Skip to main content

Community Detection in Bipartite Networks: Algorithms and Case studies

  • Chapter
  • First Online:
Complex Systems and Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

There is increasing motivation to study bipartite complex networks as a separate category and, in particular, to investigate their community structure. We outline recent work in the area and focus on two high-performing algorithms for unipartite networks, the modularity-based Louvain and the flow-based Infomap. We survey modifications of modularity-based algorithms to adapt them to the bipartite case. As Infomap cannot be applied to bipartite networks for theoretical reasons, our solution is to work with the primary projected network. We apply both algorithms to four projected networks of increasing size and complexity. Our results support the conclusion that the clusters found by Infomap are meaningful and better represent ground truth in the bipartite network than those found by Louvain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Figure reprinted with permission from Ref. [28]. ©2014 by the American Physical Society.

  2. 2.

    Infomap available for download on the link: www.mapequation.org/.

  3. 3.

    Louvain available for download on the link: https://sites.google.com/site/findcommunities/.

References

  1. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)

    Article  Google Scholar 

  2. Aitkin, M., Vu, D., Francis, B.: Statistical modelling of a terrorist network (2013)

    Google Scholar 

  3. Aitkin, M., Vu, D., Francis, B.: Statistical modelling of the group structure of social networks. Soc. Netw. 38, 74–87 (2014)

    Article  Google Scholar 

  4. Alzahrani, T., Horadam, K.J.: Analysis of two crime-related networks derived from bipartite social networks. In: Proceedings of 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), pp. 890–897. IEEE (2014)

    Google Scholar 

  5. Alzahrani, T., Horadam, K.J., Boztas, S.: Community detection in bipartite networks using random walks. Proceedings of CompleNet 2014. Springer Studies in Computational Intelligence, vol. 549, pp. 157–165 (2014)

    Google Scholar 

  6. Barber, M.J.: Modularity and community detection in bipartite networks. Phys. Rev. E 76(6), 066102 (2007)

    Article  MathSciNet  Google Scholar 

  7. Barber, M.J., Clark, J.W.: Detecting network communities by propagating labels under constraints. Phys. Rev. E 80(2), 026129 (2009)

    Article  Google Scholar 

  8. Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. Pac. Symp. Biocomput. 7, 6–17 (2002)

    Google Scholar 

  9. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech.: Theory Exp. 2008, P10008 (2008)

    Article  Google Scholar 

  10. Crampes, M., Plantie, M.: A unified community detection, visualization and analysis method (2013). arXiv preprint arXiv:1301.7006

  11. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech.: Theory Exp. 2005, P09008 (2005)

    Article  Google Scholar 

  12. Davis, A., Gardner, B.B., Gardner, M.R.: Deep South: A Social Anthropological Study of Caste and Class. University of Chicago Press, Chicago (1941)

    Google Scholar 

  13. Evans, T., Lambiotte, R.: Line graphs, link partitions, and overlapping communities. Phys. Rev. E 80(1), 016105 (2009)

    Article  Google Scholar 

  14. Everton, S.F.: Disrupting Dark Networks. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  15. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  16. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104(1), 36–41 (2007)

    Article  Google Scholar 

  17. Freeman, L.C.: Finding social groups: a meta-analysis of the southern women data. In: Breiger, R., Carley, K.M., Pattison, P. (eds.) Dynamic Social Network Modeling and Analysis, pp. 39–97. National Academies Press, Washington (2003)

    Google Scholar 

  18. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grunwald, P.D., Myung, I.J., Pitt, M.A.: Advances in Minimum Description Length: Theory and Applications. MIT Press, Cambridge (2005)

    Google Scholar 

  20. Guillaume, J.L., Latapy, M.: Bipartite structure of all complex networks. Inf. Process. Lett. 90(5), 215–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guimera, R., Sales-Pardo, M., Amaral, L.S.A.N.: Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70(2), 025101 (2004)

    Article  Google Scholar 

  22. Guimera, R., Sales-Pardo, M., Amaral, L.S.A.N.: Module identification in bipartite and directed networks. Phys. Rev. E 76(3), 036102 (2007)

    Article  Google Scholar 

  23. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)

    Article  Google Scholar 

  24. Hu, Y., Chen, H., Zhang, P., Li, M., Di, Z., Fan, Y.: Comparative definition of community and corresponding identifying algorithm. Phys. Rev. E 78(2), 026121 (2008)

    Article  Google Scholar 

  25. International Crisis Group: Terrorism in Indonesia: Noordin’s Networks. Asia Report no. 114, Brussels, Belgium (2006)

    Google Scholar 

  26. Internet Movie Database original database [Online]

    Google Scholar 

  27. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  28. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5), 056117 (2009)

    Article  Google Scholar 

  29. Lancichinetti, A., Fortunato, S.: Erratum: Community detection algorithms: A comparative analysis. Phys. Rev. E 80, 056117 (2009) (Phys. Rev. E, 89(4), 049902 (2014))

    Google Scholar 

  30. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  31. Liu, X., Murata, T.: An efficient algorithm for optimizing bipartite modularity in bipartite networks. JACIII 14, 408–415 (2010)

    Google Scholar 

  32. Mukherjee, A., Choudhury, M., Ganguly, N.: Understanding how both the partition of a bipartite network affect its one-mode projection. Phys. A 390(20), 3602–3607 (2011)

    Article  Google Scholar 

  33. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  35. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  36. Nishikawa, T., Motter, A.E., Lai, Y.C., Hoppensteadt, F.C.: Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys. Rev. Lett. 91(1), 014101 (2003)

    Article  Google Scholar 

  37. NSW Bureau of Crime Statistics and Research. Dataset [Online]. NSW Crime data (2008)

    Google Scholar 

  38. Orman, G.K., Labatut, V., Cherifi, H.: On accuracy of community structure discovery algorithms (2011). arXiv preprint arXiv:1112.4134

  39. Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  40. Peixoto, T.P.: Parsimonious module inference in large networks. Phys. Rev. Lett. 110, 148701 (2013). (Erratum. Phys. Rev. Lett. 110(16), 169905 (2013))

    Article  Google Scholar 

  41. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. Graph Algorithms Appl. 10(2), 191–218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Preiss, B.R.: Data Structures and Algorithms with Object-Oriented Design Patterns in C++. Wiley Press, New York (1997)

    Google Scholar 

  43. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  44. Raghavan, U.N., Albert, R.K., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

    Article  Google Scholar 

  45. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  46. Roberts, N., Everton, S.F.: Strategies for combating dark networks. J. Soc. Struct. 12, 1–32 (2011)

    Google Scholar 

  47. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)

    Article  Google Scholar 

  48. Zhou, T., Lu, L., Zhang, Y.C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

We are very grateful to Assoc. Prof. Murray Aitken for supplying us with the cleaned affiliation network data for the Noordin Top terrorist network; to Dr Tiago Peixoto for supplying us with the cleaned IMDB database; and to Assoc. Prof. Chris Bellman and Ms Sarah Taylor for assistance in using the ArcGIS mapping software on our clustered NSW crime network. The first author would like to thank the Ministry of Finance of Saudi Arabia for supporting his research. The work of the second author was partly supported by Department of Defence of Australia Agreement 4500743680. This work forms part of the PhD thesis of the first author, taken under the supervision of the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Horadam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alzahrani, T., Horadam, K.J. (2016). Community Detection in Bipartite Networks: Algorithms and Case studies. In: Lü, J., Yu, X., Chen, G., Yu, W. (eds) Complex Systems and Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47824-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47824-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47823-3

  • Online ISBN: 978-3-662-47824-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics