Skip to main content

Evolutionary Computing and Genetic Algorithms: Paradigm Applications in 3D Printing Process Optimization

  • Chapter
  • First Online:
Intelligent Computing Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 627))

Abstract

3D printing is a relatively new group of manufacturing technologies, methods and processes that produce parts through material addition. 3D printing technologies are mainly employed for the fabrication of prototypes and physical models during product design and development; however as they continuously improve in terms of accuracy and range of raw materials they are increasingly employed in the actual manufacturing process. This puts a new emphasis on the study of some of the process planning problems and issues that are related with the cost efficient use of 3D printing systems and the quality of their products. Among the most crucial process planning problems are: (i) the selection of fabrication orientation and parameters which is by definition a multi-criteria optimization problem in which the operator seeks to achieve the optimum trade-off between cost and quality, under given fabrication constraints and requirements, and (ii) the batch selection/planning or “packing” problem, at which the selection and placement of various different parts inside the machine workspace is considered. As such, the primary goal of the chapter is to present the effective utilization of Genetic Algorithms, which are a particular class of Evolutionary Computing, as a means of optimizing the 3D printing process planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Support structures are aiding structures which secure part stability during fabrication. They are virtually constructed by special software and they are physically removed in post-processing phase. 3DP technologies that require support structures belong usually to the liquid and solid filament categories.

References

  • Ahn, D., Kim, H., Lee, S.: Fabrication direction optimization to minimize post-machining in layered manufacturing. Int. J. Mach. Tool. Manu. 47, 593–606 (2007)

    Article  MathSciNet  Google Scholar 

  • Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Springer, New York (2008)

    MATH  Google Scholar 

  • Alexander, P., Allen, S., Dutta, D.: Part orientation and build cost determination in layered manufacturing. Comput. Aided Design 30, 343–356 (1998)

    Article  Google Scholar 

  • Bennell, J., Oliveira, J.F.: The geometry of nesting problems: a tutorial. Eur. J. Oper. Res. 184, 397–415 (2006)

    Article  MathSciNet  Google Scholar 

  • Branke, J., Deb, K., Miettinen, K., Słowiński, R.: Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer, Berlin (2008)

    Book  Google Scholar 

  • Byun, H.S., Lee, K.H.: Determination of optimal build direction in rapid prototyping with variable slicing. Int. J. Adv. Manuf. Tech. 28, 307–313 (2006a)

    Article  Google Scholar 

  • Byun, H.S., Lee, K.H.: Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making. Robot. CIM-Int. Manuf. 22(1), 69–80 (2006b)

    Article  Google Scholar 

  • Canellidis, V., Giannatsis, J., Dedoussis, V.: Genetic algorithm based multi-objective optimization of the build orientation in stereolithography. Int. J. Adv. Manuf. Tech. 4(7-8), 714–730 (2009)

    Article  Google Scholar 

  • Canellidis, V., Giannatsis, J., Dedoussis, V.: Efficient parts nesting schemes for improving stereolithography utilization. Comput. Aided Design 45(5), 875–886 (2013)

    Article  Google Scholar 

  • Chernov, N., Stoyan, Yu., Romanova, T.: Mathematical model and efficient algorithms for object packing problem. Comput. Geom. 43(5), 535–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  • Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can Cartographer 10(2), 112–122 (1973)

    Article  Google Scholar 

  • Drẻo, J., Pẻtrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization. Springer, Berlin (2006)

    Google Scholar 

  • Giannatsis, J., Dedoussis, V.: A study of the build-time estimation problem for stereolithography systems. Robot. CIM-Int. Manuf. 17(4), 295–304 (2001)

    Article  Google Scholar 

  • Giannatsis, J., Dedoussis, V.: Decision support tool for selecting fabrication parameters in stereolithography. Int. J. Adv. Manuf. Tech. 33, 706–718 (2007)

    Article  Google Scholar 

  • Gibson, I., Rosen, D.W., Stucker, B.: Additive Manufacturing Technologies. Springer, Berlin (2010)

    Book  Google Scholar 

  • Gogate, S., Pande, S.S.: Intelligent layout planning for rapid prototyping. Int. J. Prod. Res. 46(20), 5607–5631 (2008)

    Article  MATH  Google Scholar 

  • Haupt, R.L., Haupt, S.E.: Practical genetic algorithms. Wiley, New York (2004)

    Google Scholar 

  • Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)

    Google Scholar 

  • Hopper, E.: Two dimensional packing utilising evolutionary algorithms and other meta-heuristic methods. Ph.D. Thesis, School of Engineering, University of Wales (2000)

    Google Scholar 

  • Hsu, J.: Why 3-D Printing Matters for Made in USA. Scientific American. http://www.scientificamerican.com/article/why-3d-printing-matters/ (2012)

  • Hur, J., Lee, K.: The development of a CAD environment to determine the preferred build-up direction for layered manufacturing. Int. J. Adv. Manuf. Tech. 14(4), 247–254 (1998)

    Article  Google Scholar 

  • Hur, S.M., Choi, K.H., Lee, S.H., Chang, P.K.: Determination of fabricating orientation and packing in SLS process. J. Mater. Process Tech. 112(2-3), 236–243 (2001a)

    Article  Google Scholar 

  • Hur, S.M., Choi, K.H., Lee, S.H., Chang, P.K.: Determination of fabricating orientation and packing in SLS process. J. Mater. Process. Tech. 112, 236–243 (2001b)

    Article  Google Scholar 

  • Ikonen, I., Biles, W., Kumar, A., Ragade, R.K., Wissel, J.C.: A genetic algorithm for packing three-dimensional non-convex objects having cavities and holes, In: Proceedings of 7th International Conference on Genetic Algorithms, Michigan, pp. 591–598 (1997)

    Google Scholar 

  • Jakobs, S.: On genetic algorithms for the packing of polygons. Eur. J. Oper. Res. 88, 165–181 (1996)

    Article  MATH  Google Scholar 

  • Kim, H.C., Lee, S.H.: Reduction of post-processing for stereolithography systems by fabrication-direction optimization. Comput. Aided Design 37(7), 711–725 (2005)

    Article  Google Scholar 

  • Lan, P.-T., Chou, S.-Y., Chen, L.-L., Gemmill, D.: Determining fabrication orientations for rapid prototyping with stereolithography apparatus. Comput. Aided Design 29, 53–62 (1997)

    Article  Google Scholar 

  • Lewis, J.E., Ragade, R.K., Kumar, A., Biles, W.E.: A distributed chromosome genetic algorithm for bin-packing. Robot. CIM-Int. Manuf. 21(4-5), 486–495 (2005)

    Article  Google Scholar 

  • Majhi, J., Janardan, R., Smid, M., Gupta, P.: On some geometric optimization problems in layered manufacturing. Comput. Geom. 12(3-4), 219–239 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Markillie, P.A: Third industrial revolution. The Economist, Spec. Special report: Manufacturing and innovation, Apr 21st (2012)

    Google Scholar 

  • Masood, S.H., Rattanawong, W.: A generic part orientation system based on volumetric error in rapid prototyping. Int. J. Adv. Manuf. Tech. 19(3), 209–216 (2002)

    Google Scholar 

  • Pandey, P.M., Thrimurthulu, K., Reddy, N.V.: Optimal part deposition orientation in FDM by using a multicriteria genetic algorithm. Int. J. Prod. Res. 42(19), 4069–4089 (2004)

    Article  MATH  Google Scholar 

  • Pandey, P.M., Reddy, N.V., Dhande, S.G.: Part deposition orientation studies in layered manufacturing. J. Mater. Process. Tech. 185, 125–131 (2007)

    Article  Google Scholar 

  • Pham, D.T., Dimov, S.S., Gault, R.S.: Part orientation in Stereolithography. Int. J. Adv. Manuf. Tech. 15(9), 674–682 (1999)

    Article  Google Scholar 

  • Powley, T.: 3D printing reshapes factory floor. Financial Times. http://www.ft.com/intl/cms/s/0/1de6deba-6897-11e3-bb3e-00144feabdc0.html?siteedition=intl#slide0 (2013)

  • Reeves, C.R., Rowe, J.E.: Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  • Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Thrimurthulu, K., Pandey, P.M., Reddy, N.V.: Optimum part deposition orientation in fused deposition modeling. Int. J. Mach. Tool. Manu. 44, 585–594 (2004)

    Article  Google Scholar 

  • Whitwell, G.: Novel heuristic and metaheuristic approaches to cutting and packing. Ph.D. Thesis, School of Computer Science and Information Technology, University of Nottingham (2004)

    Google Scholar 

  • Wodziak, J.R., Fadel, G.M., Kirschman, C.: A genetic algorithm for optimizing multiple part placement to reduce build time. In: Proceedings of the 5th International Conference on Rapid Prototyping, Dayton, Ohio, pp. 201–210 (1994)

    Google Scholar 

  • Wohlers Associates: The Use of 3D Printing for Final Part Production Continues: Impressive 10-Year Growth Trend. Press release, November 18 (2013)

    Google Scholar 

  • Wohlers, T.: Will Additive Manufacturing Change Manufacturing? Time Compression Technologies, May/June issue (2011)

    Google Scholar 

  • Zhang, X., Zhou, B., Zeng, Y., Gu, P.: Model layout optimization for solid ground curing rapid prototyping processes. Robot. CIM-Int. Manuf. 18, 41–51 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Giannatsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Canellidis, V., Giannatsis, J., Dedoussis, V. (2016). Evolutionary Computing and Genetic Algorithms: Paradigm Applications in 3D Printing Process Optimization. In: Tsihrintzis, G., Virvou, M., Jain, L. (eds) Intelligent Computing Systems. Studies in Computational Intelligence, vol 627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49179-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49179-9_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49177-5

  • Online ISBN: 978-3-662-49179-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics