Skip to main content

Emerging Orthobiologic Approaches to Ligament Injury

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

Ligament injuries about the knee occur frequently during recreational and competitive sporting activities, and there is a wide array of treatment options to restore function and enable return-to-play. Interventions that utilize biologic therapy, or surgical augmentation with these biologic factors, may provide valuable additional therapeutic options to current methods typically used for treatment of these conditions. Cellular therapies have the potential to address deficiencies in the healing of injured ligaments by treating damaged tissue at a molecular level and by providing an environment that enhances reparative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Institutes of Health (NIH), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Vanderbilt University, United States. Prognosis and predictors of ACL reconstruction—A Multicenter Cohort Study. Available at: http://clinicaltrials.gov/ct2/show/ NCT00463099. Accessed 1 Nov 2016.

  2. Sanders TL, Pareek A, Barrett IJ, Kremers HM, Bryan AJ, Stuart MJ, Levy BA, Krych AJ. Incidence and long-term follow-up of isolated posterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc. 2016; doi:10.1007/s00167-016-4052-y. Epub ahead of print

    Google Scholar 

  3. Posterior Cruciate Ligament Injury: Charles S Peterson, MD; Chief Editor: Craig C Young, MD http://emedicine.medscape.com/article/90514-overview#a6

  4. Dick R. National Collegiate Athletic Association (NCAA) Injury Survellience System 2002-2003. India-napolis, Ind: National Collegiate AthleI:’cAssociation. 2003.

    Google Scholar 

  5. Yawn BP, Amadio P, Harmsen WS, et al. Isolated acute knee injuries in the general population. J Trauma. 2000;48(4):716–23.

    Article  CAS  PubMed  Google Scholar 

  6. Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today. 2013;99(3):203–22. doi:10.1002/bdrc.21041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu CF, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. Tissue Eng Part B Rev. 2011;17(3):165–76. PubMed: 21314435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cohen M, Amaro JT, Ejnisman B, Carvalho RT, Nakano KK, Peccin MS, Teixeira R, Laurino CF, Abdalla RJ. Anterior cruciate ligament reconstruction after 10 to 15 years: association between meniscectomy and osteoarthrosis. Arthroscopy. 2007;23(6):629–34.

    Article  PubMed  Google Scholar 

  9. Vladimirov B. Arterial sources of blood supply in the knee joint in man. Acta Med. 1968;47:1–10.

    CAS  Google Scholar 

  10. Bray RC, Fisher AWF, Frank CB. Fine vascular anatomy of adult rabbit knee ligaments. J Anat. 1990;172:69–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wallace CD, Amiel D. Vascular assessment of the periarticular ligaments of the rabbit knee. J Orthop Res. 1991;9:787–91.

    Article  CAS  PubMed  Google Scholar 

  12. Arnoczky SP. Blood supply to the anterior cruciate ligament and supporting structures. Orthop Clin North Am. 1985;16(1):15–29.

    CAS  PubMed  Google Scholar 

  13. Vavken P, Murray MM. Translational studies in anterior cruciate ligament repair. Tissue Engineering Part B. Reviews. 2009;16(1):5–11.

    Google Scholar 

  14. Murray MM, Martin SD, Martin TL, Spector M. Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am. 2000;82:1387–97.

    Article  PubMed  Google Scholar 

  15. Rosc D, Powierza W, Zastawna E, et al. Post-traumatic plasminogenesis in intraarticular exudate in the knee joint. Med Sci Monit. 2002;8:CR371–8.

    PubMed  Google Scholar 

  16. Andrish J, Holmes R. Effects of synovial fluid on fibroblasts in tissue culture. Clin Orthop Relat Res. 1979;(138):279–283.

    Google Scholar 

  17. Bray RC, Leonard CA, Salo PT. Vascular physiology and long-term healing of partial ligament tears. J Orthop Res. 2002;20:984–9.

    Article  PubMed  Google Scholar 

  18. Miyasaka KC, Daniel DM, Stone ML, et al. The incidence of knee ligament injuries in the general population. Am J Knee Surg. 1991;4:3–8.

    Google Scholar 

  19. Halinen J, Lindahl J, Hirvensalo E. Range of motion and quadriceps muscle power after early surgical treatment of acute combined anterior cruciate and grade-III medical collateral ligament injuries. J Bone Joint Surg. 2009;91A(6):1305–12.

    Article  Google Scholar 

  20. Anoka N, Nyland J, McGinnis M, et al. Consideration of growth factors and bio-scaffolds for treatment of combined grade II MCL and ACL injury. Knee Surg Sports Traumatol Arthrosc. 2012;20(5):878–88.

    Article  PubMed  Google Scholar 

  21. Amiel D, Nagineni CN, Choi SH, et al. Intrinsic properties of ACL and MCL cells and their responses to growth factors. Med Sci Sports Exerc. 1995;27:844–51.

    Article  CAS  PubMed  Google Scholar 

  22. Lee SJ, Aadalen KJ, Malaviya PB, et al. Tibiofemoral contact mechanics after serial medical meniscectomies in the human cadaveric knee. Am J Sports Med. 2006;34:1334–44.

    Article  PubMed  Google Scholar 

  23. Jones L, Bismil Q, Alyas F, et al. Persistent symptoms following non operative management in low grade MCL injury of the knee- the role of the deep MCL. Knee. 2009;16:64–8.

    Article  PubMed  Google Scholar 

  24. Loghmani MT, Warden SJ. Instrument-assisted cross-fiber massage accelerates knee ligament healing. J Orthop Sports Phys Ther. 2009;39:506–14.

    Article  PubMed  Google Scholar 

  25. Wan C, Hao Z, Wen S. The effect of healing in the medial collateral ligament of human knee joint: a three-dimensional finite element analysis. Proc Inst Mech Eng H. 2016. pii: 0954411916656662. [Epub ahead of print].

    Google Scholar 

  26. Hannafin JA, Attia ET, Warren RF, Bhargava MM. Characterization of chemotactic migration and growth kinetics of canine knee ligament fibroblasts. J Orthop Res. 1999;17:398–404. doi:10.1002/jor.1100170315.

    Article  CAS  PubMed  Google Scholar 

  27. Mayo RA. Ruptured cruciate ligaments and their repair by operation. Ann Surg. 1903;37:716–8.

    Google Scholar 

  28. Hey Groves EW. Operation for repair of the cruciate ligaments. Lancet. 1917;2:674–5.

    Article  Google Scholar 

  29. Feagin Jr JA, Curl WW. Isolated tear of the anterior cruciate ligament: 5-year follow-up study. Am J Sports Med. 1976;4:95–100.

    Article  PubMed  Google Scholar 

  30. Steadman JR, Matheny LM, Briggs KK, Rodkey WG, Carreira DS. Outcomes following healing response in older, active patients: a primary anterior cruciate ligament repair technique. J Knee Surg. 2012;25(3):255–60.

    Article  PubMed  Google Scholar 

  31. Steadman JR, Cameron-Donaldson ML, Briggs KK, Rodkey WG. A minimally invasive technique (“healing response”) to treat proximal ACL injuries in skeletally immature athletes. J Knee Surg. 2006;19(1):8–13.

    PubMed  Google Scholar 

  32. Steinert AF, Kunz M, Prager P, Barthel T, Jakob F, Nöth U, Murray MM, Evans CH, Porter RM. Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A. 2011;17(9–10):1375–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gobbi A, Bathan L, Boldrini L. Primary repair combined with bone marrow stimulation in acute anterior cruciate ligament lesions: results in a group of athletes. Am J Sports Med. 2009;37(3):571–8.

    Article  PubMed  Google Scholar 

  34. Gobbi A, Boldrini L, Karnatzikos G, Mahajan V. Clinical outcomes after ACL primary repair and bone marrow stimulation. In: Doral M, et al., editors. Sports injuries-prevention, diagnosis, treatment and rehabilitation. Berlin: Springer; 2012. p. 731–8.

    Google Scholar 

  35. Gobbi A, Karnatzikos G, Sankineani SR, Petrera M. Biological augmentation of ACL re-fixation in partial lesions in a group of athletes: results at 5-year follow-up. Tech Orthop. 2013;28(2):180–4.

    Article  Google Scholar 

  36. Andia I, Sanchez M, Maffulli N. Tendon healing and platelet-rich plasma therapies. Expert Opin Biol Ther. 2010;10(10):1415–26. PubMed: 20718690

    Article  PubMed  Google Scholar 

  37. Chen CH, Cao Y, Wu YF, Bais AJ, Gao JS, Tang JB. Tendon healing in vivo: gene expression and production of multiple growth factors in early tendon healing period. J Hand Surg. 2008;33(10):1834–42. PubMed: 19084187

  38. Kobayashi M, Itoi E, Minagawa H, Miyakoshi N, Takahashi S, Tuoheti Y, Okada K, Shimada Y. Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. J Shoulder Elb Surg. 2006;15(3):371–7. PubMed: 16679241

    Article  Google Scholar 

  39. Molloy T, Wang Y, Murrell GAC. The roles of growth factors in tendon and ligament healing. Sports Med. 2003;33(5):381–94. PubMed: 12696985

    Article  PubMed  Google Scholar 

  40. Wurgler-Hauri CC, Dourte LM, Baradet TC, Williams GR, Soslowsky LJ. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elb Surg. 2007;16(5):198S–203S.

    Article  Google Scholar 

  41. Kobayashi D, Kurosaka M, Yoshiya S, Mizuno K. Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 1997;5(3):189–94.

    Article  CAS  PubMed  Google Scholar 

  42. Aspenberg P, Forslund C. Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand. 1999;70(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  43. Chen CH. Strategies to enhance tendon graft--bone healing in anterior cruciate ligament reconstruction. Chang Gung Med J. 2009;32(5):483–93. Review

    PubMed  Google Scholar 

  44. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leukocyte and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2008;27(3):158–67.

    Article  Google Scholar 

  45. Murray MM, Palmer M, Abreu E, Spindler KP, Zurakowski D, Fleming BC. Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally immature animals: an in vivo study. J Orthop Res. 2009;27(5):639–45.

    Google Scholar 

  46. Murray MM, Spindler KP, Abreu E, et al. Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. J Orthop Res. 2007;25(1):81–91.

    Article  PubMed  Google Scholar 

  47. Klepps S, Bishop J, Lin J, Cahlon O, Strauss A, Hayes P, Flatow EL. Prospective evaluation of the effect of rotator cuff integrity on the outcome of open rotator cuff repairs. Am J Sports Med. 2004;32(7):1716–22. PubMed: 15494338

    Article  PubMed  Google Scholar 

  48. Krueger-Franke M, Siebert CH, Scherzer S. Surgical treatment of ruptures of the Achilles tendon: a review of long-term results. Br J Sports Med. 1995;29(2):121–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Voleti PB, Buckley MR, Soslowsky LJ. Tendon healing: repair and regeneration. Annu Rev Biomed Eng. 2012;14:47–71.

    Article  CAS  PubMed  Google Scholar 

  50. Kuo CK, Marturano JE, Tuan RS. Novel strategies in tendon and ligament tissue engineering: advanced biomaterials and regeneration motifs. Sports Med Arthrosc Rehabil Ther Technol. 2010;2:20.

    PubMed  PubMed Central  Google Scholar 

  51. Canty EG, Kadler KE. Procollagen trafficking, processing and fibrillogenesis. J Cell Sci. 2005;118(Pt 7):1341–53. PubMed: 15788652

    Article  CAS  PubMed  Google Scholar 

  52. Franchi M, Trire A, Quaranta M, Orsini E, Ottani V. Collagen structure of tendon relates to function. Sci World J. 2007;7:404–20. PubMed: 17450305

    Article  CAS  Google Scholar 

  53. Qiu Y, Wang X, Zhang Y, Carr AJ, Zhu L, Xia Z, Sabokbar A. Development of a refined tenocyte differentiation culture technique for tendon tissue engineering. Cells Tissues Organs. 2013;197(1):27–36. PubMed: 22964470

    Article  CAS  PubMed  Google Scholar 

  54. Cao Y, Liu Y, Liu W, Shan Q, Buonocore SD, Cui L. Bridging tendon defects using autologous tenocyte engineered tendon in a hen model. Plast Reconstr Surg. 2002;110(5):1280–9. PubMed: 12360068

    Article  PubMed  Google Scholar 

  55. Chong AK, Riboh J, Smith RL, Lindsey DP, Pham HM, Chang J. Flexor tendon tissue engineering: acellularized and reseeded tendon constructs. Plast Reconstr Surg. 2009;123(6):1759–66. PubMed: 19483576

    Article  CAS  PubMed  Google Scholar 

  56. Tilley JM, Chaudhury S, Hakimi O, Carr AJ, Czernuszka JT. Tenocyte proliferation on collagen scaffolds protects against degradation and improves scaffold properties. J Mater Sci Mater Med. 2012;23(3):823–33. PubMed: 22198644

    Article  CAS  PubMed  Google Scholar 

  57. Van Eijk F, Saris DB, Riesle J, Willems WJ, Van Blitterswijk CA, Verbout AJ, Dhert WJ. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source. Tissue Eng. 2004;10(5–6):893–903. PubMed: 15265307

    Article  PubMed  Google Scholar 

  58. Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y. Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng. 2006;12(4):775–88. PubMed: 16674291

    Article  PubMed  Google Scholar 

  59. Tucker BA, Karamsadkar SS, Khan WS, Pastides P. The role of bone marrow derived mesenchymal stem cells in sports injuries. J Stem Cells. 2010;5(4):155–66. PubMed: 22314864

    CAS  PubMed  Google Scholar 

  60. Liu Y, Ramanath HS, Wang DA. Tendon tissue engineering using scaffold enhancing strategies. Trends Biotechnol. 2008b;26(4):201–9. PubMed: 18295915

    Article  CAS  PubMed  Google Scholar 

  61. Cheng M, Wang H, Yoshida R, Murray MM. Platelets and plasma proteins are both required to stimulate collagen gene expression by anterior cruciate ligament cells in three-dimensional culture. Tissue Eng Part A. 2010;16(5):1479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gobbi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Gobbi, A., Whyte, G.P. (2017). Emerging Orthobiologic Approaches to Ligament Injury. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics