Skip to main content

On Computing the Hyperbolicity of Real-World Graphs

  • Conference paper
  • First Online:
Algorithms - ESA 2015

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9294))

Abstract

The (Gromov) hyperbolicity is a topological property of a graph, which has been recently applied in several different contexts, such as the design of routing schemes, network security, computational biology, the analysis of graph algorithms, and the classification of complex networks. Computing the hyperbolicity of a graph can be very time consuming: indeed, the best available algorithm has running-time \(\mathcal{O}(n^{3.69})\), which is clearly prohibitive for big graphs. In this paper, we provide a new and more efficient algorithm: although its worst-case complexity is \(\mathcal{O}(n^4)\), in practice it is much faster, allowing, for the first time, the computation of the hyperbolicity of graphs with up to 200,000 nodes. We experimentally show that our new algorithm drastically outperforms the best previously available algorithms, by analyzing a big dataset of real-world networks. Finally, we apply the new algorithm to compute the hyperbolicity of random graphs generated with the Erdös-Renyi model, the Chung-Lu model, and the Configuration Model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, R., DasGupta, B., Mobasheri, N.: Topological implications of negative curvature for biological and social networks. Physical Review E 89(3), 32811 (2014)

    Article  Google Scholar 

  2. Alrasheed, H., Dragan, F.F.: Core-Periphery Models for Graphs based on their delta-Hyperbolicity: An Example Using Biological Networks. Studies in Computational Intelligence 597, 65–77 (2015)

    Google Scholar 

  3. Bavelas, A.: Communication patterns in task-oriented groups. Journal of the Acoustical Society of America 22, 725–730 (1950)

    Article  Google Scholar 

  4. Boguna, M., Papadopoulos, F., Krioukov, D.: Sustaining the Internet with Hyperbolic Mapping. Nature Communications 62 (October 2010)

    Google Scholar 

  5. Borassi, M., Chessa, A., Caldarelli, G.: Hyperbolicity Measures “Democracy” in Real-World Networks. Preprint on arXiv, pp. 1–10 (March 2015)

    Google Scholar 

  6. Chen, W., Fang, W., Hu, G., Mahoney, M.: On the hyperbolicity of small-world and treelike random graphs. Internet Mathematics, pp. 1–40 (2013)

    Google Scholar 

  7. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Notes on diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs. Electronic Notes in Discrete Mathematics 31, 231–234 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y., Xiang, Y.: Additive Spanners and Distance and Routing Labeling Schemes for Hyperbolic Graphs. Algorithmica 62(3-4), 713–732 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chepoi, V., Estellon, B.: Packing and covering δ-hyperbolic spaces by balls. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS, vol. 4627, pp. 59–73. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Cohen, N., Coudert, D., Ducoffe, G., Lancin, A.: Applying clique-decomposition for computing Gromov hyperbolicity. Research Report RR-8535, HAL (2014)

    Google Scholar 

  11. Cohen, N., Coudert, D., Lancin, A.: On computing the Gromov hyperbolicity. ACM J. Exp. Algor. (2015)

    Google Scholar 

  12. Dress, A., Huber, K., Koolen, J., Moulton, V., Spillner, A.: Basic Phylogenetic Combinatorics. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  13. Fang, W.: On Hyperbolic Geometry Structure of Complex Networks. Master’s thesis, MPRI at ENS and Microsoft Research Asia (2011)

    Google Scholar 

  14. Fournier, H., Ismail, A., Vigneron, A.: Computing the Gromov hyperbolicity of a discrete metric space. Information Processing Letters 115(6-8), 576–579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gromov, M.: Hyperbolic groups. In: Essays in Group Theory, Springer, Heidelberg (1987)

    Google Scholar 

  16. Havlin, S., Cohen, R.: Complex networks: structure, robustness and function. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  17. Hofstad, R.V.D.: Random Graphs and Complex Networks (2014)

    Google Scholar 

  18. Jonckheere, E.A., Lohsoonthorn, P.: Geometry of network security. In: American Control Conference, vol. 2, pp. 976–981. IEEE, Boston (2004)

    Google Scholar 

  19. Kennedy, W.S., Narayan, O., Saniee, I.: On the Hyperbolicity of Large-Scale Networks. CoRR, abs/1307.0031:1–22 (2013)

    Google Scholar 

  20. Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 119–132 (2006)

    Google Scholar 

  21. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A.: Hyperbolic Geometry of Complex Networks. Physical Review E 82(3), 36106 (2010)

    Article  MathSciNet  Google Scholar 

  22. Mitche, D., Pralat, P.: On the hyperbolicity of random graphs. The Electronic Journal of Combinatorics 21(2), 1–24 (2014)

    MathSciNet  Google Scholar 

  23. Narayan, O., Saniee, I.: The Large Scale Curvature of Networks. Physical Review E 84, 66108 (2011)

    Article  Google Scholar 

  24. Narayan, O., Saniee, I., Tucci, G.H.: Lack of Hyperbolicity in Asymptotic Erdös–Renyi Sparse Random Graphs. Internet Mathematics, 1–10 (2015)

    Google Scholar 

  25. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Review 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Papadopoulos, F., Krioukov, D., Boguna, M., Vahdat, A.: Greedy forwarding in scale-free networks embedded in hyperbolic metric spaces. ACM SIGMETRICS Performance Evaluation Review 37(2), 15–17 (2009)

    Article  Google Scholar 

  27. Shang, Y.: Non-Hyperbolicity of Random Graphs with Given Expected Degrees. Stochastic Models 29(4), 451–462 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Soto Gómez, M.A.: Quelques propriétés topologiques des graphes et applications à internet et aux réseaux. PhD thesis, Univ. Paris Diderot, Paris 7 (2011)

    Google Scholar 

  29. Wu, Y., Zhang, C.: Hyperbolicity and chordality of a graph. The Electronic Journal of Combinatorics 18(1), 1–22 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borassi, M., Coudert, D., Crescenzi, P., Marino, A. (2015). On Computing the Hyperbolicity of Real-World Graphs. In: Bansal, N., Finocchi, I. (eds) Algorithms - ESA 2015. Lecture Notes in Computer Science(), vol 9294. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48350-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48350-3_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48349-7

  • Online ISBN: 978-3-662-48350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics