Skip to main content

Probiotics in Aging Skin

  • Reference work entry
  • First Online:
Textbook of Aging Skin

Abstract

Health benefits of probiotics have been established recently and the scientific literature shows that the clinical uses of probiotics are broad and are open to continuing evaluation. The most common microorganisms used as probiotics are strains of lactic acid bacteria (LAB) including Lactobacilli and Bifidobacteria, which are part of the intestinal microbiota. Most probiotics are included in foods or dietary supplements and are aimed at functioning in the intestine. However, even if gastrointestinal tract has been the primary target, it is becoming evident that other conditions not initially associated with the gut microbiota might also be affected by probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fioramonti J, et al. Probiotics: what are they? What are their effects on gut physiology? Best Pract Res Clin Gastroenterol. 2003;17(5):711–24.

    Article  CAS  PubMed  Google Scholar 

  2. Reid G. How science will help shape future clinical applications of probiotics. Clin Infect Dis. 2008;46 Suppl 2:S62–6.

    Article  PubMed  Google Scholar 

  3. Silva M, et al. Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother. 1987;31:1231–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heczko PB, et al. Critical evaluation of probiotic activity of lactic acid bacteria and their effects. J Physiol Pharmacol. 2006;57 Suppl 9:S5–12.

    Google Scholar 

  5. Gionchetti P, et al. Antibiotics and probiotics in treatment of inflammatory bowel disease. World J Gastroenterol. 2006;12:3306–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farnworth ER. The evidence to support health claims for probiotics. J Nutr. 2008;138(6):1250S–4.

    CAS  PubMed  Google Scholar 

  7. Sleator RD, et al. New frontiers in probiotic research. Lett Appl Microbiol. 2008;46(2):143–7.

    Article  CAS  PubMed  Google Scholar 

  8. Di Marzio L, et al. Apoptotic effects of selected strains of lactic acid bacteria on a human T leukemia cell line are associated with bacterial arginine deiminase and/or sphingomyelinase activities. Nutr Cancer. 2001;40(2):185–96.

    Article  PubMed  Google Scholar 

  9. de Moreno de LeBlanc A, et al. The application of probiotics in cancer. Br J Nutr. 2007;98 Suppl 1:S105–10.

    Google Scholar 

  10. Goldin BR. Clinical indications for probiotics: an overview. Clin Infect Dis. 2008;46 Suppl 2:S96–100.

    Article  PubMed  Google Scholar 

  11. Macpherson AJ, et al. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science. 2004;303:1662–5.

    Article  CAS  PubMed  Google Scholar 

  12. Fisher GJ, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–70.

    Article  CAS  PubMed  Google Scholar 

  13. Bojar RA, et al. Review: the human cutaneous microflora and factors controlling colonisation. World J Microbiol Biotechnol. 2002;18(9):889–903.

    Article  CAS  Google Scholar 

  14. Cogen AL, et al. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158(3):442–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ouwehand AC, et al. Probiotics for the skin: a new area of potential application? Lett Appl Microbiol. 2003;36(5):327–31.

    Article  CAS  PubMed  Google Scholar 

  16. Tannock GW. Normal microflora. An introduction to microbes inhabiting the human body. London: Chapman & Hall; 1995.

    Google Scholar 

  17. Suomalainen R, et al. Propionic acid bacteria as protective cultures in fermented milks and breads. Lait. 1999;79:165–74.

    Article  CAS  Google Scholar 

  18. Fluhr JW, et al. Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Invest Dermatol. 2001;117:44–51.

    Article  CAS  PubMed  Google Scholar 

  19. Fluhr JW, et al. Stratum corneum acidification in neonatal skin: secretory phospholipase A2 and the sodium/hydrogen antiporter-1 acidify neonatal rat stratum corneum. J Invest Dermatol. 2004;122:320–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lambers H, et al. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28(5):359–70.

    Article  CAS  PubMed  Google Scholar 

  21. Mauro T. SC pH: measurement, origins, and functions. In: Elias P, Feingold K, editors. Skin barrier. New York: Taylor & Francis; 2006. p. 223–9.

    Google Scholar 

  22. Fluhr JW, et al. Functional consequences of a neutral pH in neonatal rat stratum corneum. J Invest Dermatol. 2004;123:140–51.

    Article  CAS  PubMed  Google Scholar 

  23. Hachem JP, et al. pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol. 2003;121:345–53.

    Article  CAS  PubMed  Google Scholar 

  24. Hachem JP, et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol. 2005;125:510–20.

    Article  CAS  PubMed  Google Scholar 

  25. Waller JM, et al. Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol. 2005;11(4):221–35.

    Article  PubMed  Google Scholar 

  26. Choi EH, et al. Stratum corneum acidification is impaired in moderately aged human and murine skin. J Invest Dermatol. 2007;127(12):2847–56.

    Article  CAS  PubMed  Google Scholar 

  27. Yadav H, et al. Production of free fatty acids and conjugated linoleic acid in probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei during fermentation and storage. Int Dairy J. 2007;17(8):1006–10.

    Article  CAS  Google Scholar 

  28. Holleran WM, et al. Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett. 2006;580(23):5456–66.

    Article  CAS  PubMed  Google Scholar 

  29. Di Marzio L, et al. Effect of the lactic acid bacterium Streptococcus thermophilus on ceramide levels in human keratinocytes in vitro and stratum corneum in vivo. J Invest Dermatol. 1999;113(1):98–106.

    Article  PubMed  Google Scholar 

  30. Di Marzio L, et al. Effect of the lactic acid bacterium Streptococcus thermophilus on stratum corneum ceramide levels and signs and symptoms of atopic dermatitis patients. Exp Dermatol. 2003;12(5):615–20.

    Article  PubMed  Google Scholar 

  31. Di Marzio L, et al. Increase of skin-ceramide levels in aged subjects following a short-term topical application of bacterial sphingomyelinase from Streptococcus thermophilus. Int J Immunopathol Pharmacol. 2008;21(1):137–43.

    PubMed  Google Scholar 

  32. Denda M, et al. Age- and sex-dependent change in stratum corneum sphingolipids. Arch Dermatol Res. 1993;285(7):415–7.

    Article  CAS  PubMed  Google Scholar 

  33. Motta S, et al. Abnormality of water barrier function in psoriasis. Role of ceramide fractions. Arch Dermatol. 1994;130(4):452–6.

    Article  CAS  PubMed  Google Scholar 

  34. Jensen JM, et al. Acid and neutral sphingomyelinase, ceramide synthase, and acid ceramidase activities in cutaneous aging. Exp Dermatol. 2005;14(8):609–18.

    Article  CAS  PubMed  Google Scholar 

  35. Kohen R, et al. Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology. 2000;148(2–3):149–57.

    Article  CAS  PubMed  Google Scholar 

  36. Hensley K, et al. Reactive oxygen species and protein oxidation in aging: a look back, a look ahead. Arch Biochem Biophys. 2002;397(2):377–83.

    Article  CAS  PubMed  Google Scholar 

  37. Tzaphlidou M. The role of collagen and elastin in aged skin: an image processing approach. Micron. 2004;35(3):73–177.

    Google Scholar 

  38. Dalle Carbonare M, et al. Skin photosensitizing agents and the role of reactive oxygen species in photoaging. J Photochem Photobiol. 1992;14(1–2):105–24.

    Article  CAS  Google Scholar 

  39. Helfrich YR, et al. Overview of skin aging and photoaging. Dermatol Nurs. 2008;20(3):177–83.

    PubMed  Google Scholar 

  40. Kodali VP, et al. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol J. 2008;3(2):245–51.

    Article  CAS  PubMed  Google Scholar 

  41. Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev. 1990;7(1–2):113–30.

    Article  CAS  PubMed  Google Scholar 

  42. Welman AD, et al. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 2003;21(6):269–74.

    Article  CAS  PubMed  Google Scholar 

  43. Kishk YFM, et al. Free-radical scavenging and antioxidative activities of some polysaccharides in emulsions. LWT- Food Sci Technol. 2007;40(2):270–7.

    Article  CAS  Google Scholar 

  44. Bruno-Bárcena JM, et al. Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol. 2004;70(8):4702–10.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kang S, et al. Photoaging and topical tretinoin: therapy, pathogenesis, and prevention. Arch Dermatol. 1997;133(10):1280–4.

    Article  CAS  PubMed  Google Scholar 

  46. Massagué J. TGF-β signal transduction. Annu Rev Biochem. 1998;67:753–91.

    Article  PubMed  Google Scholar 

  47. Chung JH, et al. Decreased extracellular-signal-regulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo. J Invest Dermatol. 2000;115(2):177–82.

    Article  CAS  PubMed  Google Scholar 

  48. Varani J, et al. Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol. 2000;114(3):480–6.

    Article  CAS  PubMed  Google Scholar 

  49. Jenkins G. Molecular mechanisms of skin ageing. Mech Ageing Dev. 2002;123(7):801–10.

    Article  CAS  PubMed  Google Scholar 

  50. Ulisse S, et al. Expression of cytokines, inducible nitric oxide synthase, and matrix metalloproteinases in pouchitis: effects of probiotic treatment. Am J Gastroenterol. 2001;96(9):2691–9.

    Article  CAS  PubMed  Google Scholar 

  51. Riccia DN, et al. Anti-inflammatory effects of Lactobacillus brevis (CD2) on periodontal disease. Oral Dis. 2007;13(4):376–85.

    Article  PubMed  Google Scholar 

  52. Moorthy G, et al. Protective role of lactobacilli in Shigella dysenteriae 1-induced diarrhea in rats. Nutrition. 2007;23(5):424–33.

    Article  PubMed  Google Scholar 

  53. Dorshkind K. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol. 2009;9(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  54. Victor VM, et al. N-acetylcysteine improves in vitro the function of macrophages from mice with endotoxininduced oxidative stress. Free Radic Res. 2002;36:33–45.

    Article  CAS  PubMed  Google Scholar 

  55. Dewberry C, et al. Skin cancer in elderly patients. Dermatol Clin North Am. 2004;22:93–6.

    Article  Google Scholar 

  56. Nova E, et al. Immunomodulatory effects of probiotics in different stages of life. Br J Nutr. 2007;98 Suppl 1:S90–5.

    CAS  PubMed  Google Scholar 

  57. Chiang BL, et al. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses. Eur J Clin Nutr. 2000;54:849–55.

    Article  CAS  PubMed  Google Scholar 

  58. Gill HS, et al. Optimizing immunity and gut function in the elderly. J Nutr Health Aging. 2001;5:80–91.

    CAS  PubMed  Google Scholar 

  59. Caramia G, et al. Probiotics and the skin. Clin Dermatol. 2008;26(1):4–11.

    Article  PubMed  Google Scholar 

  60. Isolauri E. Probiotics in human disease. Am J Clin Nutr. 2001;73:S1142–6.

    Google Scholar 

  61. Cals-Grierson MM, et al. Nitric oxide function in the skin. Nitric Oxide. 2004;10(4):179–93.

    Article  CAS  PubMed  Google Scholar 

  62. Ouwehand AC, et al. Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Microbiol. 2008;53(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  63. Guéniche A, et al. Supplementation with oral probiotic bacteria maintains cutaneous immune homeostasis after UV exposure. Eur J Dermatol. 2006;16:511–7.

    PubMed  Google Scholar 

  64. Peguet-Navarro J, et al. Supplementation with oral probiotic bacteria protects human cutaneous immune homeostasis after UV exposure-double blind, randomized, placebo controlled clinical trial. Eur J Dermatol. 2008;18:504–11.

    CAS  PubMed  Google Scholar 

  65. Canche-Pool EB, et al. Probiotics and autoimmunity: an evolutionary perspective. Med Hypotheses. 2008;70:657–60.

    Article  CAS  PubMed  Google Scholar 

  66. Hsu CJ, et al. Emerging treatment of atopic dermatitis. Clin Rev Allergy Immunol. 2007;33:199–203.

    Article  CAS  PubMed  Google Scholar 

  67. Railan D, et al. Ablative treatment of photoaging. Dermatol Ther. 2005;18:227–41.

    Article  PubMed  Google Scholar 

  68. Gorbach SL. Probiotics in the third millennium. Dig Liver Dis. 2002;34 Suppl 2:2–7.

    Article  Google Scholar 

  69. Fan YF, et al. Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption. Int J Pharm. 2006;324:158–67.

    Article  CAS  PubMed  Google Scholar 

  70. Hooper LV, et al. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A. 1999;17(96):9833–8.

    Article  Google Scholar 

  71. Sheehan VM, et al. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarium UCC118. Appl Environ Microbiol. 2006;72(3):2170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sheehan VM, et al. Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiol. 2007;153(10):3563–71.

    Article  CAS  Google Scholar 

  73. Saunders S, et al. Effect of Lactobacillus challenge on Gardnerella vaginalis biofilms. Colloids Surf B Biointerfaces. 2007;55(2):138–42.

    Article  CAS  PubMed  Google Scholar 

  74. Thurnheer T, et al. Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods. 2004;56:37–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedetta Cinque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cinque, B. et al. (2017). Probiotics in Aging Skin. In: Farage, M., Miller, K., Maibach, H. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47398-6_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47398-6_78

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47397-9

  • Online ISBN: 978-3-662-47398-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics