Skip to main content

Gold Nanorods for Biomedical Imaging and Therapy in Cancer

  • Chapter
  • First Online:
Advances in Nanotheranostics I

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 6))

Abstract

Gold nanorods (AuNRs) are an important type of noble metal nanoparticles with some superior performances, such as easy synthesis, easy modification, excellent biocompatibility, tunable surface plasmon effect, and photothermal and photodynamic effects. They have been proved to be promising in a wide range of biomedical applications such as biomedical imaging, photothermal therapy, photodynamic therapy, and drug or gene delivery. Because the longitudinally localized surface plasmon resonance absorption of AuNRs can be easily adjusted to the range of near-infrared (NIR) light which can penetrate deeply into human tissues with minimal invasion, AuNRs as great nanocarriers and imaging agents reveal a great application prospect for photoacoustic tomography, photothermal therapy, or NIR light-mediated theranostic platform. Herein, we begin this chapter of AuNRs by summarizing their synthesis methods, surface modification, and functionalization, then we describe their optical properties. Besides, we focus on the recent progress in diagnostic, therapeutic, and theranostic applications of AuNRs in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang ZJ, Wang J, Chen CY (2013) Gold nanorods based platforms for light-mediated theranostics. Theranostics 3:223–238

    Article  Google Scholar 

  2. Huang X, Jain PK, El-Sayed IH et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693

    Article  Google Scholar 

  3. Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24:4811–4841

    Article  Google Scholar 

  4. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903

    Article  Google Scholar 

  5. Xie J, Lee S, Chen XY (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62:1064–1079

    Article  Google Scholar 

  6. Jain PK, Huang XH, El-Sayed IH et al (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  Google Scholar 

  7. Dreaden EC, Alkilany AM, Huang XH et al (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    Article  Google Scholar 

  8. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  Google Scholar 

  9. Lohse SE, Murphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261

    Article  Google Scholar 

  10. Grzelczak M, Perez-Juste J, Mulvaney P et al (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  Google Scholar 

  11. Langille MR, Personick ML, Zhang J et al (2012) Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc 134:14542–14554

    Article  Google Scholar 

  12. Burda C, Chen XB, Narayanan R et al (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  Google Scholar 

  13. Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966

    Article  Google Scholar 

  14. Kim F, Song JH, Yang PD (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317

    Article  Google Scholar 

  15. Yu YY, Chang SS, Lee CL et al (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  Google Scholar 

  16. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416

    Article  Google Scholar 

  17. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067

    Article  Google Scholar 

  18. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962

    Article  Google Scholar 

  19. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420

    Article  Google Scholar 

  20. Liu FK, Chang YC, Ko FH et al (2004) Microwave rapid heating for the synthesis of gold nanorods. Mater Lett 58:373–377

    Article  Google Scholar 

  21. Jana NR (2005) Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1:875–882

    Article  Google Scholar 

  22. Xu X, Zhao Y, Xue X et al (2014) Seedless synthesis of high aspect ratio gold nanorods with high yield. J Mater Chem A 2:3528–3535

    Article  Google Scholar 

  23. Ali M, Snyder B, El-Sayed MA (2012) Synthesis and optical properties of small Au nanorods using a seedless growth technique. Langmuir 28:9807–9815

    Article  Google Scholar 

  24. Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    Article  Google Scholar 

  25. Murphy CJ, Thompson LB, Alkilany AM et al (2010) The many faces of gold nanorods. J Phys Chem Lett 1:2867–2875

    Article  Google Scholar 

  26. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994

    Article  Google Scholar 

  27. Gold* AND nanorod*. Web of Science, Thomson Reuters: Philadelphia. Accessed 11 Nov 2014

    Google Scholar 

  28. Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater 16:3633–3640

    Article  Google Scholar 

  29. Jiang XC, Pileni MP (2007) Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control. Colloid Surf A 295:228–232

    Article  Google Scholar 

  30. Perez-Juste J, Liz-Marzan LM, Carnie S et al (2004) Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv Funct Mater 14:571–579

    Article  Google Scholar 

  31. Smith DK, Miller NR, Korgel BA (2009) Iodide in CTAB prevents gold nanorod formation. Langmuir 25:9518–9524

    Article  Google Scholar 

  32. Rayavarapu RG, Ungureanu C, Krystek P et al (2010) Iodide impurities in hexadecyltrimethyl ammonium bromide (CTAB) products: lot-lot variations and influence on gold nanorod synthesis. Langmuir 26:5050–5055

    Article  Google Scholar 

  33. Edgar JA, McDonagh AM, Cortie MB (2012) Formation of gold nanorods by a stochastic “popcorn” mechanism. ACS Nano 6:1116–1125

    Article  Google Scholar 

  34. Park K, Drummy LF, Wadams RC et al (2013) Growth mechanism of gold nanorods. Chem Mater 25:555–563

    Article  Google Scholar 

  35. Almora-Barrios N, Novell-Leruth G, Whiting P et al (2014) Theoretical description of the role of halides, silver, and surfactants on the structure of gold nanorods. Nano Lett 14:871–875

    Article  Google Scholar 

  36. Ye X, Jin L, Caglayan H et al (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6:2804–2817

    Article  Google Scholar 

  37. Ye XC, Zheng C, Chen J et al (2013) Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Lett 13:765–771

    Article  Google Scholar 

  38. Ye XC, Gao YZ, Chen J et al (2013) Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett 13:2163–2171

    Article  Google Scholar 

  39. Vigderman L, Zubarev ER (2013) High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem Mater 25:1450–1457

    Article  Google Scholar 

  40. Xiang YJ, Wu XC, Liu DF et al (2008) Tuning the morphology of gold nanocrystals by switching the growth of {110} facets from restriction to preference. J Phys Chem C 112:3203–3208

    Article  Google Scholar 

  41. Kozek KA, Kozek KM, Wu WC et al (2013) Large-scale synthesis of gold nanorods through continuous secondary growth. Chem Mater 25:4537–4544

    Article  Google Scholar 

  42. Cobley CM, Chen JY, Cho EC et al (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44–56

    Article  Google Scholar 

  43. Liu X, Huang N, Li H et al (2014) Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy. ACS Appl Mater Interfaces 6:5657–5668

    Article  Google Scholar 

  44. Alkilany AM, Shatanawi A, Kurtz T et al (2012) Toxicity and cellular uptake of gold nanorods in vascular endothelium and smooth muscles of isolated rat blood vessel: importance of surface modification. Small 8:1270–1278

    Article  Google Scholar 

  45. Boca SC, Astilean S (2010) Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags. Nanotechnology 21:235601

    Article  Google Scholar 

  46. Xiao Y, Hong H, Matson VZ et al (2012) Gold nanorods conjugated with doxorubicin and cRGD for combined anticancer drug delivery and PET imaging. Theranostics 2:757–768

    Article  Google Scholar 

  47. Black KC, Kirkpatrick ND, Troutman TS et al (2008) Gold nanorods targeted to delta opioid receptor: plasmon-resonant contrast and photothermal agents. Mol Imaging 7:50–57

    Google Scholar 

  48. Yamashita S, Fukushima H, Akiyama Y et al (2011) Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Bioorg Med Chem 19:2130–2135

    Article  Google Scholar 

  49. Jang B, Park JY, Tung CH et al (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5:1086–1094

    Article  Google Scholar 

  50. Gole A, Murphy CJ (2005) Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization. Chem Mater 17:1325–1330

    Article  Google Scholar 

  51. Xu L, Liu Y, Chen Z et al (2012) Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett 12:2003–2012

    Article  Google Scholar 

  52. Alkilany AM, Thompson LB, Boulos SP et al (2012) Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev 64:190–199

    Article  Google Scholar 

  53. Alkilany AM, Nagaria PK, Wyatt MD et al (2010) Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation. Langmuir 26:9328–9333

    Article  Google Scholar 

  54. Huang J, Jackson KS, Murphy CJ (2012) Polyelectrolyte wrapping layers control rates of photothermal molecular release from gold nanorods. Nano Lett 12:2982–2987

    Article  Google Scholar 

  55. Qiu Y, Liu Y, Wang L et al (2010) Surface chemistry and aspect ratio mediated cellular up-take of Au nanorods. Biomaterials 31:7606–7619

    Article  Google Scholar 

  56. Lee SE, Sasaki DY, Perroud TD et al (2009) Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA. J Am Chem Soc 131:14066–14074

    Article  Google Scholar 

  57. Orendorff CJ, Alam TM, Sasaki DY et al (2009) Phospholipid-gold nanorod composites. ACS Nano 3:971–983

    Article  Google Scholar 

  58. Kah JC, Zubieta A, Saavedra RA et al (2012) Stability of gold nanorods passivated with amphiphilic ligands. Langmuir 28:8834–8844

    Article  Google Scholar 

  59. Chen YS, Frey W, Kim S et al (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11:348–354

    Article  Google Scholar 

  60. Gorelikov I, Matsuura N (2008) Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett 8:369–373

    Article  Google Scholar 

  61. Choi E, Kwak M, Jang B et al (2013) Highly monodisperse rattle-structured nanomaterials with gold nanorod core-mesoporous silica shell as drug delivery vehicles and nanoreactors. Nanoscale 5:151–154

    Article  Google Scholar 

  62. Slowing II, Vivero-Escoto JL, Wu CW et al (2008) Mesoporous silica nanoparticles as con-trolled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60:1278–1288

    Article  Google Scholar 

  63. Zhang ZJ, Wang LM, Wang J et al (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24:1418–1423

    Article  Google Scholar 

  64. Huang P, Bao L, Zhang C et al (2011) Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32:9796–9809

    Article  Google Scholar 

  65. Zhang Y, Qian J, Wang D et al (2013) Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew Chem Int Ed 52:1148–1151

    Article  Google Scholar 

  66. Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  Google Scholar 

  67. Link S, El-Sayed MA, Mohamed MB (2005) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 109:10531–10532

    Article  Google Scholar 

  68. Sprunken DP, Omi H, Furukawa K et al (2007) Influence of the local environment on determining aspect-ratio distributions of gold nanorods in solution using Gans theory. J Phys Chem C 111:14299–14306

    Article  Google Scholar 

  69. Xu XB, Li HF, Hasan D et al (2013) Near-field enhanced plasmonic-magnetic bifunctional nanotubes for single cell bioanalysis. Adv Funct Mater 23:4332–4338

    Article  Google Scholar 

  70. Blackie EJ, Le Ru EC, Etchegoin PG (2009) Single-molecule surface-enhanced raman spectroscopy of nonresonant molecules. J Am Chem Soc 131:14466–14472

    Article  Google Scholar 

  71. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  Google Scholar 

  72. Orendorff CJ, Gearheart L, Jana NR et al (2006) Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys Chem Chem Phys 8:165–170

    Article  Google Scholar 

  73. Mooradia A (1969) Photoluminescence of metals. Phys Rev Lett 22:185–187

    Article  Google Scholar 

  74. Mohamed MB, Volkov V, Link S et al (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523

    Article  Google Scholar 

  75. Imura K, Nagahara T, Okamoto H (2005) Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B 109:13214–13220

    Article  Google Scholar 

  76. Varnavski OP, Mohamed MB, El-Sayed MA et al (2003) Relative enhancement of ultrafast emission in gold nanorods. J Phys Chem B 107:3101–3104

    Article  Google Scholar 

  77. Wang HF, Huff TB, Zweifel DA et al (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci U S A 102:15752–15756

    Article  Google Scholar 

  78. Song J, Pu L, Zhou J et al (2013) Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7:9947–9960

    Article  Google Scholar 

  79. Funston AM, Novo C, Davis TJ et al (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658

    Article  Google Scholar 

  80. Huang H, Wang JH, Jin W et al (2014) Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance. Small 10:4012–4019

    Article  Google Scholar 

  81. Bardhan R, Grady NK, Cole JR et al (2009) Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. ACS Nano 3:744–752

    Article  Google Scholar 

  82. Jain PK, Huang WY, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088

    Article  Google Scholar 

  83. Maier SA, Kik PG, Atwater HA et al (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2:229–232

    Article  Google Scholar 

  84. Ge JC, Lan MH, Zhou BJ et al (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 5:1–8

    Google Scholar 

  85. Vankayala R, Sagadevan A, Vijayaraghavan P et al (2011) Metal nanoparticles sensitize the formation of singlet oxygen. Angew Chem Int Ed 50:10640–10644

    Article  Google Scholar 

  86. Zhao T, Shen X, Li L et al (2012) Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy. Nanoscale 4:7712–7719

    Article  Google Scholar 

  87. Jiang CF, Zhao TT, Yuan PY et al (2013) Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles. ACS Appl Mater Interfaces 5:4972–4977

    Article  Google Scholar 

  88. Vankayala R, Kuo CL, Sagadevan A et al (2013) Morphology dependent photosensitization and formation of singlet oxygen ((1)Delta(g)) by gold and silver nanoparticles and its application in cancer treatment. J Mater Chem B 1:4379–4387

    Article  Google Scholar 

  89. Vankayala R, Huang YK, Kalluru P et al (2014) First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation. Small 10:1612–1622

    Article  Google Scholar 

  90. Yang JP, Shen DK, Zhou L et al (2014) Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Adv Healthc Mater 3:1620–1628

    Article  Google Scholar 

  91. Jung Y, Reif R, Zeng YG et al (2011) Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes. Nano Lett 11:2938–2943

    Article  Google Scholar 

  92. Huang X, El-Sayed IH, Qian W et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120

    Article  Google Scholar 

  93. Durr NJ, Larson T, Smith DK et al (2007) Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 7:941–945

    Article  Google Scholar 

  94. Wang L, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462

    Article  Google Scholar 

  95. Jokerst JV, Cole AJ, Van de Sompel D et al (2012) Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 6:10366–10377

    Article  Google Scholar 

  96. Jokerst JV, Thangaraj M, Kempen PJ et al (2012) Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 6:5920–5930

    Article  Google Scholar 

  97. Li WY, Brown PK, Wang L et al (2011) Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media Mol Imaging 6:370–377

    Article  Google Scholar 

  98. Sheng ZH, Song L, Zheng JX et al (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243

    Article  Google Scholar 

  99. Huang XH, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  Google Scholar 

  100. Zhang Z, Wang J, Nie X et al (2014) Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J Am Chem Soc 136:7317–7326

    Article  Google Scholar 

  101. Wang YC, Black K, Luehmann H et al (2013) Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7:2068–2077

    Article  Google Scholar 

  102. Tsai MF, Chang SH, Cheng FY et al (2013) Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 7:5330–5342

    Article  Google Scholar 

  103. Huang X, Tian XJ, Yang WL et al (2013) The conjugates of gold nanorods and chlorin e6 for enhancing the fluorescence detection and photodynamic therapy of cancers. Phys Chem Chem Phys 15:15727–15733

    Article  Google Scholar 

  104. Wang J, Zhu GZ, You MX et al (2012) Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 6:5070–5077

    Article  Google Scholar 

  105. Srivatsan A, Jenkins SV, Jeon M et al (2014) Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 4:163–174

    Article  Google Scholar 

  106. Wang L, Lin X, Wang J et al (2014) Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Adv Funct Mater 24:4229–4239

    Article  Google Scholar 

  107. Kochuveedu ST, Kim DH (2014) Surface plasmon resonance mediated photoluminescence properties of nanostructured multicomponent fluorophore systems. Nanoscale 6:4966–4984

    Article  Google Scholar 

  108. Li Y, Wen T, Zhao R et al (2014) Localized electric field of plasmonic nanoplatform enhanced photodynamic tumor therapy. ACS Nano 8:11529–11542

    Article  Google Scholar 

  109. Shi Z, Ren W, Gong A et al (2014) Stability enhanced polyelectrolyte-coated gold nanorod-photosensitizer complexes for high/low power density photodynamic therapy. Biomaterials 35:7058–7067

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (81401452 and U1432114), Hundred Talents Program of the Chinese Academy of Sciences (2010-735), and by Key Breakthrough Program of Chinese Academy of Sciences (KGZD-EW-T06), and Ningbo Natural Science Foundation (2014A610158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiguo Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shi, Z., Xu, Y., Wu, A. (2016). Gold Nanorods for Biomedical Imaging and Therapy in Cancer. In: Dai, Z. (eds) Advances in Nanotheranostics I. Springer Series in Biomaterials Science and Engineering, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48544-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48544-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48542-2

  • Online ISBN: 978-3-662-48544-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics