Skip to main content

Osteochondritis Dissecans: Pathoanatomy, Classification, and Advances in Biologic Surgical Treatment

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Osteochondritis dissecans (OCD) is an articular disorder that results from a pathologic process involving subchondral bone that frequently leads to injury of the overlying articular cartilage. This condition may lead to significant pain and functional impairment, particularly among young athletes. In cases where surgical treatment is considered, a variety of therapeutic options may be used for repair of the injured tissue, including grafting of the osteochondral unit with allograft or autograft, or cell-based cartilage repair. Recent developments that make use of biomaterials and cell-based cartilage repair have demonstrated encouraging results and are an important treatment advancement in this rapidly evolving field of tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konig F. Ueber freie Körper in den Gelenken. Dtsch Zeitschr Chir. 1888;27:90–109.

    Article  Google Scholar 

  2. Bates JT, Jacobs JC, Shea KG, Oxford JT. Emerging genetic basis of osteochondritis dissecans. Clin Sports Med. 2014;33:199–220. http://linkinghub.elsevier.com/retrieve/pii/S0278591913001282.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krause M, Lehmann D, Amling M, Rolvien T, Frosch K-H, Puschel K, Bohndorf K, Meenen NM. Intact bone vitality and increased accumulation of nonmineralized bone matrix in biopsy specimens of juvenile osteochondritis dissecans: a histological analysis. Am J Sports Med. 2015;43:1337–47. http://ajs.sagepub.com/lookup/doi/10.1177/0363546515572579.

    Article  PubMed  Google Scholar 

  4. Schenck RC, Goodnight JM. Osteochondritis dissecans. J Bone Jt Surgery Am. 1996;78:439–56. http://www.ncbi.nlm.nih.gov/pubmed/8613454.

    Article  Google Scholar 

  5. Keenan OJF, Turner PG, Yeates D, Goldacre MJ. Epidemiology of hospitalised osteochondritis dissecans in young people: incidence, geographical variation and trends over time in England from 2002 to 2010. Knee. 2014;21:497–500. http://linkinghub.elsevier.com/retrieve/pii/S0968016013002378.

    Article  PubMed  Google Scholar 

  6. Lindén B. The incidence of osteochondritis dissecans in the condyles of the femur. Acta Orthop Scand. 1976;47:664–7. http://www.ncbi.nlm.nih.gov/pubmed/1015263.

    Article  PubMed  Google Scholar 

  7. Kessler JI, Nikizad H, Shea KG, Jacobs JC, Bebchuk JD, Weiss JM. The demographics and epidemiology of osteochondritis dissecans of the knee in children and adolescents. Am J Sports Med. 2014;42:320–6. http://ajs.sagepub.com/lookup/doi/10.1177/0363546513510390.

    Article  PubMed  Google Scholar 

  8. Grimm NL, Weiss JM, Kessler JI, Aoki SK. Osteochondritis dissecans of the knee. Clin Sports Med. 2014;33:181–8. http://linkinghub.elsevier.com/retrieve/pii/S0278591913001300.

    Article  PubMed  Google Scholar 

  9. Hefti F, Beguiristain J, Krauspe R, Möller-Madsen B, Riccio V, Tschauner C, Wetzel R, Zeller R. Osteochondritis dissecans: a multicenter study of the European Pediatric Orthopedic Society. J Pediatr Orthop B. 1999;8:231–45. http://www.ncbi.nlm.nih.gov/pubmed/10513356.

    CAS  PubMed  Google Scholar 

  10. Gardiner TB. Osteochondritis dissecans in three members of one family. J Bone Joint Surg Br. 1955;37-B:139–41. http://www.ncbi.nlm.nih.gov/pubmed/14353962.

    CAS  PubMed  Google Scholar 

  11. Mubarak SJ, Carroll NC. Familial osteochondritis dissecans of the knee. Clin Orthop Relat Res. 1979;(140):131–6. http://www.ncbi.nlm.nih.gov/pubmed/477064.

  12. Ribbing S. The hereditary multiple epiphyseal disturbance and its consequences for the aetiogenesis of local malacias—particularly the osteochondrosis dissecans. Acta Orthop Scand. 1955;24:286–99. http://www.ncbi.nlm.nih.gov/pubmed/14398198.

    Article  CAS  PubMed  Google Scholar 

  13. Stougaard J. The hereditary factor in osteochondritis dissecans. J Bone Jt Surg Br. 1961;43:256–8.

    Google Scholar 

  14. Stougaard J. Familial occurrence of osteochondritis dissecans. J Bone Joint Surg Br. 1964;46:542–3. http://www.ncbi.nlm.nih.gov/pubmed/14216462.

    Article  CAS  PubMed  Google Scholar 

  15. Campbell CJ, Ranawat CS. Osteochondritis dissecans: the question of etiology. J Trauma. 1966;6:201–21. http://www.ncbi.nlm.nih.gov/pubmed/5908173.

    Article  CAS  PubMed  Google Scholar 

  16. Chiroff RT, Cooke CP. Osteochondritis dissecans: a histologic and microradiographic analysis of surgically excised lesions. J Trauma. 1975;15:689–96. http://www.ncbi.nlm.nih.gov/pubmed/807740.

    Article  CAS  PubMed  Google Scholar 

  17. Green WT, Banks HH. Osteochondritis dissecans in children. J Bone Joint Surg Am. 1953;35:26–47. http://www.ncbi.nlm.nih.gov/pubmed/13022705.

    Article  PubMed  Google Scholar 

  18. Rogers WM, Gladstone H. Vascular foramina and arterial supply of the distal end of the femur. J Bone Joint Surg Am. 1950;32:867–74. http://www.ncbi.nlm.nih.gov/pubmed/14784497.

    Article  PubMed  Google Scholar 

  19. Fisher AGT. A study of loose bodies composed of cartilage or of cartilage and bone occuring in joints. With special reference to their pathology and etiology. Br J Surg. 1920;8:493–523. http://doi.wiley.com/10.1002/bjs.1800083213.

    Article  Google Scholar 

  20. Garrett JC. Osteochondritis dissecans. Clin Sports Med. 1991;10:569–93. http://www.ncbi.nlm.nih.gov/pubmed/1868560.

    CAS  PubMed  Google Scholar 

  21. Wolbach SB. Osteochondritis dissecans. Arch Surg. 1928;16:1176–86. http://archsurg.jamanetwork.com/article.aspx?doi=10.1001/archsurg.1928.01140060051003.

    Article  Google Scholar 

  22. Fairbank HAT. Osteo-chondritis dissecans. Br J Surg. 1933;21:67–82. http://doi.wiley.com/10.1002/bjs.1800218108.

    Article  Google Scholar 

  23. Smillie IS. Treatment of osteochondritis dissecans. J Bone Joint Surg Br. 1957;39-B:248–60. http://www.ncbi.nlm.nih.gov/pubmed/13438964.

    CAS  PubMed  Google Scholar 

  24. Caffey J, Madell SH, Royer C, Morales P. Ossification of the distal femoral epiphysis. J Bone Joint Surg Am. 1958;40-A:647–54. http://www.ncbi.nlm.nih.gov/pubmed/13539090.

    Article  CAS  PubMed  Google Scholar 

  25. Garrett JC, Kress KJ, Mudano M. Osteochondritis dissecans of the lateral femoral condyle in the adult. Arthrosc J Arthrosc Relat Surg. 1992;8:474–81. http://www.ncbi.nlm.nih.gov/pubmed/1466708.

    Article  CAS  Google Scholar 

  26. Wilson JN. A diagnostic sign in osteochondritis dissecans of the knee. J Bone Joint Surg Am. 1967;49:477–80. http://www.ncbi.nlm.nih.gov/pubmed/6022357.

    Article  CAS  PubMed  Google Scholar 

  27. Schwarz C, Blazina ME, Sisto DJ, Hirsh LC. The results of operative treatment of osteochondritis dissecans of the patella. Am J Sports Med. 1988;16:522–9. http://www.ncbi.nlm.nih.gov/pubmed/3189687.

    Article  CAS  PubMed  Google Scholar 

  28. Zbojniewicz AM, Laor T. Imaging of osteochondritis dissecans. Clin Sports Med. 2014;33:221–50. http://linkinghub.elsevier.com/retrieve/pii/S0278591913001336.

    Article  PubMed  Google Scholar 

  29. Wall EJ, Polousky JD, Shea KG, Carey JL, Ganley TJ, Grimm NL, Jacobs JC, Edmonds EW, Eismann EA, Anderson AF, Heyworth BE, Lyon R, Murnaghan ML, Nissen C, Weiss J, Wright R, Myer GD. Novel radiographic feature classification of knee osteochondritis dissecans: a multicenter reliability study. Am J Sports Med. 2015;43:303–9. http://ajs.sagepub.com/lookup/doi/10.1177/0363546514566600.

    Article  PubMed  Google Scholar 

  30. Aglietti P, Buzzi R, Bassi PB, Fioriti M. Arthroscopic drilling in juvenile osteochondritis dissecans of the medial femoral condyle. Arthrosc J Arthrosc Relat Surg. 1994;10:286–91. http://www.ncbi.nlm.nih.gov/pubmed/8086022.

    Article  CAS  Google Scholar 

  31. Wall EJ, Heyworth BE, Shea KG, Edmonds EW, Wright RW, Anderson AF, Eismann EA, Myer GD. Trochlear groove osteochondritis dissecans of the knee patellofemoral joint. J Pediatr Orthop. 2014;34:625–30. http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01241398-900000000-99795.

    PubMed  Google Scholar 

  32. Cahill B. Osteochondritis dissecans of the knee: treatment of juvenile and adult forms. J Am Acad Orthop Surg. 1995;3:237–47. http://www.ncbi.nlm.nih.gov/pubmed/10795030.

    Article  CAS  PubMed  Google Scholar 

  33. Guhl JF. Arthroscopic treatment of osteochondritis dissecans. Clin Orthop Relat Res. 1982;(167):65–74. http://www.ncbi.nlm.nih.gov/pubmed/7047040.

  34. Carey JL, Grimm NL. Treatment algorithm for osteochondritis dissecans of the knee. Clin Sports Med. 2014;33:375–82. http://linkinghub.elsevier.com/retrieve/pii/S0278591914000039.

    Article  PubMed  Google Scholar 

  35. Cain EL, Clancy WG. Treatment algorithm for osteochondral injuries of the knee. Clin Sports Med. 2001;20:321–42. http://www.ncbi.nlm.nih.gov/pubmed/11398361.

    Article  CAS  PubMed  Google Scholar 

  36. Kocher MS, Micheli LJ, Yaniv M, Zurakowski D, Ames A, Adrignolo AA. Functional and radiographic outcome of juvenile osteochondritis dissecans of the knee treated with transarticular arthroscopic drilling. Am J Sports Med. 29:562–6. http://www.ncbi.nlm.nih.gov/pubmed/11573913.

  37. Robertson W, Kelly BT, Green DW. Osteochondritis dissecans of the knee in children. Curr Opin Pediatr. 2003;15:38–44. http://www.ncbi.nlm.nih.gov/pubmed/12544270.

    Article  PubMed  Google Scholar 

  38. Wall E, Von Stein D. Juvenile osteochondritis dissecans. Orthop Clin North Am. 2003;34:341–53. http://www.ncbi.nlm.nih.gov/pubmed/12974484.

    Article  PubMed  Google Scholar 

  39. Salci L, Ayeni O, Abouassaly M, Farrokhyar F, D’Souza J, Bhandari M, Peterson D. Indications for surgical management of osteochondritis dissecans of the knee in the pediatric population: a systematic review. J Knee Surg. 2013;27:147–56. http://www.thieme-connect.de/DOI/DOI?10.1055/s-0033-1360653.

    Article  PubMed  Google Scholar 

  40. Eismann EA, Pettit RJ, Wall EJ, Myer GD. Management strategies for osteochondritis dissecans of the knee in the skeletally immature athlete. J Orthop Sport Phys Ther. 2014;44:665–79. http://www.jospt.org/doi/10.2519/jospt.2014.5140.

    Article  Google Scholar 

  41. Abouassaly M, Peterson D, Salci L, Farrokhyar F, D’Souza J, Bhandari M, Ayeni OR. Surgical management of osteochondritis dissecans of the knee in the paediatric population: a systematic review addressing surgical techniques. Knee Surg Sports Traumatol Arthrosc. 2014;22:1216–24. http://link.springer.com/10.1007/s00167-013-2531-y.

    Article  CAS  PubMed  Google Scholar 

  42. Kramer DE, Yen Y-M, Simoni MK, Miller PE, Micheli LJ, Kocher MS, Heyworth BE. Surgical management of osteochondritis dissecans lesions of the patella and trochlea in the pediatric and adolescent population. Am J Sports Med. 2015;43:654–62. http://ajs.sagepub.com/lookup/doi/10.1177/0363546514562174.

    Article  PubMed  Google Scholar 

  43. Anderson AF, Pagnani MJ. Osteochondritis dissecans of the femoral condyles. Long-term results of excision of the fragment. Am J Sports Med. 1997;25:830–4. http://www.ncbi.nlm.nih.gov/pubmed/9397273.

    Article  CAS  PubMed  Google Scholar 

  44. Federico DJ, Lynch JK, Jokl P. Osteochondritis dissecans of the knee: a historical review of etiology and treatment. Arthrosc J Arthrosc Relat Surg. 1990;6:190–7. http://www.ncbi.nlm.nih.gov/pubmed/2206181.

    Article  CAS  Google Scholar 

  45. Twyman RS, Desai K, Aichroth PM. Osteochondritis dissecans of the knee. A long-term study. J Bone Joint Surg Br. 1991;73:461–4. http://www.ncbi.nlm.nih.gov/pubmed/1670450.

    Article  CAS  PubMed  Google Scholar 

  46. Wright RW, McLean M, Matava MJ, Shively RA. Osteochondritis dissecans of the knee: long-term results of excision of the fragment. Clin Orthop Relat Res. 2004;(424):239–43. http://www.ncbi.nlm.nih.gov/pubmed/15241178.

  47. Aglietti P, Ciardullo A, Giron F, Ponteggia F. Results of arthroscopic excision of the fragment in the treatment of osteochondritis dissecans of the knee. Arthrosc J Arthrosc Relat Surg. 2001;17:741–6. http://linkinghub.elsevier.com/retrieve/pii/S0749806301269862.

    Article  CAS  Google Scholar 

  48. Anderson AF, Richards DB, Pagnani MJ, Hovis WD. Antegrade drilling for osteochondritis dissecans of the knee. Arthrosc J Arthrosc Relat Surg. 1997;13:319–24. http://www.ncbi.nlm.nih.gov/pubmed/9195028.

    Article  CAS  Google Scholar 

  49. Barfod G, Svendsen RN. Synovitis of the knee after intraarticular fracture fixation with Biofix. Report of two cases. Acta Orthop Scand. 1992;63:680–1. http://www.ncbi.nlm.nih.gov/pubmed/1471523.

    CAS  PubMed  Google Scholar 

  50. Friederichs MG, Greis PE, Burks RT. Pitfalls associated with fixation of osteochondritis dissecans fragments using bioabsorbable screws. Arthrosc J Arthrosc Relat Surg. 2001;17:542–5. http://linkinghub.elsevier.com/retrieve/pii/S0749806301012579.

    Article  CAS  Google Scholar 

  51. Wu JZ, Herzog W, Hasler EM. Inadequate placement of osteochondral plugs may induce abnormal stress-strain distributions in articular cartilage—finite element simulations. Med Eng Phys. 2002;24:85–97. http://www.ncbi.nlm.nih.gov/pubmed/11886827.

    Article  CAS  PubMed  Google Scholar 

  52. Murphy RT, Pennock AT, Bugbee WD. Osteochondral allograft transplantation of the knee in the pediatric and adolescent population. Am J Sports Med. 2014;42:635–40. http://ajs.sagepub.com/lookup/doi/10.1177/0363546513516747.

    Article  PubMed  Google Scholar 

  53. Berruto M, Delcogliano M, de Caro F, Carimati G, Uboldi F, Ferrua P, Ziveri G, De Biase CF. Treatment of large knee osteochondral lesions with a biomimetic scaffold: results of a multicenter study of 49 patients at 2-year follow-up. Am J Sports Med. 2014;42:1607–17. http://ajs.sagepub.com/lookup/doi/10.1177/0363546514530292.

    Article  PubMed  Google Scholar 

  54. Delcogliano M, de Caro F, Scaravella E, Ziveri G, De Biase CF, Marotta D, Marenghi P, Delcogliano A. Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1260–9. http://link.springer.com/10.1007/s00167-013-2717-3.

    PubMed  Google Scholar 

  55. Filardo G, Kon E, Di Martino A, Busacca M, Altadonna G, Marcacci M. Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med. 2013;41:1786–93. http://ajs.sagepub.com/lookup/doi/10.1177/0363546513490658.

    Article  PubMed  Google Scholar 

  56. Kon E, Filardo G, Di Martino A, Busacca M, Moio A, Perdisa F, Marcacci M. Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med. 2014;42:158–65. http://ajs.sagepub.com/lookup/doi/10.1177/0363546513505434.

    Article  PubMed  Google Scholar 

  57. Peterson L, Minas T, Brittberg M, Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003;85-A(Suppl):17–24. http://www.ncbi.nlm.nih.gov/pubmed/12721341.

    Article  Google Scholar 

  58. Bartlett W, Skinner JA, Gooding CR, Carrington RWJ, Flanagan AM, Briggs TWR, Bentley G. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br. 2005;87:640–5. http://www.bjj.boneandjoint.org.uk/cgi/doi/10.1302/0301-620X.87B5.15905.

    Article  CAS  PubMed  Google Scholar 

  59. Bentley G, Biant LC, Carrington RWJ, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J. A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Jt Surg. 2003;85:223–30. http://www.bjj.boneandjoint.org.uk/cgi/doi/10.1302/0301-620X.85B2.13543.

    Article  CAS  Google Scholar 

  60. Peterson L. Chondrocyte transplantation. In: Jackson D, editor. Master techniques in orthopaedic surgery reconstructive knee surgery. 2nd ed. Philadelphia: Lippincott, Williams, and Wilkins; 2003. p. 353–73.

    Google Scholar 

  61. Bartlett W, Gooding CR, Carrington RWJ, Skinner JA, Briggs TWR, Bentley G. Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. A preliminary report. J Bone Joint Surg Br. 2005;87:330–2. http://www.ncbi.nlm.nih.gov/pubmed/15773640.

    Article  CAS  PubMed  Google Scholar 

  62. Ando W, Tateishi K, Katakai D, Hart DA, Higuchi C, Nakata K, Hashimoto J, Fujie H, Shino K, Yoshikawa H, Nakamura N. In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mechanical properties and further chondrogenic potential. Tissue Eng Part A. 2008;14:2041–9. http://www.liebertonline.com/doi/abs/10.1089/ten.tea.2008.0015.

    Article  CAS  PubMed  Google Scholar 

  63. Djouad F, Mrugala D, Noël D, Jorgensen C. Engineered mesenchymal stem cells for cartilage repair. Regen Med. 2006;1:529–37. http://www.futuremedicine.com/doi/abs/10.2217/17460751.1.4.529.

    Article  CAS  PubMed  Google Scholar 

  64. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998;238:265–72. http://linkinghub.elsevier.com/retrieve/pii/S0014482797938581.

    Article  CAS  PubMed  Google Scholar 

  65. Kasten P, Beyen I, Egermann M, Suda AJ, Moghaddam AA, Zimmermann G, Luginbühl R. Instant stem cell therapy: characterization and concentration of human mesenchymal stem cells in vitro. Eur Cell Mater. 2008;16:47–55.

    Google Scholar 

  66. Scharstuhl A, Schewe B, Benz K, Gaissmaier C, Bühring H-J, Stoop R. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells. 2007;25:3244–51. http://doi.wiley.com/10.1634/stemcells.2007-0300.

    Article  CAS  PubMed  Google Scholar 

  67. Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage. 2015;6:82–97. http://car.sagepub.com/cgi/doi/10.1177/1947603514563597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42:648–57. http://ajs.sagepub.com/lookup/doi/10.1177/0363546513518007.

    Article  PubMed  Google Scholar 

  69. Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc. 2016. http://www.ncbi.nlm.nih.gov/pubmed/26768608.

  70. Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016;44:2846–54. http://www.ncbi.nlm.nih.gov/pubmed/27474386.

    Article  PubMed  Google Scholar 

  71. Sadlik B, Gobbi A, Puszkarz M, Klon W, Whyte GP. Biologic inlay osteochondral reconstruction: arthroscopic one-step osteochondral lesion repair in the knee Using morselized bone grafting and hyaluronic acid-based scaffold embedded with bone marrow aspirate concentrate. Arthrosc Tech. 2017.

    Google Scholar 

  72. Whyte GP, Gobbi A, Sadlik B. Dry arthroscopic single-stage cartilage repair of the knee using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells. Arthrosc Tech. 2016;5:e913–8. http://www.ncbi.nlm.nih.gov/pubmed/27709058.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gobbi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Gobbi, A., Whyte, G.P. (2017). Osteochondritis Dissecans: Pathoanatomy, Classification, and Advances in Biologic Surgical Treatment. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics