Skip to main content

Applications of MEMS to Cell Biology

  • Chapter
Springer Handbook of Nanotechnology

Abstract

Relatively simple microscale devices such as cantilevers already have found distinct applications in the study of cells and subcellular structures. The ability to measure small forces, small features, and small masses has led to unique and elegant measurement solutions. In this chapter, we give a brief background of some relevant fundamental biology and provide examples of research in cell biology, ranging from mechanobiology, physiology, microbiology to cancer biology, where MEMS- and NEMS-based methods have had a significant and, most likely, lasting impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Lodish, A. Berk, C.A. Kaiser, M. Krieger, A. Bretscher, H. Ploegh, A. Ammon, K. Martin: Molecular Cell Biology, 8th edn. (W. H. Freeman, New York 2016)

    Google Scholar 

  2. A. Koch: Bacterial Growth and Form (Springer, Dordrecht 2001)

    Google Scholar 

  3. P.D. Odermatt, A. Shivanandan, H. Deschout, R. Jankele, A.P. Nievergelt, L. Feletti, M.W. Davidson, A. Radenovic, G.E. Fantner: High-resolution correlative microscopy: Bridging the gap between single molecule localization microscopy and atomic force microscopy, Nano Lett 15(8), 4896–4904 (2015)

    Google Scholar 

  4. C.J.R. Sheppard: Resolution and superresolution, Microsc. Res. Tech. 80(6), 590–598 (2017)

    Google Scholar 

  5. E. Betzig, G.H. Patterson, R. Sougrat, O.W. Lindwasser, S. Olenych, J.S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, H.F. Hess: Imaging intracellular fluorescent proteins at nanometer resolution, Science 313(5793), 1642–1645 (2006)

    Google Scholar 

  6. S.T. Hess, T.P. Girirajan, M.D. Mason: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys J 91(11), 4258–4272 (2006)

    Google Scholar 

  7. M.J. Rust, M. Bates, X. Zhuang: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3(10), 793–795 (2006)

    Google Scholar 

  8. S.W. Hell, J. Wichmann: Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19(11), 780–782 (1994)

    Google Scholar 

  9. B. Harke, J. Chacko, H. Haschke, C. Canale, A. Diaspro: A novel nanoscopic tool by combining AFM with STED microscopy, Opt. Nanoscopy 1(1), 3 (2012)

    Google Scholar 

  10. J.V. Chacko, F.C. Zanacchi, A. Diaspro: Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach, Cytoskeleton (Hoboken) 70(11), 729–740 (2013)

    Google Scholar 

  11. S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil, T. Seufferlein: Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria, Acta Biomaterialia 1(1), 15–30 (2005)

    Google Scholar 

  12. S.E. Cross, Y.-S. Jin, J. Rao, J.K. Gimzewski: Nanomechanical analysis of cells from cancer patients, Nat. Nanotechnol. 2(12), 780–783 (2007)

    Google Scholar 

  13. Y.I. Rabinovich, S. Daosukho, K.J. Byer, H.E. El-Shall, S.R. Khan: Direct AFM measurements of adhesion forces between calcium oxalate monohydrate and kidney epithelial cells in the presence of Ca2+ and Mg2+ ions, J. Colloid Interface Sci. 325(2), 594–601 (2008)

    Google Scholar 

  14. B. Cappella, G. Dietler: Force-distance curves by atomic force microscopy, Surf. Sci. Rep. 34(1), 1–104 (1999)

    Google Scholar 

  15. J.L. Hutter, J. Bechhoefer: Calibration of atomic-force microscope tips, Rev. Sci. Instrum. 64(7), 1868–1873 (1993)

    Google Scholar 

  16. J.E. Sader, J.W.M. Chon, P. Mulvaney: Calibration of rectangular atomic force microscope cantilevers, Rev. Sci. Instrum. 70(10), 3967–3969 (1999)

    Google Scholar 

  17. J.P. Cleveland, S. Manne, D. Bocek, P.K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64(2), 403–405 (1993)

    Google Scholar 

  18. J. te Riet, A.J. Katan, C. Rankl, S.W. Stahl, A.M. van Buul, I.Y. Phang, A. Gomez-Casado, P. Schön, J.W. Gerritsen, A. Cambi, A.E. Rowan, G.J. Vancso, P. Jonkheijm, J. Huskens, T.H. Oosterkamp, H. Gaub, P. Hinterdorfer, C.G. Figdor, S. Speller: Interlaboratory round robin on cantilever calibration for AFM force spectroscopy, Ultramicroscopy 111(12), 1659–1669 (2011)

    Google Scholar 

  19. H.J. Butt, M. Jaschke: Calculation of thermal noise in atomic force microscopy, Nanotechnology 6(1), 1 (1995)

    Google Scholar 

  20. J.E. Sader: Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, J. Appl. Phys. 84(1), 64–76 (1998)

    Google Scholar 

  21. European Cooperation in Science and Technology: European network on applications of Atomic Force Microscopy to NanoMedicine and Life Sciences (AFM4NanoMed&Bio), http://www.cost.eu/COST_Actions/bmbs/TD1002 (2011)

  22. J.L. Alonso, W.H. Goldmann: Feeling the forces: atomic force microscopy in cell biology, Life Sci 72(23), 2553–2560 (2003)

    Google Scholar 

  23. H. Hertz: Ueber die Beruehrung fester elastischer Koerper, J. reine angew. Math. 92, 156–171 (1881)

    Google Scholar 

  24. A. Touhami, B. Nysten, Y.F. Dufrêne: Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy, Langmuir 19(11), 4539–4543 (2003)

    Google Scholar 

  25. I. Sokolov, M.E. Dokukin, N.V. Guz: Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments, Methods 60(2), 202–213 (2013)

    Google Scholar 

  26. I. Diaconu, D. Dorohoi: Properties of polyurethane thin films, Optoelectron. Adv. Mater 7(2), 921–924 (2005)

    Google Scholar 

  27. M.E. Dokukin, I. Sokolov: On the measurements of rigidity modulus of soft materials in nanoindentation experiments at small depth, Macromolecules 45(10), 4277–4288 (2012)

