed  Google Scholar 

  29. Gobbi A, Whyte GP (2016) One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med 44(11):2846–2854

    Article  PubMed  Google Scholar 

  30. Jackson L, Jones DR, Scotting P, Sottile V (2007) Adult mesenchymal stem cells: differentiation potential and therapeutic applications. J Postgrad Med 53(2):121–127

    Article  CAS  PubMed  Google Scholar 

  31. Kaplan N, Wickiewicz TL, Warren RF (1990) Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med 18(4):354–358

    Article  CAS  PubMed  Google Scholar 

  32. Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:732742. https://doi.org/10.1155/2013/732742

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kiapour AM, Murray MM (2014) Basic science of anterior cruciate ligament injury and repair. Bone Joint Res 3(2):20–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim S, Bosque J, Meehan JP, Jamali A, Marder R (2011) Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. J Bone Joint Surg Am 93(11):994–1000

    Article  PubMed  Google Scholar 

  35. Kobayashi D, Kurosaka M, Yoshiya S, Mizuno K (1997) Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 5(3):189–194

    Article  CAS  PubMed  Google Scholar 

  36. Kobayashi M, Itoi E, Minagawa H, Miyakoshi N, Takahashi S, Tuoheti Y, Okada K, Shimada Y (2006) Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. J Shoulder Elbow Surg 15(3):371–377

    Article  PubMed  Google Scholar 

  37. Koh YG, Choi YJ (2012) Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee 19(6):902–907

    Article  PubMed  Google Scholar 

  38. Koh YG, Jo SB, Kwon OR, Suh DS, Lee SW, Park SH, Choi YJ (2013) Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy 29(4):748–755

    Article  PubMed  Google Scholar 

  39. Lee AY, Lee J, Kim CL, Lee KS, Lee SH, NY G, Kim JM, Lee BC, Koo OJ, Song JY, Cha SH (2015) Comparative studies on proliferation, molecular markers and differentiation potential of mesenchymal stem cells from various tissues (adipose, bone marrow, ear skin, abdominal skin, and lung) and maintenance of multipotency during serial passages in miniature pig. Res Vet Sci 100:115–124

    Article  CAS  PubMed  Google Scholar 

  40. Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C (2011) What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. Tissue Eng Part B Rev 17(3):165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769

    Article  PubMed  Google Scholar 

  42. Madry H, Kohn D, Cucchiarini M (2013) Direct FGF-2 gene transfer via recombinant adeno-associated virus vectors stimulates cell proliferation, collagen production, and the repair of experimental lesions in the human ACL. Am J Sports Med 41(1):194–202

    Article  PubMed  Google Scholar 

  43. Marui T, Niyibizi C, Georgescu HI, Cao M, Kavalkovich KW, Levine RE, Woo SL (1997) Effect of growth factors on matrix synthesis by ligament fibroblasts. J Orthop Res 15(1):18–23

    Article  CAS  PubMed  Google Scholar 

  44. Mishra A, Woodall J, Vieira A (2009) Treatment of tendon and muscle using platelet-rich plasma. Clin Sports Med 28(1):113–125

    Article  PubMed  Google Scholar 

  45. Molloy T, Wang Y, Murrell GAC (2003) The roles of growth factors in tendon and ligament healing. Sports Med 33(5):381–394

    Article  PubMed  Google Scholar 

  46. Muller B, Bowman KF, Bedi A (2013) ACL graft healing and biologics. Clin Sports Med 32(1):93–109

    Article  PubMed  Google Scholar 

  47. Murray MM, Fleming BC (2013) Biology of anterior cruciate ligament injury and repair: kappa delta ann doner vaughn award paper 2013. J Orthop Res 31(10):1501–1506

    Article  PubMed  PubMed Central  Google Scholar 

  48. Murray MM, Martin SD, Martin TL, Spector M (2000) Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am 82:1387–1397

    Article  PubMed  Google Scholar 

  49. Murray MM, Palmer M, Abreu E, Spindler KP, Zurakowski D, Fleming BC (2009) Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: an in vivo study. J Orthop Res 27(5):639–645

    Article  PubMed  PubMed Central  Google Scholar 

  50. Murray MM, Spindler KP, Abreu E, Muller JA, Nedder A, Kelly M, Frino J, Zurakowski D, Valenza M, Snyder BD, Conolly SA (2007) Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res 25(1):81–91

    Article  PubMed  Google Scholar 

  51. Nagineni CN, Amiel D, Green MH, Berchuck M, Akeson WH (1992) Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: an in vitro cell culture study. J Orthop Res 10(4):465–475

    Article  CAS  PubMed  Google Scholar 

  52. Nakase J, Tsuchiya H, Kitaoka K (2012) Contralateral anterior cruciate ligament injury after anterior cruciate ligament reconstruction: a case controlled study. Sports Med Arthrosc Rehabil Ther Technol 4(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nishimoto S, Oyama T, Matsuda K (2007) Simultaneous concentration of platelets and marrow cells: a simple and useful technique to obtain source cells and growth factors for regenerative medicine. Wound Repair Regen 15(1):156–162

    Article  PubMed  Google Scholar 

  54. Noyes FR, Mooar LA, Moorman CT III, McGinniss GH (1989) Partial tears of the anterior cruciate ligament. Progression to complete ligament deficiency. J Bone Joint Surg Br 71(5):825–833

    Article  CAS  PubMed  Google Scholar 

  55. Podesta L, Crow SA, Volkmer D, Bert T, Yocum LA (2013) Treatment of partial ulnar collateral ligament tears in the elbow with platelet-rich plasma. Am J Sports Med 41(7):1689–1694

    Article  PubMed  Google Scholar 

  56. Sadlik B, Gobbi A, Puszkarz M, Klon W, Whyte GP (2017) Biologic inlay osteochondral reconstruction: arthroscopic one-step osteochondral lesion repair in the knee Using morselized bone grafting and hyaluronic acid-based scaffold embedded with bone marrow aspirate concentrate. Arthrosc Tech 6:e383. https://doi.org/10.1016/j.eats.2016.10.023

    Article  PubMed  PubMed Central  Google Scholar 

  57. Seijas R, Ares O, Cusco X, Alvarez P, Steinbacher G, Cugat R (2014) Partial anterior cruciate ligament tears treated with intraligamentary plasma rich in growth factors. World J Orthop 5(3):373–378

    Article  PubMed  PubMed Central  Google Scholar 

  58. Toghraie FS, Chenari N, Gholipour MA, Faghih Z, Torabinejad S, Dehghani S, Ghaderi A (2011) Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in Rabbit. Knee 18(2):71–75

    Article  CAS  PubMed  Google Scholar 

  59. Toghraie FS, Razmkhah M, Gholipour MA, Faghih Z, Chenari N, Torabi Nezhad S, Nazhvani Dehghani S, Ghaderi A (2012) Scaffold-free adipose-derived stem cells (ASCs) improve experimentally induced osteoarthritis in rabbits. Arch Iran Med 15(8):495–499

    PubMed  Google Scholar 

  60. Ude CC, Sulaiman SB, Min-Hwei N, Hui-Cheng C, Ahmad J, Yahaya NM, Saim AB, Idrus RB (2014) Cartilage regeneration by chondrogenic induced adult stem cells in osteoarthritic sheep model. PLoS One 9(6):e98770

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vavken P, Murray MM (2009) Translational Studies in ACL repair. Tissue Eng Part B 16(1):5–11

    Article  Google Scholar 

  62. Whyte GP, Gobbi A, Sadlik B (2016) Dry arthroscopic single-stage cartilage repair of the knee using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells (HA-BMAC). Arthrosc Tech 5(4):e913–e918

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wurgler-Hauri CC, Dourte LM, Baradet TC, Williams GR, Soslowsky LJ (2007) Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elbow Surg 16(5):198S–203S

    Article  Google Scholar 

  64. Xie J, Wang C, Huang DY, Zhang Y, Xu J, Kolesnikov SS, Sung KP, Zhao H (2013) TGF-beta1 induces the different expressions of lysyl oxidases and matrix metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after mechanical injury. J Biomech 46(5):890–898

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gobbi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whyte, G.P., Gobbi, A., Lane, J.G. (2018). The Role of Orthobiologics in Return to Play. In: Musahl, V., Karlsson, J., Krutsch, W., Mandelbaum, B., Espregueira-Mendes, J., d'Hooghe, P. (eds) Return to Play in Football. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55713-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55713-6_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55712-9

  • Online ISBN: 978-3-662-55713-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics