Skip to main content

Bioreaktoren

  • Chapter
  • First Online:
Bioprozesstechnik

Zusammenfassung

Unter einem Bioreaktor wird ein Apparat verstanden, in dem unter Mitwirkung von Biokatalysatoren Stoffumwandlungen mit Enzymen, Mikroorganismen oder Zellen stattfinden. Zum Homogenisieren, Suspendieren und Dispergieren müssen fluide Phasen im Bioreaktor transportiert und intensiv miteinander in Kontakt gebracht werden. Hierzu ist Energie erforderlich. Daher ist es konsequent, die vielfältigen Bauformen von Bioreaktoren nach Art des Energieeintrags zu klassifizieren. In diesem Kapitel werden die entsprechenden Bioreaktorklassen sowie geschüttelte Bioreaktoren jeweils getrennt voneinander behandelt, die wesentlichen Eigenschaften im Hinblick auf die Grundaufgaben beschrieben und die Vorgehensweisen zur Maßstabsvergrößerung von Bioprozessen mit den jeweiligen Bioreaktoren erläutert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Aboka FO, Yang H, de Jonge LP, van Winden WA, van Gulik WM, Oudshorn A Heijnen JJ (2006) Characterization of an experimental miniature bioreactor for cellular perturbation studies. Biotechnol Bioeng 95:1032–1042

    CAS  PubMed  Google Scholar 

  2. Amanullah A, Hjorth SA, Nienow AW (1998) A new mathematical model to predict cavern diameters in highly shear thinning, power law liquids using axial flow impellers. Chem Eng Sci 53:455–469

    CAS  Google Scholar 

  3. Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7:157–162

    CAS  PubMed  Google Scholar 

  4. Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17:187–194

    CAS  Google Scholar 

  5. Badugu R, Kostov Y, Rao G, Tolosa L (2008) Development and application of an excitation ratiometric optical pH sensor for bioprocess monitoring. Biotechnol Prog 24:1393–1401

    CAS  PubMed  Google Scholar 

  6. Bähr C, Leuchtle B, Lehmann C, Becker J, Jeude M, Peinemann F, Arbter R, Büchs J (2012) Dialysis shake flask for effective screening in fed-batch mode. Biochem Eng J 69:182–195

    Google Scholar 

  7. Barrett TA, Wu A, Zhang H, Levy MS, Lye GJ (2010) Microwell engineering characterization for mammalian cell culture process development. Biotechnol Bioeng 105:260–275

    CAS  PubMed  Google Scholar 

  8. Beirat Algenbiotechnologie (2016) Mikroalgen-Biotechnologie – Gegenwärtiger Stand, Herausforderungen, Ziele. Dechema ,Frankfurt am Main.

    Google Scholar 

  9. Betts JI, Baganz F (2006) Miniature bioreactors: current practices and future opportunities. Microb Cell Fact 5:21

    PubMed  PubMed Central  Google Scholar 

  10. Blanch HW, Bhavaraju SM (1976) Non-Newtonian fermentation broths: rheology and mass transfer. Biotechnol Bioeng 18 (6):745–790

    CAS  PubMed  Google Scholar 

  11. Blombach B, Takors R (2015) CO2 – intrinsic product, essential substrate and regulatory trigger of microbial and mammalian production processes. Front Bioeng Biotechnol 3:108. https://doi.org/10.3389/fbioe.2015.00108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Borowitzka MA, Moheimani NR (2013) Algae for Biofuels and Energy. Springer, London

    Google Scholar 

  13. Brüning S, Weuster-Botz D (2014) CFD analysis of interphase mass transfer and energy dissipation in a milliliter-scale stirred-tank reactor for filamentous microorganisms. Chem Eng Res Des 92:240–248

    Google Scholar 

  14. Buchenauer A, Hofmann MC, Funke M, Büchs J, Mokwa W, Schnakenberg U (2009) Micro-bioreactors for fed-batch fermentations with integrated online monitoring and microfluidic devices. Biosens Bioelectron 24:1411–1416

    CAS  PubMed  Google Scholar 

  15. Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7:91–98

    PubMed  Google Scholar 

  16. Büchs J, Zoels B (2001) Evaluation of maximum to specific power consumption ratio in shaking bioreactors. J Chem Eng Japan 34:647–653

    Google Scholar 

  17. Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: I. power consumption measurement in unbaffled flasks at low liquid viscosity. Biotechnol Bioeng 68:589–593

    PubMed  Google Scholar 

  18. Büchs J, Maier U, Milbradt C, Zoels B (2000) Power consumption in shaking flasks on rotary shaking machines: II. nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnol Bioeng 68:594–601

    PubMed  Google Scholar 

  19. Büchs J, Lotter S, Milbradt C (2001) Out-of-phase operating conditions, a hitherto unknown phenomenon in shaking bioreactors. Biochem Eng J 7:135–141

    PubMed  Google Scholar 

  20. Büchs J, Maier U, Lotter S, Peter CP (2007) Calculating liquid distribution in shake flasks on rotary shakers at waterlike viscosities. Biochem Eng J 34:200–208

    Google Scholar 

  21. Buchholz J, Graf M, Freund A, Busche J, Kalinowski J, Blombach B, Takors R (2014) CO2/HCO3 perturbations of simulated large scale gradients in a scale-down device cause fast transcriptional responses in Corynebacterium glutamicum. Appl Microbiol Biotechnol 98(29):8563–8572

    CAS  PubMed  Google Scholar 

  22. Buziol S, Bashir I, Baumeister A, Claassen W, Noisommitt-Rizzi Mailinger W, Reuss M (2002) New bioreactor-coupled rapid stopped flow sampling technique for measurements of metabolite dynamics on subsecond time scale. Biotechnol. Bioeng 80:632–636

    CAS  PubMed  Google Scholar 

  23. Carstensen F, Apel A, Wessling M (2012) In situ product recovery: Submerged membranes versus externals loop membranes. J Membr Sci 394:1–36

    Google Scholar 

  24. Chisti Y, Moo-Young M (1989) On the calculation of shear rate and apparent viscosity in airlift and bubble column bioreactors. Biotechnol Bioeng 34:1391–1392

    CAS  PubMed  Google Scholar 

  25. Chu, (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187

    CAS  PubMed  Google Scholar 

  26. Daub A, Böhm M, Delueg S, Büchs J (2013) Measurement of maximum stable drop size in aerated dilute liquid–liquid dispersions in stirred tanks. Chem Eng Sci 104:147–155

    CAS  Google Scholar 

  27. Daub A, Böhm M, Delueg S, Mühlmann M, Schneider G, Büchs J (2014) Maximum stable drop size measurements indicate turbulence attenuation by aeration in a 3m3 aerated stirred tank. Biochem Eng J 86:24–32

    CAS  Google Scholar 

  28. Deckwer W-D (1985) Reaktionstechnik in Blasensäulen. Salle-Sauerländer, Frankfurt

    Google Scholar 

  29. Delhomme C, Goh S, Kühn F, Weuster-Botz D (2012) Esterification of bio-based succinic acid in biphasic systems: Comparison of chemical and biological catalysts. J Mol Cat B Enz 80:39–47

    CAS  Google Scholar 

  30. Dennewald D, Hortsch R, Weuster-Botz D (2012) Evaluation of parallel millilitre-scale stirred-tank bioreactors for the study of biphasic whole-cell biocatalysis with ionic liquids. J Biotechnol 157:253–257

    CAS  PubMed  Google Scholar 

  31. Doig SD, Pickering SCR, Lye GJ, Baganz F (2005) Modelling surface aeration rates in shaken microtitre plates using dimensionless groups. Chem Eng Sci 60:2741–2750

    CAS  Google Scholar 

  32. Duetz W, Witholt B (2004) Oxygen transfer by orbital shaking of square vessels and deepwell microtiter plates of various dimensions. Biochem Eng J 17:181–185

    CAS  Google Scholar 

  33. Eibl, R, Eibl, D (2015) „Single-Use (disposable)-Systeme in biopharmazuetischen Prozessen: Quo vadis? https://www.analytik-news.de/Fachartikel/Volltext/achema16.pdf. Zugegriffen: 26. Sept. 2017

  34. El Massaoud, M, Spelthahn J, Drysch A, de Graaf AA, Takors R (2003) Production process monitoring by serial mapping of microbial carbon flux distributions using a novel sensor reactor approach: part I: sensor reactor system. Metab Eng 5:86–95

    Google Scholar 

  35. Einsele A (1978) Scaling-up bioreactors. Process Biochem 7:13–14

    Google Scholar 

  36. Ekato GmbH (Hrsg.) (2012) The book. Handbuch der Rührtechnik, Schopfheim

    Google Scholar 

  37. Faust G, Janzen N, Bendig C, Römer L, Kaufmann K, Weuster-Botz D (2014) Feeding strategies enhance high cell density cultivation and protein expression in milliliter-scale bioreactors. Biotechnol J 9:1293–1303

    CAS  PubMed  Google Scholar 

  38. Fernandes P, Cabral J (2006) Microlitre/millilitre shaken bioreactors in fermentative and biotransformation processes–a review. Biocatal Biotransfor 24:237–252

    CAS  Google Scholar 

  39. Flitsch D, Ladner T, Lukacs M, Büchs J (2016) Easy to use and reliable technique for online dissolved oxygen tension measurement in shake flasks using infrared fluorescent oxygen-sensitive nanoparticles. Microb Cell Fact 15:45

    PubMed  PubMed Central  Google Scholar 

  40. Funke M, Diederichs S, Kensy F, Müller C, Büchs J (2009) The baffled microtiter plate: increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol Bioeng 103:1118–1128

    CAS  PubMed  Google Scholar 

  41. Funke M, Buchenauer A, Mokwa W, Kluge S, Hein L, Müller C, Kensy F, Büchs J (2010) Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb Cell Fact 9:86

    PubMed  PubMed Central  Google Scholar 

  42. Garcia-Ochoa F, Gomez E (2009) Bioreactor-scale-up and oxygen transfer in microbial processes: an overview. Biotechnol Adv 27:153–176

    CAS  PubMed  Google Scholar 

  43. Geisler RK (1991) Fluiddynamik und Leistungseintrag in turbulent gerührten Suspensionen. Dissertation TU, München

    Google Scholar 

  44. Giese H, Azizan A, Kümmel A, Liao A, Peter CP, Fonseca JA, Hermann R, Duarte TM, Büchs J (2014) Liquid films on shake flask walls explain increasing maximum oxygen transfer capacities with elevating viscosity. Biotechnol Bioeng 111:295–308

    CAS  PubMed  Google Scholar 

  45. Giese H, Klöckner W, Peña C, Galindo E, Lotter S, Wetzel K, Meissner L, Peter CP, Büchs J (2014) Effective shear rates in shake flasks. Chem Eng Sci 118:102–113

    CAS  Google Scholar 

  46. Green H, Rheinwald JG (1975) Method of controllably releasing glucose to a cell culture medium. US Patent 3(926):723A

    Google Scholar 

  47. Grünberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Weichert W, Kohlheyer D (2012) A disposable picoliter bioreactor for cultivation and investigation of industrially relevant bacteria on single cell level. Lab Chip 12:2060–2068

    PubMed  Google Scholar 

  48. Gupta A, Rao G (2003) A study of oxygen transfer in shake flasks using a non-invasive oxygen sensor. Biotechnol Bioeng 84:351–358

    CAS  PubMed  Google Scholar 

  49. Hansen, S, Kensy, F, Käser, A, Büchs, J (2011) Potential errors in conventional DOT measurement techniques in shake flasks and verification using a rotating flexitube optical sensor. BMC Biotechnol 11:49

    PubMed  PubMed Central  Google Scholar 

  50. Hansen S, Hariskos I, Luchterhand B, Büchs J (2012) Development of a modified respiration activity monitoring system for accurate and highly resolved measurement of respiration activity in shake flask fermentations. J Biol Eng 6:11

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Henzler, H-J (1978) Untersuchungen zum Homogenisieren von Flüssigkeiten und Gasen, VDI-Forschungsheft 587. VDI-Verlag, Düsseldorf

    Google Scholar 

  52. Henzler H-J (1982) Verfahrenstechnische Auslegungsgrundlagen für Rührbehälter als Fermenter. Chem Ing Tech 5:461–476

    Google Scholar 

  53. Henzler H.J (2000) Particle stress in bioreactors. Adv Biochem Eng Biotechnol 67:35–82

    CAS  PubMed  Google Scholar 

  54. Henzler HJ (2007) Auslegung von Rührfermentern – Berücksichtigung der nicht- Newton'schen Eigenschaften von Fermentationslösungen. Chem Ing Tech 79(7):957–965

    Google Scholar 

  55. Henzler H-J, Biedermann A (1996) Modelluntersuchungen zur Partikelbeanspruchung in Reaktoren. Chem Ing Tech 68:154

    Google Scholar 

  56. Henzler HJ, Kauling J (1985) Scale-up of mass transfer in highly viscous liquids. Deutsche Vereinigung für Chemie- und Verfahrenstechnik, (Hrsg) Papers presented at the Fifth European Conference on mixing held at Würzburg/Germany. BHRA, Cranfield,S 303–312

    Google Scholar 

  57. Henzler H, Schedel M (1999) Suitability of the shaking flask for oxygen supply to microbiological cultures. Bioprocess Eng 7:123–131

    Google Scholar 

  58. Hermann R, Walther N, Maier U, Büchs J (2001) Optical method for the determination of the oxygen-transfer capacity of small bioreactors based on sulfite oxidation. Biotechnol Bioeng 74:355–363

    CAS  PubMed  Google Scholar 

  59. Hermann R, Lehmann M, Büchs J (2003) Characterization of gas-liquid mass transfer phenomena in microtiter plates. Biotechnol Bioeng 81:178–186

    CAS  PubMed  Google Scholar 

  60. Hewitt CJ, Nienow AW, (2007) The scale-up of microbial batch and fed-batch fermentation processes. Adv Appl Mirobiol 62:105–135

    CAS  Google Scholar 

  61. Hiller J, Franco-Lara E, Papaioannou V, Weuster-Botz D (2007) Fast sampling and quenching procedures for microbial metabolic profiling. Biotechnol Lett 29(8):1161–1167

    CAS  PubMed  Google Scholar 

  62. Himmelsbach W, Houlton D, Ortlieb D, Lovallo M (2006) New advances in agitation technology for exothermic reactions in very large reactors. Chem Eng Sci 61:3044–3052

    CAS  Google Scholar 

  63. Himmelsbach W, Krebs R (2014) Betriebssicherheit von Rührwerksanlagen. Chem Ing Tech 86:1–16

    Google Scholar 

  64. Höfel T, Wittmann E, Reinecke L, Weuster-Botz D (2010) Reaction engineering studies for the production of 2-hydroxyisobutyric acid with recombinant Cupriavidus necator H16. Appl Microbiol Biotechnol 88: 477–484

    Google Scholar 

  65. Höfel T, Faust G, Reinecke L, Rudinger N, Weuster-Botz D (2012) Comparative reaction engineering studies for succinic acid production from sucrose by metabolically engineered Escherichia coli in fed-batch operated stirred tank bioreactors. Biotechnol J 7:1277–1287.

    Google Scholar 

  66. Hortsch R, Weuster-Botz D (2010) Power consumption and maximum energy dissipation in a milliliter-scale bioreactor. Biotechnol Prog 26:595–599

    CAS  PubMed  Google Scholar 

  67. Hortsch R, Stratmann A, Weuster-Botz D (2010) New millilitre-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms. Biotechnol Bioeng 106 443–451

    CAS  PubMed  Google Scholar 

  68. Hortsch R, Krispin H, Weuster-Botz D (2011) Process performance of parallel bioreactors for batch cultivation of Streptomyces tendae. Bioproc Biosys Eng 34:297–304

    CAS  Google Scholar 

  69. Huber R, Ritter D, Hering, T, Hillmer, A.-K, Kensy, F, Müller, C, Wang, L, Büchs, J (2009) Robo-Lector – a novel platform for automated high-throughput cultivations in microtiter plates with high information content. Microb Cell Fact 8:42

    PubMed  PubMed Central  Google Scholar 

  70. Huber R, Scheidle M, Dittrich B, Klee D, Büchs J (2009) Equalizing growth in high-throughput small scale cultivations via precultures operated in fed-batch mode. Biotechnol Bioeng 103:1095–1102

    CAS  PubMed  Google Scholar 

  71. Idelchik IE (2008) Handbook of hydraulic resistance. Jaico Publishing House, Mumbai

    Google Scholar 

  72. Jeude M, Dittrich B, Niederschulte H, Anderlei T, Knocke C, Klee D, Büchs J (2006) Fed-batch mode in shake flasks by slow-release technique. Biotechnol Bioeng 95:433–445

    CAS  PubMed  Google Scholar 

  73. Junker BH (2004) Scale-up Methodologies for Escherichia coli and Yeast Fermentation Process. J Biosci Bioeng 97(6):347–364

    CAS  PubMed  Google Scholar 

  74. Junne S, Klinger A, Kabisch J, Schweder T, Neubauer PA (2011) Two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: Impact of oscillations on Bacillus subtilis fed-batch cultivations. Biotechnol J 6(8):1009–1017

    CAS  PubMed  Google Scholar 

  75. Kemblowski, Z, Kristiansen, B (1986) Rheometry of fermentation liquids. Biotechnol Bioeng 28:1474–1483

    CAS  PubMed  Google Scholar 

  76. Kensy F, Engelbrecht C, Büchs J (2009) Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations. Microb Cell Fact 8:68

    PubMed  Google Scholar 

  77. Kensy F, Zang E, Faulhammer C, Tan R.-K, Büchs J (2009) Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates. Microb Cell Fact 8:31

    PubMed  Google Scholar 

  78. Kensy F, Zimmermann HF, Knabben I, Anderlei T, Trauthwein H, Dingerdissen U, Büchs J (2005) Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth. Biotechnol Bioeng 89:698–708

    CAS  PubMed  Google Scholar 

  79. Kermis HR, Kostov Y, Harms P, Rao G (2002) Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring: development and application. Biotechnol Prog 18:1047–53

    CAS  PubMed  Google Scholar 

  80. Kirk TV, Szita N (2013) Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 110:1005–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Klöckner W, Büchs J (2011) Shake-Flask Bioreactors 2:213–226

    Google Scholar 

  82. Klöckner W, Büchs J (2012) Advances in shaking technologies. Trends Biotechnol 30:307–314

    PubMed  Google Scholar 

  83. Klöckner W, Gacem R, Anderlei T, Raven N, Schillberg S, Lattermann C, Büchs J (2013) Correlation between mass transfer coefficient kLa and relevant operating parameters in cylindrical disposable shaken bioreactors on a bench-to-pilot scale. J Biol Eng 7:28

    PubMed  PubMed Central  Google Scholar 

  84. Klöckner W, Tissot S, Wurm F, Büchs J (2012) Power input correlation to characterize the hydrodynamics of cylindrical orbitally shaken bioreactors. Biochem Eng J 65:63–69

    Google Scholar 

  85. Klöckner W, Diederichs S, Büchs J (2013) Orbitally Shaken Single-Use Bioreactors. Adv Biochem Eng Biotechnol 123:45–60

    Google Scholar 

  86. Knorr, B, Schlieker, H, Hohmann, H.-P, Weuster-Botz, D (2007) Scale-down and parallel operation of the riboflavin production process with Bacillus subtilis. Biochem Eng J 33:263–274

    CAS  Google Scholar 

  87. Kottmeier K, Müller C, Huber R, Büchs J (2010) Increased product formation induced by a directed secondary substrate limitation in a batch Hansenula polymorpha culture. Appl Microbiol Biotechnol 86:93–101

    CAS  PubMed  Google Scholar 

  88. Kraume M (2012) Transportvorgänge in der Verfahrenstechnik. Springer, Berlin

    Google Scholar 

  89. Kresta SM, Wood PE (1993) The flow field produced by apitched blade turbine characterization of the turbulence and estimation of the dissipation rate. Chem Eng Sci 48:1761–1774

    CAS  Google Scholar 

  90. Kunze M, Roth S, Gartz E, Büchs J (2014) Pitfalls in optical on-line monitoring for high-throughput screening of microbial systems. Microb Cell Fact 13:53

    PubMed  PubMed Central  Google Scholar 

  91. Kusterer, A, Krause, C, Kaufmann, K, Arnold, M, Weuster-Botz, D (2008) Fully automated single-use stirred-tank bioreactors for parallel microbial cultivations. Bioproc Biosys Eng 31:207–215

    CAS  Google Scholar 

  92. Ladner T, Flitsch D, Schlepütz T, Büchs J (2015) Online monitoring of dissolved oxygen tension in microtiter plates based on infrared fluorescent oxygen-sensitive nanoparticles. Microb Cell Fact 14:161

    PubMed  PubMed Central  Google Scholar 

  93. Lange HC, Eman M, van Zuijlen D, Visser D, van Dam JC, Framk J, de Mattos MJT, Heijnen JJ (2001) Improved rapid sampling for the in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75:406–415

    CAS  PubMed  Google Scholar 

  94. Lapin A, Müller D, Reuss M (2004) Dynamic Behavior of Microbial Populations in Stirred Bioreactors Simulated with Euler-Lagrange Methods: Travelling along the Lifeline of Single Cells. Ind Eng Chem Res 43:4647–4657

    CAS  Google Scholar 

  95. Lapin A, Schmid J, Reuss M (2006) Modeling the dynamics of E. coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor – A structured – segregated approach. Chem Eng Sci 61:4783–4797

    CAS  Google Scholar 

  96. Lara AR, Galindo E, Ramirez OT, Palomares LA (2006) Living with heterogeneities in bioreactors, Molecular Biotechnol 34:355–381

    CAS  Google Scholar 

  97. Lattermann C, Büchs J (2015) Microscale and miniscale fermentation and screening. Curr Opin Biotechnol 35:1–6

    CAS  PubMed  Google Scholar 

  98. Lattermann C, Funke M, Hansen S, Diederichs S, Büchs J (2014) Cross-section perimeter is a suitable parameter to describe the effects of different baffle geometries in shaken microtiter plates. J Biol Eng 8:18

    PubMed  PubMed Central  Google Scholar 

  99. Lemoine A, Maya Martίnez-Iturralde N, Spann R, Neubauer P, Junne S (2015) Response of Corynebacterium glutamicum exposed to oscillating cultivation conditions in a two- and a novel three-compartment scale-down bioreactor. Biotechnol Bioeng 1220–1231

    CAS  PubMed  Google Scholar 

  100. Li C, Xia JY, Chu J, Wang YH, Zhuang YP, Zhang SL (2013) CFD analysis of the turbulent flow in baffled shake flasks. Biochem Eng J 70:140–150

    CAS  Google Scholar 

  101. Liepe F, Meusel W, Möckel HO, Platzer B, Weißgärber H (1988) Stoffvereinigung in Fluiden Phasen. Verfahrenstechnische Berechnungsmethoden. Teil 4. VCH, Weinheim

    Google Scholar 

  102. Linek V, Kordač M, Moucha T (2006) Evaluation of the optical sulfite oxidation method for the determination of the interfacial mass transfer area in small-scale bioreactors. Biochem Eng J 27:264–268

    CAS  Google Scholar 

  103. Liu CM, Hong LN (2001) Development of a shaking bioreactor system for animal cell cultures. Biochem Eng J 7:121–125

    CAS  PubMed  Google Scholar 

  104. Losen M, Frölich B, Pohl M, Büchs J (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Prog 20:1062–1068

    CAS  PubMed  Google Scholar 

  105. Lotter S, Büchs J (2004) Utilization of specific power input measurements for optimization of culture conditions in shaking flasks. Biochem Eng J 17:195–203

    CAS  Google Scholar 

  106. Maier U, Büchs J (2001) Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochem Eng J 7:99–106

    CAS  PubMed  Google Scholar 

  107. Mauch K, Vaseghi S, Reuss M (2000) Quantitative analysis of Metabolic and Signalling Pathways in Saccharomyces cerevisiae, In: Schügerl K, Bellgardt KH (Hrsg) Bioreaction engineering. Springer, Heidelberg, 435–477

    Google Scholar 

  108. McDaniel LE, Bailey EG, Zimmerli A (1965) Effect of oxygen supply rates on growth of Escherichia coli. Appl Microbiol 13:109–14

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Mehmood N, Olmos E, Marchal P, Goergen JL, Delaunay S (2010) Relation between pristinamycins production by Streptomyces pristinaespiralis, power dissipation and volumetric gas-liquid mass transfer coefficient, kLa. Process Biochem 45:1779–1786

    CAS  Google Scholar 

  110. Meier K, Klöckner W, Bonhage B, Antonov E, Regestein L, Büchs J (2016) Correlation for the maximum oxygen transfer capacity in shake flasks for a wide range of operating conditions and for different culture media. Biochem Eng J 109:228–235

    CAS  Google Scholar 

  111. Mersmann A (1986) Stoffübertragung. Springer, Berlin

    Google Scholar 

  112. Mersmann A, Einenkel W-D, Käppel M (1975) Auslegung und Maßstabsvergrößerung von Rührapparaten. Chem Ing Tech 47:953

    CAS  Google Scholar 

  113. Metzner AB, Otto RE (1957) Agitation of non-Newtonian fluids. AIChE J 3 (3):3–10

    CAS  Google Scholar 

  114. Moor D, Robsen GD, Trinci ARJ (2011) The QuornTM fermentation and evolution in fermenters. In: Guidebook to fungi. Cambridge Unversity Press

    Google Scholar 

  115. Mrotzek C, Anderlei T, Henzler HJ, Büchs J (2001) Mass transfer resistance of sterile plugs in shaking bioreactors. Biochem Eng J 7:107–112

    CAS  PubMed  Google Scholar 

  116. Muller N, Girard P, Hacker DL, Jordan M, Wurm FM (2005) Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 89:400–406

    CAS  PubMed  Google Scholar 

  117. Nikakhtari H, Hill GA (2006) Closure effects on oxygen transfer and aerobic growth in shake flasks. Biotechnol Bioeng 95:15–21

    CAS  PubMed  Google Scholar 

  118. Noorman H (2011) An industrial perspective on bioreactor scale-down: What can we learn from combined large-scale bioprocess and model fluid studies. Biotechnol J 6(8):934–943

    CAS  PubMed  Google Scholar 

  119. Oosterhuis NMG, Kossen NWF (1983) Dissolved oxygen concentration profiles in a production-scale bioreactor. Biotechnol Bioeng 16:546–550

    Google Scholar 

  120. Ottow W, Kümmel A, Buchs J (2004) Shaking flask: flow simulation and validation. Conference on Transport Phenomena with Moving Boundaries, Berlin, Germany, October 9–10 2004

    Google Scholar 

  121. Panula-Perälä J, Siurkus J, Vasala A, Wilmanowski R, Casteleijn MG, Neubauer P (2008) Enzyme controlled glucose auto-delivery for high cell density cultivations in microplates and shake flasks. Microb Cell Fact 7:31

    PubMed  PubMed Central  Google Scholar 

  122. Paschold H, Weuster-Botz D, Schäfe, U, Boos W (1998) Verfahren zur schnellen Probennahme biologischer Proben. German Patent DE 19705289

    Google Scholar 

  123. Paul E, Atiemo-Obeng V, Kresta S (2004) Handbook of industrial Mixing. Wiley-Interscience, New York

    Google Scholar 

  124. Peter CP, Lotter S, Maier U, Büchs J (2004) Impact of out-of-phase conditions on screening results in shaking flask experiments. Biochem Eng J 17:205–215

    CAS  Google Scholar 

  125. Peter CP, Suzuki Y, Büchs J (2006) Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotechnol Bioeng 93:1164–1176

    CAS  PubMed  Google Scholar 

  126. Pierce LN, Shabram PW (2004) Scalability of a disposable bioreactor from 12L–500L run in perfusion mode with a CHO-based cell line: a tech review. BioProcessing J 3(4):1–6

    Google Scholar 

  127. Poschenrieder S, Wagner S, Castiglione K (2016) Efficient production of uniform nanometer-sized polymer vesicles in stirred-tank reactors. J Appl Polym Sci 133:43274

    Google Scholar 

  128. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Engineering in life sciences. 9(3):145–177

    Google Scholar 

  129. Puskeiler R, Kaufmann K, Weuster-Botz D (2005) Development, parallelization and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Biotechnol Bioeng 89:512–523

    CAS  PubMed  Google Scholar 

  130. Richardson JF, Zaki WN (1954) The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem Eng Sci 3:65–73

    CAS  Google Scholar 

  131. Riedlberger P, Weuster-Botz D (2012) New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis. Bioresource Technol 106:138–146

    CAS  Google Scholar 

  132. Riedlberger P, Brüning S, Weuster-Botz D (2013) Characterization of stirrers for screening studies of enzymatic biomass hydrolyses on a milliliter-scale. Bioproc Biosys Eng 36:927–935

    CAS  Google Scholar 

  133. Rischbieter E, Schumpe A (1996) Gas solubilities in aqueous solutions of organic substances. J Chem Eng 41:809–812

    CAS  Google Scholar 

  134. Rohe P, Venkanna D, Kleine B, Freudl R, Oldiges M (2012) An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform. Microb Cell Fact 11:144

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Samorski M, Müller-Newen G, Büchs J (2005) Quasi-continuous combined scattered light and fluorescence measurements: A novel measurement technique for shaken microtiter plates. Biotechnol Bioeng 92:61–68

    CAS  PubMed  Google Scholar 

  136. Schäfer U, Boos W, Takors R, Weuster-Botz D (1999) Automated sampling device for monitoring intracellular metabolite dynamics. Anal Biochem 270:88–96

    Google Scholar 

  137. Schaub J, Schiesling C, Reuss M, Dauner M (2006) Integrated sampling procedure for metabolome analysis. Biotechnol Prog 22(5):1434–1442

    CAS  PubMed  Google Scholar 

  138. Scheidle M, Jeude M, Dittrich B, Denter S, Kensy F, Suckow M, Klee D, Büchs J (2010) High-throughput screening of Hansenula polymorpha clones in the batch compared with the controlled-release fed-batch mode on a small scale. FEMS Yeast Res 10:83–92

    CAS  PubMed  Google Scholar 

  139. Scheidle M, Dittrich B, Klinger J, Ikeda H, Klee D, Büchs J (2011) Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics. BMC Biotechnol 11:25

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Schilling BM, Pfefferle W, Bachmann B, Leuchtenberger W, Deckwer W-D (1999) A special reactor design for investigations of mixing time effects in a scaled-down industrial L-lysine fed-batch fermentation process. 64(5):599–606

    Google Scholar 

  141. Schlichting H (1979) Boundary layer theory, 7th edn. McGraw-Hill, New York

    Google Scholar 

  142. Schlüter S (1992) Modellierung und Simulation von Blasensäulen. Dissertation, Universität Dortmund

    Google Scholar 

  143. Schmalzriedt S, Jenne M, Mauch K, Reuss M (2003) Integration of physiology and fluid dynamics. Adv Biochem Eng 80:19–68

    CAS  Google Scholar 

  144. Schmideder A, Severin TS, Cremer J, Weuster-Botz D (2015) A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors. J Biotechnol 210:19–24

    CAS  PubMed  Google Scholar 

  145. Schmideder A, Hensler S, Lang M, Stratmann A, Giesecke U, Weuster-Botz D (2016) High-cell-density cultivation and recombinant protein production with Komagataella pastoris in stirred-tank bioreactors from milliliter to cubic meter scale. Proc Biochem 51:177–184

    CAS  Google Scholar 

  146. Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435

    CAS  PubMed  Google Scholar 

  147. Schmidt M, Weuster-Botz D (2012) Reaction engineering studies of acetone-butanol-ethanol fermentation with Clostridium acetobutylicum. Biotechnol J 7:656–661

    CAS  PubMed  Google Scholar 

  148. Schubert H (2012) Handbuch der Mechanischen Verfahrenstechnik. John Wiley&Sons, New York

    Google Scholar 

  149. Seletzky JM, Noak U, Fricke J, Welk E, Eberhard W, Knocke C, Büchs J (2007) Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH. Biotechnol Bioeng 98:800–811

    CAS  PubMed  Google Scholar 

  150. Smelko JP, Wiltberger KR, Hickman EF, Morris BJ, Blackburn TJ, Ryll T (2011) Performance of high intensity fed-batch mammalian cell cultures in disposable bioreactor systems: Biotechnol Prog 27(5):1358–1364

    CAS  PubMed  Google Scholar 

  151. Stadtaus M, Kastner B, Weiß H-J (2007)Numerische Berechnung der Eigenfrequenzen an eingetauchten Behältereinbauten. Chem Ing Tech 79:1089–1095

    CAS  Google Scholar 

  152. Stadtaus M, Weiss HJ, Himmelsbach W, Smith J (2010) Mechanical design aspects for high-performance agitated reactors. Chem Eng 4:38

    Google Scholar 

  153. Stöckmann C, Losen M, Dahlems U, Knocke C, Gellissen G, Büchs J (2003) Effect of oxygen supply on passaging, stabilising and screening of recombinant Hansenula polymorpha production strains in test tube cultures. FEMS Yeast Res 4:195–205

    PubMed  Google Scholar 

  154. Strillinger E, Grötzinger SW, Allers T, Groll M, Eppinger J, Weuster-Botz D (2016) Production of halophilic proteins with Haloferax volcanii H1895 in a stirred tank bioreactor. Appl Microbiol Biotechnol 100:1183–1195

    CAS  PubMed  Google Scholar 

  155. Suresh S, Srivastava V, Mishra I (2009) Techniques for oxygen transfer measurement in bioreactors: a review. J Chem Technol Biotechnol 84:1091–103

    CAS  Google Scholar 

  156. Suresh S, Srivastava V.C, Mishra I.M (2009) Critical analysis of engineering aspects of shaken flask bioreactors. Crit Rev Biotechnol 29:255–278

    CAS  PubMed  Google Scholar 

  157. Sweere APJ, Mesters JR, Janse L, Luyben KChAM (1988a) Experimental simulation of oxygen profiles and their influence on baker’s yeast production: I. One-fermentor system. Biotechnol Bioeng 31:567–578

    CAS  PubMed  Google Scholar 

  158. Sweere APJ, Janse L, Luyben KChAM (1988b) Experimental simulation of oxygen profiles and their influence on baker’s yeast production: II. Two-fermentor system. Biotechnol Bioeng 31:579–586

    CAS  PubMed  Google Scholar 

  159. Takors R (2014) Kommentierte Formelsammlung Bioverfahrenstechnik, Springer Spektrum, Heidelberg

    Google Scholar 

  160. Tan RK, Eberhard W, Büchs J (2011) Measurement and characterization of mixing time in shake flasks. Chem Eng Sci 66:440–447

    CAS  Google Scholar 

  161. Tissot S, Farhat M, Hacker DL, Anderlei T, Kühner M, Comninellis C, Wurm F (2010) Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors. Biochem Eng J 52:181–186

    CAS  Google Scholar 

  162. Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214:31–37

    CAS  PubMed  Google Scholar 

  163. Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I experimental observations. Biotechnol Bioeng 55(2):305–316

    CAS  PubMed  Google Scholar 

  164. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162

    CAS  Google Scholar 

  165. VDI-Wärmeatlas (2006) Berechnungsblätter für den Wärmeübergang, Springer -Vieweg, Wiesbaden

    Google Scholar 

  166. Veljkovic VB, Nikolic S. Lazic ML, Engler CR (1995) Oxygen transfer in flasks shaken on orbital shakers. Hem Ind 49:265–272

    CAS  Google Scholar 

  167. Vester A, Hans M, Hohmann P, Weuster-Botz D (2009) Discrimination of riboflavin producing Bacillus subtilis strains based on their fed-batch process performances on a millilitre scale. Appl Microbiol Biotechnol 84:71–76

    CAS  PubMed  Google Scholar 

  168. Visser D, van Zuylen GA, van Dam JC, Oudshoorn A, Eman MR, Ras C, van Gulik WM, Frank J, van Dedem GWK, Heijnen JJ (2002) Rapid sampling for analysis of in vivo kinetics using the bioscope: a system for continuous-pulse experiments. Biotechnol Bioeng 79:674–681

    CAS  PubMed  Google Scholar 

  169. Voit H, Zeppenfeld R, Mersmann A (1987) Calculation of primary bubble volume in gravitational and centrifugal fields. Chem Eng Technol 19:99–103

    Google Scholar 

  170. Vrabel P, van der Lans RGJM, van der Schot FN, Luyben KChAM, Xu B, Enfors S-O (2001) CMA: integration o fluid dynamics and microbial kinetics in modeling of large-scale fermentations. Chem Eng J 84:463–474

    CAS  Google Scholar 

  171. Wandrey G, Bier C, Binder D, Hoffmann K, Jaeger KE, Pietruszka J, Drepper T, Büchs J (2016) Light-induced gene expression with photocaged IPTG for induction profiling in a high-throughput screening system. Microb Cell Fact 15:63

    Google Scholar 

  172. Weiner M, Tröndle J, Schmideder A, Binder K, Albermann C, Sprenger G.A, Weuster-Botz D (2015) Parallelized small-scale production of uniformly 13C-labeled cell-extract for quantitative metabolome analysis. Anal Biochem 478:134–140

    CAS  PubMed  Google Scholar 

  173. Weisenberger S, Schumpe A (1996) Estimation of gas solubilities in salt solutions at temperatures from 273 K to 363 K. AIChE J 42:298–300

    CAS  Google Scholar 

  174. Weiss S, John GT, Klimant I, Heinzle E (2002) Modeling of mixing in 96-well microplates observed with fluorescence indicators. Biotechnol Prog 18:821–830

    CAS  PubMed  Google Scholar 

  175. Weuster-Botz D (1997) Sampling tube device form monitoring intracellular metabolite dynamics. Anal Biochem 246:225–233

    CAS  PubMed  Google Scholar 

  176. Weuster-Botz, D, Altenbach-Rehm, J, Arnold, M (2001) Parallel substrate feeding and pH-control in shaking-flasks. Biochem Eng J 7:163–170

    CAS  PubMed  Google Scholar 

  177. Weuster-Botz D, Puskeiler R, Kusterer A, Kaufmann K, John G, Arnold M (2005) Methods and milliliter scale devices for high-throughput bioprocess design. Bioproc Biosys Eng 28:109–119

    CAS  Google Scholar 

  178. Wiebe MG (2002) Myco-Protein from Fusarium venenatum, a well-established product for human consumption. Appl Microbiol Biotechnol 58:421–427

    CAS  PubMed  Google Scholar 

  179. Wilming A, Begemann J, Kuhne S, Regestein L, Bongaerts J, Evers S, Maurer KH, Büchs J (2013) Metabolic studies of γ-polyglutamic acid production in Bacillus licheniformis by small-scale continuous cultivations. Biochem Eng J 73:29–37

    CAS  Google Scholar 

  180. Wewetzer S.J, Kunze M, Ladner T, Luchterhand B, Roth S, Rahmen N, Kloß R, Costa e Silva A, Regestein L, Büchs J (2015) Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors. J Biol Eng 9:9

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang H, Williams-Dalson W, Keshavarz-Moore E, Shamlou PA (2005) Computational-fluid-dynamics (CFD) analysis of mixing and gas-liquid mass transfer in shake flasks. Biotechnol Appl Biochem 41:1–8

    PubMed  Google Scholar 

  182. Zlokarnik M (1999) Rührtechnik. Springer, Berlin

    Google Scholar 

  183. Zhang H, Lamping SR, Pickering SCR, Lye GJ Shamlou PA (2008) Engineering characterisation of a single well from 24-well and 96-well microtitre plates. Biochem Eng J 40:138–149

    CAS  Google Scholar 

  184. Zhang X, Stettler M, Sanctis D, Perrone M, Parolini N, Discacciati M, Jesus M, Hacker D, Quarteroni A, Wurm F (2009) Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Adv Biochem Eng Biotechnol 123:33–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Chmiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chmiel, H., Weuster-Botz, D. (2018). Bioreaktoren. In: Chmiel, H., Takors, R., Weuster-Botz, D. (eds) Bioprozesstechnik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54042-8_6

Download citation

Publish with us

Policies and ethics