    Google Scholar 

  28. G. Smolyakov, C. Formosa-Dague, C. Severac, R.E. Duval, E. Dague: High speed indentation measures by FV, QI and QNM introduce a new understanding of bionanomechanical experiments, Micron 85, 8–14 (2016)

    Google Scholar 

  29. R. García, R. Pérez: Dynamic atomic force microscopy methods, Surf. Sci. Rep. 47(6–8), 197–301 (2002)

    Google Scholar 

  30. B.V. Derjaguin, V.M. Muller, Y.P. Toporov: Effect of contact deformations on the adhesion of particles, J. Colloid Interface Sci. 53(2), 314–326 (1975)

    Google Scholar 

  31. R. Garcia, R. Perez: Dynamic atomic force microscopy methods, Surface Sci. Rep. 47(6–8), 197–301 (2002)

    Google Scholar 

  32. M. Radmacher, J.P. Cleveland, M. Fritz, H.G. Hansma, P.K. Hansma: Mapping interaction forces with the atomic force microscope, Biophys. J. 66(6), 2159–2165 (1994)

    Google Scholar 

  33. D. Alsteens, V. Dupres, S. Yunus, J.-P. Latgé, J.J. Heinisch, Y.F. Dufrêne: High-resolution imaging of chemical and biological sites on living cells using peak force tapping atomic force microscopy, Langmuir 28(49), 16738–16744 (2012)

    Google Scholar 

  34. Y.F. Dufrene, D. Martinez-Martin, I. Medalsy, D. Alsteens, D.J. Muller: Multiparametric imaging of biological systems by force-distance curve-based AFM, Nat. Methods 10(9), 847–854 (2013)

    Google Scholar 

  35. E.K. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, R.S. Chadwick: Determination of elastic moduli of thin layers of soft material using the atomic force microscope, Biophys. J. 82(5), 2798–2810 (2002)

    Google Scholar 

  36. N. Gavara, R.S. Chadwick: Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips, Nat. Nanotechnol. 7(11), 733–736 (2012)

    Google Scholar 

  37. World Health Organization: Cancer, http://www.who.int/cancer/en/ (2016)

  38. J. Folkman: How is blood-vessel growth regulated in normal and neoplastic tissue – GHA clowes memorial award lecture, Cancer Res. 46(2), 467–473 (1986)

    Google Scholar 

  39. J. Folkman: The role of angiogenesis in tumor growth, Seminars Cancer Biol 3(2), 65–71 (1992)

    Google Scholar 

  40. E.C. Woodhouse, R.F. Chuaqui, L.A. Liotta: General mechanisms of metastasis, Cancer 80(S8), 1529–1537 (1997)

    Google Scholar 

  41. I.J. Fidler: Critical determinants of cancer metastasis: Rationale for therapy, Cancer Chemother. Pharmacol. 43(1), S3–S10 (1999)

    Google Scholar 

  42. L.A. Liotta: Tumor invasion and metastases – Role of the extracellular matrix: Rhoads Memorial Award lecture, Cancer Res. 46(1), 1–7 (1986)

    Google Scholar 

  43. J.B. Wyckoff, J.G. Jones, J.S. Condeelis, J.E. Segall: A critical step in metastasis: In vivo analysis of intravasation at the primary tumor, Cancer Res. 60(9), 2504–2511 (2000)

    Google Scholar 

  44. G.L. Nicolson: Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites, Biochim. Biophys. Acta Rev. Cancer 948(2), 175–224 (1988)

    Google Scholar 

  45. G. Poste, I.J. Fidler: The pathogenesis of cancer metastasis, Nature 283(5743), 139–146 (1980)

    Google Scholar 

  46. I.J. Fidler: The organ microenvironment and cancer metastasis, Differentiation 70(9/10), 498–505 (2002)

    Google Scholar 

  47. I.J. Fidler: The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited, Nat. Rev. Cancer 3(6), 453–458 (2003)

    Google Scholar 

  48. A.F. Chambers, A.C. Groom, I.C. MacDonald: Metastasis: Dissemination and growth of cancer cells in metastatic sites, Nat. Rev. Cancer 2(8), 563–572 (2002)

    Google Scholar 

  49. M. Yilmaz, G. Christofori: EMT, the cytoskeleton, and cancer cell invasion, Cancer Metastasis Rev 28(1), 15–33 (2009)

    Google Scholar 

  50. D. Wirtz, K. Konstantopoulos, P.C. Searson: The physics of cancer: the role of physical interactions and mechanical forces in metastasis, Nat. Rev. Cancer 11(7), 512–522 (2011)

    Google Scholar 

  51. M.O. Krisenko, A. Cartagena, A. Raman, R.L. Geahlen: Nanomechanical property maps of breast cancer cells as determined by multiharmonic atomic force microscopy reveal syk-dependent changes in microtubule stability mediated by MAP1B, Biochemistry 54(1), 60–68 (2015)

    Google Scholar 

  52. E.K.F. Yim, E.M. Darling, K. Kulangara, F. Guilak, K.W. Leong: Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells, Biomaterials 31(6), 1299–1306 (2010)

    Google Scholar 

  53. S. Suresh: Biomechanics and biophysics of cancer cells, Acta Biomaterialia 3(4), 413–438 (2007)

    MathSciNet  Google Scholar 

  54. K. Greish: Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In: Cancer Nanotechnology: Methods and Protocols, ed. by R.S. Grobmyer, M.B. Moudgil (Humana Press, Totowa 2010) pp. 25–37

    Google Scholar 

  55. A.M. Handorf, Y. Zhou, M.A. Halanski, W.-J. Li: Tissue stiffness dictates development, homeostasis, and disease progression, Organogenesis 11(1), 1–15 (2015)

    Google Scholar 

  56. W.L.K. Chen, C.A. Simmons: Lessons from (patho)physiological tissue stiffness and their implications for drug screening, drug delivery and regenerative medicine, Adv. Drug Deliv. Rev. 63(4/5), 269–276 (2011)

    Google Scholar 

  57. K.D. Costa: Single-cell elastography: Probing for disease with the atomic force microscope, Dis. Mark. 19(2/3), 139–154 (2003)

    Google Scholar 

  58. E.H. Zhou, S.T. Quek, C.T. Lim: Power-law rheology analysis of cells undergoing micropipette aspiration, Biomech. Model. Mechanobiol. 9(5), 563–572 (2010)

    Google Scholar 

  59. Y.-S. Chu, W.A. Thomas, O. Eder, F. Pincet, E. Perez, J.P. Thiery, S. Dufour: Force measurements in E-cadherin–mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through Rac and Cdc42, J. Cell Biol. 167(6), 1183–1194 (2004)

    Google Scholar 

  60. M. Daoudi, E. Lavergne, A. Garin, N. Tarantino, P. Debré, F. Pincet, C. Combadière, P. Deterre: Enhanced adhesive capacities of the naturally occurring Ile249–Met280 variant of the chemokine receptor CX3CR1, J. Biol. Chem. 279(19), 19649–19657 (2004)

    Google Scholar 

  61. K. Sung, L.A. Sung, M. Crimmins, S.J. Burakoff, S. Chien: Determination of junction avidity of cytolytic T cell and target cell, Science 234(4782), 1405–1408 (1986)

    Google Scholar 

  62. R. Fodil, V. Laurent, E. Planus, D. Isabey: Characterization of cytoskeleton mechanical properties and 3D-actin structure in twisted adherent epithelial cells, Biorheology 40(1–3), 241–245 (2003)

    Google Scholar 

  63. D.R. Gossett, H.T. Tse, S.A. Lee, Y. Ying, A.G. Lindgren, O.O. Yang, J. Rao, A.T. Clark, D. Di Carlo: Hydrodynamic stretching of single cells for large population mechanical phenotyping, Proc. Natl. Acad. Sci. USA 109(20), 7630–7635 (2012)

    Google Scholar 

  64. Y. Li, C. Wen, H. Xie, A. Ye, Y. Yin: Mechanical property analysis of stored red blood cell using optical tweezers, Colloids Surf. B 70(2), 169–173 (2009)

    Google Scholar 

  65. D. Kirmizis, S. Logothetidis: Atomic force microscopy probing in the measurement of cell mechanics, Int. J. Nanomed. 5(137), e45 (2010)

    Google Scholar 

  66. K.C. Neuman, A. Nagy: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy, Nat. Methods 5(6), 491–505 (2008)

    Google Scholar 

  67. M. Lekka, K. Pogoda, J. Gostek, O. Klymenko, S. Prauzner-Bechcicki, J. Wiltowska-Zuber, J. Jaczewska, J. Lekki, Z. Stachura: Cancer cell recognition – Mechanical phenotype, Micron 43(12), 1259–1266 (2012)

    Google Scholar 

  68. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H.M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, C. Bilby: Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence, Biophys. J. 88(5), 3689–3698 (2005)

    Google Scholar 

  69. Y. Wu, G.D. McEwen, S. Harihar, S.M. Baker, D.B. DeWald, A. Zhou: BRMS1 expression alters the ultrastructural, biomechanical and biochemical properties of MDA-MB-435 human breast carcinoma cells: An AFM and Raman microspectroscopy study, Cancer Lett 293(1), 82–91 (2010)

    Google Scholar 

  70. Y.M. Sung, X. Xu, J. Sun, D. Mueller, K. Sentissi, P. Johnson, E. Urbach, F. Seillier-Moiseiwitsch, M.D. Johnson, S.C. Mueller: Tumor suppressor function of syk in human MCF10A in vitro and normal mouse mammary epithelium in vivo, PLoS ONE 4(10), e7445 (2009)

    Google Scholar 

  71. H. Jin, J. Pi, X. Huang, F. Huang, W. Shao, S. Li, Y. Chen, J. Cai: BMP2 promotes migration and invasion of breast cancer cells via cytoskeletal reorganization and adhesion decrease: An AFM investigation, Appl. Microbiol. Biotechnol. 93(4), 1715–1723 (2012)

    Google Scholar 

  72. X. Zhang, U. Shrikhande, B.M. Alicie, Q. Zhou, R.L. Geahlen: Role of the protein tyrosine kinase Syk in regulating cell-cell adhesion and motility in breast cancer cells, Mol. Cancer Res. 7(5), 634–644 (2009)

    Google Scholar 

  73. W. Xu, R. Mezencev, B. Kim, L. Wang, J. McDonald, T. Sulchek: Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells, PLoS ONE 7(10), e46609 (2012)

    Google Scholar 

  74. A. Moustakas, C. Stournaras: Regulation of actin organisation by TGF-beta in H-ras-transformed fibroblasts, J. Cell Sci. 112(8), 1169–1179 (1999)

    Google Scholar 

  75. M.E. Grady, R.J. Composto, D.M. Eckmann: Cell elasticity with altered cytoskeletal architectures across multiple cell types, J. Mech. Behav. Biomed. Mater. 61, 197–207 (2016)

    Google Scholar 

  76. T. Wakatsuki, B. Schwab, N.C. Thompson, E.L. Elson: Effects of cytochalasin D and latrunculin B on mechanical properties of cells, J. Cell Sci. 114(5), 1025–1036 (2001)

    Google Scholar 

  77. Y.M. Efremov, M.E. Lomakina, D.V. Bagrov, P.I. Makhnovskiy, A.Y. Alexandrova, M.P. Kirpichnikov, K.V. Shaitan: Mechanical properties of fibroblasts depend on level of cancer transformation, Biochimica et Biophysica Acta (BBA) – Mol. Cell Res. 1843(5), 1013–1019 (2014)

    Google Scholar 

  78. A. Calzado-Martín, M. Encinar, J. Tamayo, M. Calleja, A. San Paulo: Effect of actin organization on the stiffness of living breast cancer cells revealed by peak-force modulation atomic force microscopy, ACS Nano 10(3), 3365–3374 (2016)

    Google Scholar 

  79. M. Plodinec, M. Loparic, C.A. Monnier, E.C. Obermann, R. Zanetti-Dallenbach, P. Oertle, J.T. Hyotyla, U. Aebi, M. Bentires-Alj, Y.H. LimRoderick, C.-A. Schoenenberger: The nanomechanical signature of breast cancer, Nat. Nanotechnol. 7(11), 757–765 (2012)

    Google Scholar 

  80. J.R. Ramos, J. Pabijan, R. Garcia, M. Lekka: The softening of human bladder cancer cells happens at an early stage of the malignancy process, Beilstein J. Nanotechnol. 5, 447–457 (2014)

    Google Scholar 

  81. G. Weder, M.C. Hendriks-Balk, R. Smajda, D. Rimoldi, M. Liley, H. Heinzelmann, A. Meister, A. Mariotti: Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties, Nanomed. Nanotechnol. Biol. Med. 10(1), 141–148 (2014)

    Google Scholar 

  82. A. Goddi, M. Bonardi, S. Alessi: Breast elastography: A literature review, J. Ultrasound 15(3), 192–198 (2012)

    Google Scholar 

  83. S. Abbas, Z. Judit, P. Donald: Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples, Phys. Med. Biol. 52(6), 1565 (2007)

    Google Scholar 

  84. U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.-J. Guntherodt, G.N. Misevic: Binding strength between cell adhesion proteoglycans measured by atomic force microscopy, Science 267(5201), 1173–1175 (1995)

    Google Scholar 

  85. M. Benoit, D. Gabriel, G. Gerisch, H.E. Gaub: Discrete interactions in cell adhesion measured by single-molecule force spectroscopy, Nat. Cell Biol. 2(6), 313–317 (2000)

    Google Scholar 

  86. J. Helenius, C.-P. Heisenberg, H.E. Gaub, D.J. Muller: Single-cell force spectroscopy, J. Cell Sci. 121(11), 1785–1791 (2008)

    Google Scholar 

  87. W. Grange, T. Strunz, I. Schumakovitch, H.-J. Güntherodt, M. Hegner: Molecular recognition and adhesion of individual DNA strands studied by dynamic force microscopy, Single Mol 2(2), 75–78 (2001)

    Google Scholar 

  88. Y. Chen, G. Zeng, S.S. Chen, Q. Feng, Z.W. Chen: AFM force measurements of the gp120–sCD4 and gp120 or CD4 antigen–antibody interactions, Biochem. Biophys. Res. Commun. 407(2), 301–306 (2011)

    Google Scholar 

  89. P.P. Lehenkari, M.A. Horton: Single Integrin Molecule Adhesion Forces in Intact Cells Measured by Atomic Force Microscopy, Biochem. Biophys. Res. Commun. 259(3), 645–650 (1999)

    Google Scholar 

  90. M. Krieg, Y. Arboleda-Estudillo, P.-H. Puech, J. Käfer, F. Graner, D. Müller, C.-P. Heisenberg: Tensile forces govern germ-layer organization in zebrafish, Nat. Cell Biol. 10(4), 429–436 (2008)

    Google Scholar 

  91. H. Sheng-Wen, T. Doan Van Hong, H. Ming-Hua, H. Hsyue-Jen, L. Chung-Hsing, H. Chang-Hsiang, L. Hsi-Hsin: Interactions between chitosan and cells measured by AFM, Biomed. Mat. 5(5), 054117 (2010)

    Google Scholar 

  92. G. Weder, N. Blondiaux, M. Giazzon, N. Matthey, M. Klein, R. Pugin, H. Heinzelmann, M. Liley: Use of force spectroscopy to investigate the adhesion of living adherent cells, Langmuir 26(11), 8180–8186 (2010)

    Google Scholar 

  93. Y.F. Dufrene: Sticky microbes: Forces in microbial cell adhesion, Trends Microbiol. 23(6), 376–382 (2015)

    Google Scholar 

  94. M. Thie, R. Röspel, W. Dettmann, M. Benoit, M. Ludwig, H.E. Gaub, H.W. Denker: Interactions between trophoblast and uterine epithelium: Monitoring of adhesive forces, Hum. Reprod. 13(11), 3211–3219 (1998)

    Google Scholar 

  95. V.T. Moy, E.-L. Florin, H.E. Gaub: Adhesive forces between ligand and receptor measured by AFM, Colloids Surfaces A: Physicochem. Eng. Aspects 93, 343–348 (1994)

    Google Scholar 

  96. T.V. Ratto, K.C. Langry, R.E. Rudd, R.L. Balhorn, M.J. Allen, M.W. McElfresh: Force spectroscopy of the double-tethered concanavalin-a mannose bond, Biophys. J. 86(4), 2430–2437 (2004)

    Google Scholar 

  97. P.-H. Puech, A. Taubenberger, F. Ulrich, M. Krieg, D.J. Muller, C.-P. Heisenberg: Measuring cell adhesion forces of primary gastrulating cells from zebrafish using atomic force microscopy, J. Cell Sci. 118(18), 4199–4206 (2005)

    Google Scholar 

  98. G. Weder, J. Vörös, M. Giazzon, N. Matthey, H. Heinzelmann, M. Liley: Measuring cell adhesion forces during the cell cycle by force spectroscopy, Biointerphases 4(2), 27–34 (2009)

    Google Scholar 

  99. J. Friedrichs, J.M. Torkko, J. Helenius, T.P. Teräväinen, J. Füllekrug, D.J. Muller, K. Simons, A. Manninen: Contributions of galectin-3 and -9 to epithelial cell adhesion analyzed by single cell force spectroscopy, J. Biol. Chem. 282(40), 29375–29383 (2007)

    Google Scholar 

  100. A. Taubenberger, D.A. Cisneros, J. Friedrichs, P.-H. Puech, D.J. Muller, C.M. Franz: Revealing early steps of α2β1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy, Mol. Biol. Cell 18(5), 1634–1644 (2007)

    Google Scholar 

  101. Y.F. Dufrêne: Towards nanomicrobiology using atomic force microscopy, Nat. Rev. Microbiol. 6(9), 674–680 (2008)

    Google Scholar 

  102. S.K. Lower, M.F. Hochella, T.J. Beveridge: Bacterial recognition of mineral surfaces: Nanoscale interactions between Shewanella and α-FeOOH, Science 292(5520), 1360–1363 (2001)

    Google Scholar 

  103. N.P. Boks, H.J. Busscher, H.C. van der Mei, W. Norde: Bond-strengthening in staphylococcal adhesion to hydrophilic and hydrophobic surfaces using atomic force microscopy, Langmuir 24(22), 12990–12994 (2008)

    Google Scholar 

  104. A. Razatos, Y.-L. Ong, M.M. Sharma, G. Georgiou: Molecular determinants of bacterial adhesion monitored by atomic force microscopy, Proc. Natl. Acad. Sci. 95(19), 11059–11064 (1998)

    Google Scholar 

  105. V. Vadillo-Rodríguez, H.J. Busscher, W. Norde, J. De Vries, R.J. Dijkstra, I. Stokroos, H.C. Van Der Mei: Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods, Appl. Environ. Microbiol. 70(9), 5441–5446 (2004)

    Google Scholar 

  106. S. Kang, M. Elimelech: Bioinspired single bacterial cell force spectroscopy, Langmuir 25(17), 9656–9659 (2009)

    Google Scholar 

  107. A. Harimawan, A. Rajasekar, Y.-P. Ting: Bacteria attachment to surfaces - AFM force spectroscopy and physicochemical analyses, J. Colloid Interface Sci. 364(1), 213–218 (2011)

    Google Scholar 

  108. D. Alsteens, A. Beaussart, S. Derclaye, S. El-Kirat-Chatel, H.R. Park, P.N. Lipke, Y.F. Dufrene: Single-cell force spectroscopy of Als-mediated fungal adhesion, Anal. Methods 5(15), 3657–3662 (2013)

    Google Scholar 

  109. A. Beaussart, S. El-Kirat-Chatel, P. Herman, D. Alsteens, J. Mahillon, P. Hols, Y.F. Dufrêne: Single-cell force spectroscopy of probiotic bacteria, Biophys. J. 104(9), 1886–1892 (2013)

    Google Scholar 

  110. T. Cao, H.Y. Tang, X.M. Liang, A.F. Wang, G.W. Auner, S.O. Salley, K.Y.S. Ng: Nanoscale investigation on adhesion of E-coli surface modified silicone using atomic force microscopy, Biotechnol. Bioeng. 94(1), 167–176 (2006)

    Google Scholar 

  111. D. Bieber, S.W. Ramer, C.-Y. Wu, W.J. Murray, T. Tobe, R. Fernandez, G.K. Schoolnik: Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli, Science 280(5372), 2114–2118 (1998)

    Google Scholar 

  112. J.S. Mattick: Type IV pili and twitching motility, Annu. Rev. Microbiol. 56(1), 289–314 (2002)

    Google Scholar 

  113. L. Craig, M.E. Pique, J.A. Tainer: Type IV pilus structure and bacterial pathogenicity, Nat. Rev. Microbil. 2(5), 363–378 (2004)

    Google Scholar 

  114. L.L. Burrows: Pseudomonas aeruginosa twitching motility: Type IV pili in action, Annu. Rev. Microbiol. 66(1), 493–520 (2012)

    MathSciNet  Google Scholar 

  115. S. Lu, M. Giuliani, H. Harvey, L.L. Burrows, R.A. Wickham, J.R. Dutcher: Nanoscale pulling of type IV pili reveals their flexibility and adhesion to surfaces over extended lengths of the pili, Biophys. J. 108(12), 2865–2875 (2015)

    Google Scholar 

  116. A. Beaussart, A.E. Baker, S.L. Kuchma, S. El-Kirat-Chatel, G.A. O’Toole, Y.F. Dufrêne: Nanoscale adhesion forces of pseudomonas aeruginosa type IV pili, ACS Nano 8(10), 10723–10733 (2014)

    Google Scholar 

  117. L.A. Pratt, R. Kolter: Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili, Mol. Microbiol. 30(2), 285–293 (1998)

    Google Scholar 

  118. H. Xu, A.E. Murdaugh, W. Chen, K.E. Aidala, M.A. Ferguson, E.M. Spain, M.E. Núñez: Characterizing pilus-mediated adhesion of biofilm-forming E. coli to chemically diverse surfaces using atomic force microscopy, Langmuir 29(9), 3000–3011 (2013)

    Google Scholar 

  119. K. Anselme: Osteoblast adhesion on biomaterials, Biomaterials 21(7), 667–681 (2000)

    Google Scholar 

  120. F. Baino, S. Fiorilli, C. Vitale-Brovarone: Bioactive glass-based materials with hierarchical porosity for medical applications: Review of recent advances, Acta Biomaterialia 52, 18–32 (2016)

    Google Scholar 

  121. A.J. García, P. Ducheyne, D. Boettiger: Effect of surface reaction stage on fibronectin-mediated adhesion of osteoblast-like cells to bioactive glass, J. Biomed. Mat. Res. 40(1), 48–56 (1998)

    Google Scholar 

  122. S.M. Wiederhorn, Y.-H. Chae, C.G. Simon Jr., J. Cahn, Y. Deng, D. Day: Cell adhesion to borate glasses by colloidal probe microscopy, Acta Biomaterialia 7(5), 2256–2263 (2011)

    Google Scholar 

  123. X. Han, D.E. Day: Reaction of sodium calcium borate glasses to form hydroxyapatite, J. Mat. Sci. Mat. Med. 18(9), 1837–1847 (2007)

    Google Scholar 

  124. D. Day, J. White, R. Brown, K. McMenamin: Transformation of borate glasses into biologically useful materials, Glass Technol 44(2), 75–81 (2003)

    Google Scholar 

  125. S.D. Conzone, J.G. Hemrick, D.E. Day: Glass formation and chemical durability of dysprosium lithium borate glasses intended for in vivo radiation synovectomy, Glass Sci. Technol. 74(2), 39–45 (2001)

    Google Scholar 

  126. W. Huang, D.E. Day, K. Kittiratanapiboon, M.N. Rahaman: Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions, J. Mat. Sci. Mat. Med. 17(7), 583–596 (2006)

    Google Scholar 

  127. W. Huang, M.N. Rahaman, D.E. Day, Y. Li: Mechanisms for converting bioactive silicate, borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution, Phys. Chem. Glasses-Eur. J. Glass Sci. Technol. B 47(6), 647–658 (2006)

    Google Scholar 

  128. H.K. No, N. Young Park, S.L. Ho, S.P. Meyers: Antibacterial activity of chitosans and chitosan oligomers with different molecular weights, Int. J. Food Microbiol. 74(1/2), 65–72 (2002)

    Google Scholar 

  129. L. Zhao, E.F. Burguera, H.H.K. Xu, N. Amin, H. Ryou, D.D. Arola: Fatigue and human umbilical cord stem cell seeding characteristics of calcium phosphate–chitosan–biodegradable fiber scaffolds, Biomaterials 31(5), 840–847 (2010)

    Google Scholar 

  130. R.O. Hynes: Integrins: Versatility, modulation, and signaling in cell adhesion, Cell 69(1), 11–25 (1992)

    Google Scholar 

  131. J. Jokinen, E. Dadu, P. Nykvist, J. Käpylä, D.J. White, J. Ivaska, P. Vehviläinen, H. Reunanen, H. Larjava, L. Häkkinen, J. Heino: Integrin-mediated cell adhesion to type I collagen fibrils, J. Biol. Chem. 279(30), 31956–31963 (2004)

    Google Scholar 

  132. C.M. Franz, A. Taubenberger, P.-H. Puech, D.J. Muller: Studying integrin-mediated cell adhesion at the single-molecule level using AFM force spectroscopy, Sci. Signal. 2007(406), pl5 (2007)

    Google Scholar 

  133. E.P. Wojcikiewicz, X. Zhang, A. Chen, V.T. Moy: Contributions of molecular binding events and cellular compliance to the modulation of leukocyte adhesion, J. Cell Sci. 116(12), 2531–2539 (2003)

    Google Scholar 

  134. E. Ponte, E. Bracco, J. Faix, S. Bozzaro: Detection of subtle phenotypes: The case of the cell adhesion molecule csA in Dictyostelium, Proc. Natl. Acad. Sci. 95(16), 9360–9365 (1998)

    Google Scholar 

  135. D.A. Steeber, T.F. Tedder: Adhesion molecule cascades direct lymphocyte recirculation and leukocyte migration during inflammation, Immunol. Res. 22(2), 299–317 (2000)

    Google Scholar 

  136. T.A. Springer: Adhesion receptors of the immune system, Nature 346(6283), 425–434 (1990)

    Google Scholar 

  137. P. Kubes, S.M. Kerfoot: Leukocyte Recruitment in the Microcirculation: the Rolling Paradigm Revisited, Physiology 16(2), 76–80 (2001)

    Google Scholar 

  138. W. Risau: Differentiation of endothelium, FASEB J 9(10), 926–933 (1995)

    Google Scholar 

  139. X. Zhang, E.P. Wojcikiewicz, V.T. Moy: Dynamic adhesion of T lymphocytes to endothelial cells revealed by atomic force microscopy, Exp. Biol. Med. 231(8), 1306–1312 (2006)

    Google Scholar 

  140. D.C. Radisky: Epithelial-mesenchymal transition, J. Cell Sci. 118(19), 4325–4326 (2005)

    Google Scholar 

  141. E. Tomaskovic-Crook, E.W. Thompson, J.P. Thiery: Epithelial to mesenchymal transition and breast cancer, Breast Cancer Res. 11(6), 1–10 (2009)

    Google Scholar 

  142. M.A. Huber, N. Kraut, H. Beug: Molecular requirements for epithelial–mesenchymal transition during tumor progression, Curr. Opin. Cell Biol. 17(5), 548–558 (2005)

    Google Scholar 

  143. H. Oka, H. Shiozaki, K. Kobayashi, M. Inoue, H. Tahara, T. Kobayashi, Y. Takatsuka, N. Matsuyoshi, S. Hirano, M. Takeichi, T. Mori: Expression of E-Cadherin Cell Adhesion Molecules in Human Breast Cancer Tissues and Its Relationship to Metastasis, Cancer Res. 53(7), 1696–1701 (1993)

    Google Scholar 

  144. T. Okegawa, R.-C. Pong, Y. Li, J.-T. Hsieh: The role of cell adhesion molecule in cancer progression and its application in cancer therapy, Acta Biochim. Polonica – Engl. Edition 51, 445–458 (2004)

    Google Scholar 

  145. C. Ounkomol, S. Yamada, V. Heinrich: Single-cell adhesion tests against functionalized microspheres arrayed on AFM cantilevers confirm heterophilic E- and N-cadherin binding, Biophys. J. 99(12), L100–L102 (2010)

    Google Scholar 

  146. P. Panorchan, M.S. Thompson, K.J. Davis, Y. Tseng, K. Konstantopoulos, D. Wirtz: Single-molecule analysis of cadherin-mediated cell-cell adhesion, J. Cell Sci. 119(1), 66–74 (2006)

    Google Scholar 

  147. R. Omidvar, M. Tafazzoli-shadpour, M.A. Shokrgozar, M. Rostami: Atomic force microscope-based single cell force spectroscopy of breast cancer cell lines: An approach for evaluating cellular invasion, J. Biomech. 47(13), 3373–3379 (2014)

    Google Scholar 

  148. G. Weder, O. Guillaume-Gentil, N. Matthey, F. Montagne, H. Heinzelmann, J. Vörös, M. Liley: The quantification of single cell adhesion on functionalized surfaces for cell sheet engineering, Biomaterials 31(25), 6436–6443 (2010)

    Google Scholar 

  149. E. Potthoff, O. Guillaume-Gentil, D. Ossola, J. Polesel-Maris, S. LeibundGut-Landmann, T. Zambelli, J.A. Vorholt: Rapid and serial quantification of adhesion forces of yeast and Mammalian cells, PLoS One 7(12), e52712 (2012)

    Google Scholar 

  150. E. Potthoff, D. Franco, V. D’Alessandro, C. Starck, V. Falk, T. Zambelli, J.A. Vorholt, D. Poulikakos, A. Ferrari: Toward a rational design of surface textures promoting endothelialization, Nano Lett 14(2), 1069–1079 (2014)

    Google Scholar 

  151. P. Dörig, P. Stiefel, P. Behr, E. Sarajlic, D. Bijl, M. Gabi, J. Vörös, J.A. Vorholt, T. Zambelli: Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology, Appl. Phys. Lett. 97(2), 023701 (2010)

    Google Scholar 

  152. O. Guillaume-Gentil, T. Zambelli, J.A. Vorholt: Isolation of single mammalian cells from adherent cultures by fluidic force microscopy, Lab Chip 14(2), 402–414 (2014)

    Google Scholar 

  153. P. Stiefel, T. Zambelli, J.A. Vorholt: Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere, Appl. Environ. Microbiol. 79(16), 4895–4905 (2013)

    Google Scholar 

  154. O. Guillaume-Gentil, R.V. Grindberg, R. Kooger, L. Dorwling-Carter, V. Martinez, D. Ossola, M. Pilhofer, T. Zambelli, J.A. Vorholt: Tunable single-cell extraction for molecular analyses, Cell 166(2), 506–516 (2016)

    Google Scholar 

  155. O. Guillaume-Gentil, E. Potthoff, D. Ossola, P. Dörig, T. Zambelli, J.A. Vorholt: Force-controlled fluidic injection into single cell nuclei, Small 9(11), 1904–1907 (2013)

    Google Scholar 

  156. A. Meister, M. Gabi, P. Behr, P. Studer, J. Vörös, P. Niedermann, J. Bitterli, J. Polesel-Maris, M. Liley, H. Heinzelmann, T. Zambelli: FluidFM: Combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond, Nano Lett. 9(6), 2501–2507 (2009)

    Google Scholar 

  157. P. Stiefel, F.I. Schmidt, P. Dorig, P. Behr, T. Zambelli, J.A. Vorholt, J. Mercer: Cooperative vaccinia infection demonstrated at the single-cell level using FluidFM, Nano Lett 12(8), 4219–4227 (2012)

    Google Scholar 

  158. S. Di Talia, J.M. Skotheim, J.M. Bean, E.D. Siggia, F.R. Cross: The effects of molecular noise and size control on variability in the budding yeast cell cycle, Nature 448(7156), 947–951 (2007)

    Google Scholar 

  159. E. Gil-Santos, D. Ramos, J. Martinez, M. Fernandez-Regulez, R. Garcia, A. San Paulo, M. Calleja, J. Tamayo: Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires, Nat. Nanotechnol. 5(9), 641–645 (2010)

    Google Scholar 

  160. A. Boisen, S. Dohn, S.S. Keller, S. Schmid, M. Tenje: Cantilever-like micromechanical sensors, Rep. Prog. Phys. 74(3), 036101 (2011)

    Google Scholar 

  161. B. Ilic, D. Czaplewski, M. Zalalutdinov, H.G. Craighead, P. Neuzil, C. Campagnolo, C. Batt: Single cell detection with micromechanical oscillators, J. Vacuum Sci. Technol. B 19(6), 2825–2828 (2001)

    Google Scholar 

  162. D. Ramos, J. Tamayo, J. Mertens, M. Calleja: Photothermal excitation of microcantilevers in liquids, J. Appl. Phys. 99(12), 124904 (2006)

    Google Scholar 

  163. K.Y. Gfeller, N. Nugaeva, M. Hegner: Rapid biosensor for detection of antibiotic-selective growth of Escherichia coli, Appl. Environ. Microbiol. 71(5), 2626–2631 (2005)

    Google Scholar 

  164. T.P. Burg, M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster, K. Babcock, S.R. Manalis: Weighing of biomolecules, single cells and single nanoparticles in fluid, Nature 446(7139), 1066–1069 (2007)

    Google Scholar 

  165. J.A. Efe, R.J. Botelho, S.D. Emr: The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology, Curr. Opin. Cell Biol. 17(4), 402–408 (2005)

    Google Scholar 

  166. N. Maloney, G. Lukacs, J. Jensen, M. Hegner: Nanomechanical sensors for single microbial cell growth monitoring, Nanoscale 6(14), 8242–8249 (2014)

    Google Scholar 

  167. N. Nugaeva, K.Y. Gfeller, N. Backmann, H.P. Lang, M. Düggelin, M. Hegner: Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection, Biosens. Bioelectron. 21(6), 849–856 (2005)

    Google Scholar 

  168. K. Park, J. Jang, D. Irimia, J. Sturgis, J. Lee, J.P. Robinson, M. Toner, R. Bashir: ‘Living cantilever arrays’ for characterization of mass of single live cells in fluids, Lab Chip 8(7), 1034–1041 (2008)

    Google Scholar 

  169. K. Park, L.J. Millet, N. Kim, H. Li, X. Jin, G. Popescu, N.R. Aluru, K.J. Hsia, R. Bashir: Measurement of adherent cell mass and growth, Proc. Natl. Acad. Sci. USA 107(48), 20691–20696 (2010)

    Google Scholar 

  170. A.K. Bryan, V.C. Hecht, W. Shen, K. Payer, W.H. Grover, S.R. Manalis: Measuring single cell mass, volume, and density with dual suspended microchannel resonators, Lab Chip 14(3), 569–576 (2014)

    Google Scholar 

  171. W.H. Grover, A.K. Bryan, M. Diez-Silva, S. Suresh, J.M. Higgins, S.R. Manalis: Measuring single-cell density, Proc. Natl. Acad. Sci. USA 108(27), 10992–10996 (2011)

    Google Scholar 

  172. M. Godin, F.F. Delgado, S. Son, W.H. Grover, A.K. Bryan, A. Tzur, P. Jorgensen, K. Payer, A.D. Grossman, M.W. Kirschner, S.R. Manalis: Using buoyant mass to measure the growth of single cells, Nat. Methods 7(5), 387–390 (2010)

    Google Scholar 

  173. A.K. Bryan, A. Goranov, A. Amon, S.R. Manalis: Measurement of mass, density, and volume during the cell cycle of yeast, Proc. Natl. Acad. Sci. USA 107(3), 999–1004 (2010)

    Google Scholar 

  174. M. Carrera, R.O. Zandomeni, J.L. Sagripanti: Wet and dry density of Bacillus anthracis and other Bacillus species, J. Appl. Microbiol. 105(1), 68–77 (2008)

    Google Scholar 

  175. K. Inoue, M. Nishimura, B.B. Nayak, K. Kogure: Separation of marine bacteria according to buoyant density by use of the density-dependent cell sorting method, Appl. Environ. Microbiol. 73(4), 1049–1053 (2007)

    Google Scholar 

  176. D.C. Jinks, R. Guthrie, E.W. Naylor: Simplified procedure for producing Bacillus subtilis spores for the Guthrie phenylketonuria and other microbiological screening tests, J. Clin. Microbiol. 21(5), 826–829 (1985)

    Google Scholar 

  177. H.I. Adler, W.D. Fisher, A. Cohen, A.A. Hardigree: Miniature escherichia coli cells deficient in dna, Proc. Natl. Acad. Sci. USA 57(2), 321–326 (1967)

    Google Scholar 

  178. J. Drews: Drug discovery: A historical perspective, Science 287(5460), 1960–1964 (2000)

    Google Scholar 

  179. J.P. Overington, B. Al-Lazikani, A.L. Hopkins: How many drug targets are there?, Nat. Rev. Drug. Discov. 5(12), 993–996 (2006)

    Google Scholar 

  180. D.C. Swinney, J. Anthony: How were new medicines discovered?, Nat. Rev. Drug. Discov. 10(7), 507–519 (2011)

    Google Scholar 

  181. E. Gregori-Puigjane, V. Setola, J. Hert, B.A. Crews, J.J. Irwin, E. Lounkine, L. Marnett, B.L. Roth, B.K. Shoichet: Identifying mechanism-of-action targets for drugs and probes, Proc. Natl. Acad. Sci. USA 109(28), 11178–11183 (2012)

    Google Scholar 

  182. T. Lambert: Antibiotics that affect the ribosome, Rev. Sci. Tech. 31(1), 57–64 (2012)

    Google Scholar 

  183. C. Ma, X. Yang, P.J. Lewis: Bacterial transcription as a target for antibacterial drug development, Microbiol. Mol. Biol. Rev. 80(1), 139–160 (2016)

    Google Scholar 

  184. D.L. Johnson, C.B. Stone, D.C. Bulir, B.K. Coombes, J.B. Mahony: A novel inhibitor of Chlamydophila pneumoniae protein kinase D (PknD) inhibits phosphorylation of CdsD and suppresses bacterial replication, BMC Microbiol. 9, 218 (2009)

    Google Scholar 

  185. S.M. Knudsen, M.G. von Muhlen, D.B. Schauer, S.R. Manalis: Determination of bacterial antibiotic resistance based on osmotic shock response, Anal. Chem. 81(16), 7087–7090 (2009)

    Google Scholar 

  186. G. Longo, S. Kasas: Effects of antibacterial agents and drugs monitored by atomic force microscopy, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 6(3), 230–244 (2014)

    Google Scholar 

  187. G. Longo, L. Alonso-Sarduy, L.M. Rio, A. Bizzini, A. Trampuz, J. Notz, G. Dietler, S. Kasas: Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors, Nat. Nanotechnol. 8(7), 522–526 (2013)

    Google Scholar 

  188. S. Kasas, F.S. Ruggeri, C. Benadiba, C. Maillard, P. Stupar, H. Tournu, G. Dietler, G. Longo: Detecting nanoscale vibrations as signature of life, Proc. Natl. Acad. Sci. 112(2), 378–381 (2015)

    Google Scholar 

  189. S. Kasas, F.S. Ruggeri, C. Benadiba, C. Maillard, P. Stupar, H. Tournu, G. Dietler, G. Longo: Detecting nanoscale vibrations as signature of life, Proc. Natl. Acad. Sci. USA 112(2), 378–381 (2015)

    Google Scholar 

  190. Y.F. Dufrêne: Atomic force microscopy in microbiology: New structural and functional insights into the microbial cell surface, mBio 5(4), e01363-14 (2014)

    Google Scholar 

  191. Y.F. Dufrene: Towards nanomicrobiology using atomic force microscopy, Nat. Rev. Microbiol. 6(9), 674–680 (2008)

    Google Scholar 

  192. G.E. Fantner, R.J. Barbero, D.S. Gray, A.M. Belcher: Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy, Nat. Nanotechnol. 5(4), 280–285 (2010)

    Google Scholar 

  193. K.C. Huang, R. Mukhopadhyay, B. Wen, Z. Gitai, N.S. Wingreen: Cell shape and cell-wall organization in Gram-negative bacteria, Proc. Natl. Acad. Sci. USA 105(49), 19282–19287 (2008)

    Google Scholar 

  194. D. Alsteens, C. Verbelen, E. Dague, D. Raze, A.R. Baulard, Y.F. Dufrene: Organization of the mycobacterial cell wall: A nanoscale view, Pflugers Arch 456(1), 117–125 (2008)

    Google Scholar 

  195. E.C. Hett, E.J. Rubin: Bacterial growth and cell division: a mycobacterial perspective, Microbiol. Mol. Biol. Rev. 72(1), 126–156 (2008), table of contents

    Google Scholar 

  196. G. Longo, L.M. Rio, A. Trampuz, G. Dietler, A. Bizzini, S. Kasas: Antibiotic-induced modifications of the stiffness of bacterial membranes, J. Microbiol. Methods 93(2), 80–84 (2013)

    Google Scholar 

  197. P. Polyakov, C. Soussen, J. Duan, J.F. Duval, D. Brie, G. Francius: Automated force volume image processing for biological samples, PLoS One 6(4), e18887 (2011)

    Google Scholar 

  198. G. Francius, P. Polyakov, J. Merlin, Y. Abe, J.M. Ghigo, C. Merlin, C. Beloin, J.F. Duval: Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress, PLoS One 6(5), e20066 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Fantner, G.E., Odermatt, P.D., Eskandarian, H.A. (2017). Applications of MEMS to Cell Biology. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics