Skip to main content

Quantum Bit Commitment with Application in Quantum Zero-Knowledge Proof (Extended Abstract)

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Included in the following conference series:

Abstract

In this work, we study formalization and construction of non-interactive statistically binding quantum bit commitment scheme (QBC), as well as its application in quantum zero-knowledge (QZK) proof. We explore the fully quantum model, where both computation and communication could be quantum. While most of the proofs here are straightforward based on previous works, we have two technical contributions. First, we show how to use reversibility of quantum computation to construct non-interactive QBC. Second, we identify new issue caused by quantum binding in security analysis and give our idea to circumvent it, which may be found useful elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hiding an binding properties cannot be simultaneously information-theoretic secure either [13].

References

  1. Adcock, M., Cleve, R.: A quantum goldreich-levin theorem with cryptographic applications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 323–334. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: FOCS, pp. 474–483 (2014)

    Google Scholar 

  3. Blum, M.: How to prove a theorem so no one else can claim it. In: Proceedings of the International Congress of Mathematicians, vol. 1, p. 2 (1986)

    Google Scholar 

  4. Chailloux, A., Kerenidis, I., Rosgen, B.: Quantum commitments from complexity assumptions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 73–85. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Crépeau, C., Dumais, P., Mayers, D., Salvail, L.: Computational collapse of quantum state with application to oblivious transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 374–393. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Goldreich, O.: Foundations of Cryptography, Basic Tools, vol. I. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  8. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kobayashi, H.: Non-interactive quantum perfect and statistical zero-knowledge. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 178–188. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Kobayashi, H.: General properties of quantum zero-knowledge proofs. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 107–124. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Lin, D., Quan, Y., Weng, J., Yan, J.: Quantum bit commitment with application in quantum zero-knowledge proof. Cryptology ePrint Archive, Report 2014/791, this is a preliminary version; the final full version is in preparation

    Google Scholar 

  13. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78(17), 3414–3417 (1997)

    Article  Google Scholar 

  14. Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nielsen, M.A., Chuang, I.L.: Quantum computation and Quantum Informatioin. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  16. Ong, S.J., Vadhan, S.P.: An equivalence between zero knowledge and commitments. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 482–500. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Vadhan, S.P.: An unconditional study of computational zero knowledge. SIAM J. Comput. 36(4), 1160–1214 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Watrous, J.: Limits on the power of quantum statistical zero-knowledge. In: FOCS, pp. 459–468 (2002)

    Google Scholar 

  20. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009). preliminary version appears in STOC 2006

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan, J.: Complete problem for perfect zero-knowledge quantum proof. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 419–430. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgement

We thank Yi Deng for helpful discussion during the progress of this work. Thanks also go to Dominique Unruh and anonymous referees of several conferences for their invaluable insights and comments.

Jun Yan is supported in part by the Fundamental Research Funds for the Central Universities (21615317), by the Open Project Program of the State Key Laboratory of Information Security (2015-MS-08), by the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (2014A030310333), and by the National Natural Science Foundation of China (61501207). Jian Weng is supported in part by National Science Foundation of China (61272413, 61133014, 61272415 and 61472165), by Fok Ying Tong Education Foundation (131066), by Program for New Century Excellent Talents in University (NCET-12-0680), by Research Fund for the Doctoral Program of Higher Education of China (20134401110011), by Foundation for Distinguished Young Talents in Higher Education of Guangdong (2012LYM 0027), and by China Scholarship Council. Dongdai Lin is supported in part by National Science Foundation of China (61379139) and by the Strategic Priority Research Program of the Chinese Academy of Science (XDA06010701). Yujuan Quan is supported in part by Special Project on the Integration of Industry, Education and Research of Guangdong Province (2013B090500030) and by Key Technology R&D Program of Guangzhou,China (2014Y2-00133).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, J., Weng, J., Lin, D., Quan, Y. (2015). Quantum Bit Commitment with Application in Quantum Zero-Knowledge Proof (Extended Abstract). In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_47

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics