Skip to main content

Titanium Alloys for Biomedical Applications

  • Chapter
Advances in Metallic Biomaterials

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 3))

Abstract

The low Young’s modulus of β-type titanium alloys makes them advantageous for use in medical implant devices, as they are effective in both preventing bone resorption and promoting good bone remodeling. The development of low Young’s modulus β-type titanium alloys for biomedical applications is described herein, along with a discussion of suitable methods for even greater modulus reductions. Since there is often occasion to remove implant devices, titanium alloys suitable for removable implants are also described. It has recently been noted that although patients require low Young’s modulus titanium alloys, a high modulus is needed by surgeons. Consequently, β-type titanium alloys with a self-tunable Young’s modulus are also explored. An evaluation of the effectiveness of low Young’s modulus β-type titanium alloys in preventing stress shielding is provided, which is based on the results of animal testing. Means of enhancing the mechanical biocompatibilities of β-type titanium alloys for biomedical applications are also described along with the suitability of those β-type titanium alloys which exhibit super-elastic and shape-memory behavior. Finally, the unique behavior of some β-type titanium alloys for biomedical applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamamuro T (1989) Patterns of osteogenesis in relation to various biomaterials. J Jpn Soc Biomater 7:19–23

    Google Scholar 

  2. Niinomi M, Hattori T, Morikawa K et al (2002) Development of low rigidity β-type titanium alloy for biomedical applications. Mater Trans 43(12):2970–2977

    Google Scholar 

  3. Sumitomo N, Noritake K, Hattori T et al (2008) Experiment study on fracture fixation with low rigidity titanium alloy – plate fixation of tibia fracture model in rabbit. J Mater Sci Mater Med 19:1581–1586

    Google Scholar 

  4. Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903

    Google Scholar 

  5. Park JB, Lakes RS (1992) In: Biomaterials: an introduction. Plenum Press, New York

    Google Scholar 

  6. Brannon BP, Mild EE (1981) In: Luckey HA, Kubli F (eds) Ti alloys in surgical implants. ASTM Special Technical Publication, Philadelphia, pp 7–15

    Google Scholar 

  7. Dobbs HS, Scales JT (1981) In: Luckey HA, Kubli F (eds) Ti Alloys in Surgical Implants. ASTM Special Technical Publication, Philadelphia, pp 173–186

    Google Scholar 

  8. Froes FH (2004) How to market titanium: lower the cost. JOM 2:39

    Google Scholar 

  9. Froes FH, Friedrich H, Kiese J et al (2004) Titanium in the family automobile: the cost challenge. JOM 2:40–44

    Google Scholar 

  10. Niinomi M (2013) Titanium alloys with high biological and mechanical biocompatibility. J Jpn Soc Bone Morphometry 23(1):S59

    Google Scholar 

  11. Nakai M, Niinomi M, Zhao XF et al (2011) Self-adjustment of Young’s modulus in biomedical titanium alloys during orthopedic operation. Mater Lett 65:688–690

    Google Scholar 

  12. Zhao XL, Niinomi M, Nakai M et al (2011) Development of high Zr-containing Ti-based alloys with low Young’s modulus for use in removable implants. Mater Sci Eng C 31:1436–1444

    Google Scholar 

  13. Niinomi M, Hattori T, Kasuga T et al (2006) Titanium and its alloys. In: Encyclopedia of biomaterials and biomedical engineering. Marcel Dekker, New York, pp 1–8

    Google Scholar 

  14. Ahmed T, Long M, Silvestri J et al (1996) A new low modulus, biocompatible titanium alloy. In: Blenkinsop PA, Evans WJ, Flower HM (eds) Titanium ’95 science and technology, vol II. Institute of Metals, London, pp 1760–1767

    Google Scholar 

  15. Kuroda D, Niinomi M, Morinaga M et al (1998) Design and mechanical properties of new beta type titanium alloys for implant materials. Mater Sci Eng A 243:244–249

    Google Scholar 

  16. Saito T, Furuta T, Hwang JH et al (2003) Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300:464–467

    Google Scholar 

  17. Kawahara H, Ochi S, Tanetani K et al (1963) Biological test of dental materials. Effect of pure metals upon the mouse subcutaneous fibroblast. Starin L cell in tissue culture. J Jpn Soc Dent Apparat Mater 4:65–75

    Google Scholar 

  18. Steinemann SG (1980) Corrosion of surgical implants-in vivo and in vitro tests. In: Winter GD, Leray JL, de Groot K (eds) Evaluation of biomaterials. Wiley, New York, pp 1–34

    Google Scholar 

  19. Uggowitzer PJ, Bähr WF, Speidel MO (1997) Metal injection molding of nickel-free stainless steels. Adv Powder Metal Part Mater 3:18.113–18.121

    Google Scholar 

  20. Hatanaka S, Ueda M, Ikeda M et al (2009) Isothermal aging behavior in Ti-10Cr-Al alloys for medical applications. Adv Mater Res 638–642:425–430

    Google Scholar 

  21. Ikeda M, Ueda M, Matsunaga R et al (2009) Isothermal aging behavior of beta titanium-manganese alloys. Mater Trans 50:2737–2743

    Google Scholar 

  22. Ikeda M, Ueda M, Kinoshita T et al (2012) Influence of Fe content of Ti-Mn-Fe alloys on phase constitution and heat treatment behavior. Mater Sci Forum 706–709:1893–1898

    Google Scholar 

  23. Ikeda M, Ueda M, Matsunaga R et al (2010) Phase constitution and heat treatment behavior of Ti-7mass%Mn-Al alloys. Mater Sci Forum 654–656:855–858

    Google Scholar 

  24. Ikeda M, Sugano D (2005) The effect of aluminum content on phase constitution and heat treatment behavior of Ti-Cr-Al alloys for healthcare applications. Mater Sci Eng C 25:377–381

    Google Scholar 

  25. Ashida S, Kyogak H, Hosoda H (2012) Fabrication of Ti-Sn-Cr shape memory alloy by PM and its properties. Mater Sci Forum 706–709:1943–1947

    Google Scholar 

  26. Murayama Y, Sasaki S (2009) Univ Res J Niigata Inst Technol 14:1–8

    Google Scholar 

  27. Kasan Y, Inamura T, Kanetaka H et al (2010) Phase constitution and mechanical properties of Ti-(Cr, Mn)-Sn biomedical alloys. Mater Sci Forum 654–656:2118–2121

    Google Scholar 

  28. Niinomi M (2010) Trends and present state of titanium alloys with body centered structure for biomedical applications. Bull Iron Steel Inst Jpn 15(11):661–670

    Google Scholar 

  29. Matsumoto H, Watanabe S, Hanada S (2006) Strengthening of low Young’s modulus modulus beta Ti-Nb-Sn alloys by thermomechanical processing. In: Proceedings of the materials and processing for medical devices conference. ASM International, Materials Park, pp 9–14

    Google Scholar 

  30. Yilmazer H, Niinomi M, Nakai M et al (2013) Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high pressure torsion. Mater Sci Eng C 33:2499–2507

    Google Scholar 

  31. Tane M, Akita S, Nakano T et al (2008) Peculiar elastic behavior of Ti-Nb-Ta-Zr single crystals. Acta Mater 56:2856–2863

    Google Scholar 

  32. Kobayashi E, Ando M, Tsutsumi Y et al (2007) Inhibition effect of zirconium coating on calcium phosphate precipitation of titanium to avoid assimilation with bone. Mater Trans 48:301–306

    Google Scholar 

  33. Kambouroglou GK, Axelrod TS (1998) Complications of the AO/ASIF titanium distal radius plate system (pi plate) in internal fixation of the distal radius: a brief report. J Hand Surg 23:737–741

    Google Scholar 

  34. Cook SD, Renz EA, Barrack RL et al (1985) Clinical and metallurgical analysis of retrieved internal-fixation devices. Clin Orthop Relat Res 194:236–247

    Google Scholar 

  35. Thibon I, Ansel D, Gloriant T (2009) Interdiffusion in beta-Ti-Zr binary alloys. J Alloy Compd 470:127–133

    Google Scholar 

  36. Albrektsson T, Hansson HA, Ivarsson B (1985) Interface analysis of titanium and zirconium bone implants. Biomaterials 6:97–101

    Google Scholar 

  37. Ikarashi Y, Toyoda K, Kobayashi E et al (2005) Improved biocompatibility of titanium-zirconium (Ti-Zr) alloy: tissue reaction and sensitization to Ti-Zr alloy compared with pure Ti and Zr in rat implantation study. Mater Trans 46:2260–2267

    Google Scholar 

  38. Tsutsumi Y, Nishimura D, Doi H et al (2009) Difference in surface reactions between titanium and zirconium in Hanks’ solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mater Sci Eng C 29:1702–1708

    Google Scholar 

  39. Hanawa T, Okuno O, Hamanaka H (1992) Compositional change in surface of Ti-Zr alloys in artificial bioliquid. J Jpn Inst Metals 56:1168–1173

    Google Scholar 

  40. Kobayashi E, Matsumoto S, Doi H et al (1995) Mechanical-properties of the binary titanium-zirconium alloys and their potential for biomedical materials. J Biomed Mater Res 29:943–950

    Google Scholar 

  41. Kobayashi E, Doi H, Yoneyama T et al (1995) Evaluation of mechanical properties of dental-cast Ti-Zr based alloys. J Jpn Dent Mater 14:321–328

    Google Scholar 

  42. Ho WF, Chen WK, Wu SC et al (2008) Structure, mechanical properties, and grindability of dental Ti-Zr alloys. J Mater Sci Mater Med 19:3179–3186

    Google Scholar 

  43. Imgram AG, Williams DN, Ogden HR (1962) Tensile properties of binary titanium-zirconium and titanium-hafnium alloys. J Less-Common Metal 4:217–225

    Google Scholar 

  44. Takahashi M, Kobayashi E, Doi H et al (2000) Phase stability and mechanical properties of biomedical β type titanium-zirconium based alloys containing niobium. J Jpn Inst Metals 64:1120–1126

    Google Scholar 

  45. Yang GJ, Zhang T (2005) Phase transformation and mechanical properties of the Ti50Zr30Nb10Ta10 alloy with low modulus and biocompatible. J Alloy Compd 392:291–294

    Google Scholar 

  46. Song Y, Xu D, Yang R et al (1999) Theoretical study of the effects of alloying elements on the strength and modulus of b-type bio-titanium alloys. Mater Sci Eng A 260:269–274

    Google Scholar 

  47. Narita K, Niinomi M, Nakai M et al (2008) Mechanical properties of implant rods made of low-modulus beta-type titanium alloy, Ti-29Nb-13Tta-4.6Zr, for spinal fixture. J Jpn Inst Metals 72:674–678

    Google Scholar 

  48. Steib JP, Dumas R, Skalli W (2004) Surgical correction of scoliosis by in situ contouring: a detorsion analysis. Spine 29:193–199

    Google Scholar 

  49. Nakai M (2010) Titanium alloys for spinal fixation devices. Materia Jpn 49:437–440

    Google Scholar 

  50. Zhao XF, Niinomi M, Nakai M (2012) Beta-type Ti-Mo alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater 8:1990–1997

    Google Scholar 

  51. Zhao XL, Niinomi M, Nakai M et al (2011) Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater 7:3230–3236

    Google Scholar 

  52. Zhao XL, Niinomi M, Nakai M (2011) Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications. J Mech Behav Biomed Mater 4:2009–2016

    Google Scholar 

  53. Matsumoto H, Watanabe S, Masahashi N et al (2006) Composition dependence of Young’s modulus in Ti-V, Ti-Nb, and Ti-V-Sn alloys. Metall Mater Trans A 37:3239–3249

    Google Scholar 

  54. Liu HH, Niinomi M, Nakai M et al (2014) Bending springback behavior related to deformation-induced phase transformations in Ti–12Cr and Ti–29Nb–13Ta–4.6Zr alloys for spinal fixation applications. JMBBM 34:66–74

    Google Scholar 

  55. Zhao XF, Niinomi M, Nakai M et al (2012) Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young’s modulus for spinal fixation applications. Acta Biomater 8:2392–2400

    Google Scholar 

  56. Williams JC, de Fontaine D, Paton NE (1973) The ω-phase as an example of an unusual shear transformation. Metall Trans 4:2701–2708

    Google Scholar 

  57. de Fontaine D, Paton NE, Williams JC (1971) The omega phase transformation in titanium alloys as an example of displacement controlled reactions. Acta Metall 19:1153–1162

    Google Scholar 

  58. Liu HH, Niinomi M, Nakai M et al (2014) Deformation-induced changeable Young’s modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture. J Mech Behav Biomed Mater 34:205–213

    Google Scholar 

  59. Li Q, Niinomi M, Hieda J et al (2013) Deformation-induced ω phase in modified Ti–29Nb–13Ta–4.6Zr alloy by Cr addition. Acta Biomater 9:8027–8035

    Google Scholar 

  60. Niinomi M, Hattori T, Niwa S (2004) Material characteristics and biocompatibility of low rigidity titanium alloys for biomedical applications. In: Yaszemski MJ, Trantolo DJ, Lewandrowski KU et al (eds) Biomaterials in orthopedics. Marcel Dekker, New York, pp 41–62

    Google Scholar 

  61. Guo Z, Fu J, Zhang YQ et al (2009) Early effect of Ti-24Nb-4Zr-7.9Sn intramedullary nails on fractured bone. Mater Sci Eng C 29:963–968

    Google Scholar 

  62. Narita K, Niinomi M, Nakai M et al (2012) Development of thermo-mechanical processing for fabricating highly durable β-type Ti-Nb-Ta-Zr rod for use in spinal fixation devices. J Mech Behav Biomed Mater 9:207–216

    Google Scholar 

  63. Akahori T, Niinomi M, Noda A et al (2006) Effect of aging treatment on mechanical properties of Ti-29Nb-13Ta-4.6Zr alloy for biomedical applications. J Jpn Inst Metals 70(4):295–303

    Google Scholar 

  64. Niinomi M (2003) Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. Biomaterials 24(16):2673–2683

    Google Scholar 

  65. Akahori T, Niinomi M, Fukui H et al (2005) Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Mater Sci Eng C 25(3):248–254

    Google Scholar 

  66. Niinomi M, Nakai M (2012) Mechanically bio-functional titanium alloys for substituting failed hard tissue. In: Flogen FK (ed) Composites, ceramics, nanomaterials & titanium processing, FLOGEN Star OUTREACH, Quebec, Canada, vol 7, 409–433

    Google Scholar 

  67. Niinomi M, Akahori T, Morikawa K et al (2005) Super elastic functional β titanium alloy with low Young’s modulus for biomedical applications. J ASTM Int 2(6):473–488. Paper ID JA12818, ISSN:1546-962X, Published Online

    Google Scholar 

  68. Yilmazer H, Niinomi M, Akahori T et al (2012) Effects of severe plastic deformation and thermo-mechanical treatments on microstructures and mechanical properties of β-type titanium alloys for biomedical applications. Int J Microstruct Mater Prop (IJMMP) 7:168–188

    Google Scholar 

  69. Nakai M, Niinomi M, Oneda T (2012) Improvement in fatigue strength of biomedical β-type Ti–Nb–Ta–Zr alloy while maintaining low Young’s modulus through optimizing ω-phase precipitation. Metall Mater Trans A 43(1):294–302

    Google Scholar 

  70. Niinomi M, Nakai M, Yonezawa S et al (2011) Effect of TiB2 or Y2O3 Additions on mechanical biofunctionality of Ti-29Nb-13Ta-4.6Zr for biomedical applications. Ceram Trans 228:75–82

    Google Scholar 

  71. Niinomi M (2012) Shape memory, super elastic and low Young’s modulus alloys. In: Ambrosioand L, Tanner E (eds) Biomaterials for spinal surgery. Woodhead Publishing, Philadelphia, pp 462–490

    Google Scholar 

  72. Kim HY, Ikehara Y, Kim JI et al (2006) Martensitic transformation shape memory effect and superelasticity of Ti-Nb-binary alloys. Acta Mater 54:2419–2429

    Google Scholar 

  73. Kim JI, Kim HY, Hosoda H et al (2005) Shape memory behavior of Ti-22Nb-(0.5-2.0)O(at%) biomedical alloys. Mater Trans 46:852–857

    Google Scholar 

  74. Takahashi E, Sakurai T, Watanabe S et al (2002) Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys. Mater Trans 43:2978–2983

    Google Scholar 

  75. Nitta K, Watanabe S, Masahashi N et al (2001) Ni-free Ti-Nb-Sn shape memory alloys. In: Niinomi M, Okabe T, Taleff E et al. (eds) Structural biomaterials for the 21st century TMS, Warrendale, pp 25–34

    Google Scholar 

  76. Hosoda H, Fukui Y, Inamura T et al (2003) Mechanical properties of Ti-base shape memory alloys. Mater Sci Forum 426–432:3121–3125

    Google Scholar 

  77. Inamura T, Hosoda H, Wakashima K et al (2005) Anisotropy and temperature dependence of Young’s modulus in textured TiNbAl biomedical shape memory alloy. Mater Trans 46:1597–1603

    Google Scholar 

  78. Kim JI, Kim Y, Inamura T et al (2005) Shape memory characteristics of Ti-22Nb-(2-8)Zr(at%) biomedical alloys. Mater Sci Eng A 403:334–339

    Google Scholar 

  79. Kim HY, Hosoda H, Miyazaki S (2007) Development of super elastic Ti-Nb system alloys for biomedical applications. Collected abstracts of the 2007 spring meeting of the Japan institute of metals. JIM, Sendai, Japan, 91

    Google Scholar 

  80. Ohmatsu Y, Kim JI, Kim HY et al (2003) Shape memory characteristics of Ti-Nb-Mo alloys for biomedical applications. Collected abstracts of the 2003 spring meeting of the Japan institute of metals. JIM, Sendai, Japan, 144

    Google Scholar 

  81. Al-Zain Y, Kim HY, Hosoda H et al (2010) Shape memory properties of Ti-Nb-Mo biomedical alloys. Acta Mater 58:4212–4223

    Google Scholar 

  82. Kim HY, Sasaki T, Okutsu K et al (2006) Texture and shape memory behavior of Ti-22Nb-6Ta alloy. Acta Mater 54:423–433

    Google Scholar 

  83. Oshika N, Hashimoto S, Kim JI et al (2003) Shape memory characteristics of Ti-Nb-Au alloys for biomedical applications. Collected abstracts of the 2003 fall meeting of the Japan institute of metals. JIM, Sendai, Japan, 149

    Google Scholar 

  84. Ping D, Mitarai Y, Yin F (2005) Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy. Scr Mater 52:1287–1291

    Google Scholar 

  85. Hosoda H, Hosoda N, Miyazaki S (2001) Mechanical properties of Ti-Mo-Al biomedical shape memory alloys. Trans MRS-J 26:243–246

    Google Scholar 

  86. Kim HY, Ohmatsu Y, Kim JI et al (2004) Mechanical properties and shape memory behavior of Ti-Mo-Ga alloys. Mater Trans 45:1090–1095

    Google Scholar 

  87. Hosoda N, Yamamoto A, Hosoda H et al (2001) Mechanical properties of Ti-Mo-Ge shape memory alloys for biomedical applications. Collected abstracts of the 2001 fall meeting of the Japan Institute of Metals. JIM, Sendai, Japan, 401

    Google Scholar 

  88. Maeshima T, Nishida M (2004) Shape memory properties of biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys. Mater Trans 45:1096–1100

    Google Scholar 

  89. Maeshima T, Nishida M (2004) Shape memory and mechanical properties of biomedical Ti-Sc-Mo alloys. Mater Trans 45:1101–1105

    Google Scholar 

  90. Ikeda M, Komatsu S, Nakamura Y (2004) Effects of Sn and Zr additions on phase constitution and aging behavior of Ti-50mass%Ta alloys quenched from β single phase region. Mater Trans 45:1106–1112

    Google Scholar 

  91. Ikeda M, Sugano D, Masuda S (2005) The influence of aluminum content on shape memory effect of Ti-7Cr-Al alloys fabricated using low grade sponge titanium. Mater Trans 46:1604–1609

    Google Scholar 

  92. Hosoda H, Miyazaki S (2004) Recent topics of shape memory materials and related technology. J Jpn Soc Mech Eng 107:509–515

    Google Scholar 

  93. Hanada S, Masahashi N, Jung TK et al (2014) Effect of swaging on Young’s modulus of b Ti-33.6Nb-4Sn alloy. J Mech Behav Biomed Mater 32:310–320

    Google Scholar 

  94. Kim H, Hosoda H, Miyazaki S (2005) Beta-titanium shape memory alloys. J Jpn Inst Light Metal 55:613–617

    Google Scholar 

  95. Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of N-free Ti-base shape memory and superelastic alloys. Mater Sci Eng A 433–440:18–24

    Google Scholar 

  96. Masumoto K, Horiuchi Y, Inamura T et al (2006) Effects of Si addition on superelastic properties of Ti–Nb–Al biomedical shape memory alloys. Mater Sci Eng A 438–440:835–838

    Google Scholar 

  97. Tahara M, Kim HY, Inamura T et al (2009) Effect of nitrogen addition on superelasticity of Ti-Zr-Nb alloys. Mater Trans 50:2726–2730

    Google Scholar 

  98. Horiuchi Y, Inamura T, Kim HY et al (2007) Effect of boron concentration on martensitic transformation temperatures, stress for inducing martensite and slip stress of Ti-24mol%Nb-3mol%Al superelastic alloy. Mater Trans 48:407–413

    Google Scholar 

  99. Hosoda H, Taniguchi M, Inamura T et al (2010) Effect of aging on mechanical properties of Ti-Mo-Al biomedical shape memory alloy. Mater Sci Forum 654–656:2150–2153

    Google Scholar 

  100. Li Q, Niinomi M, Nakai M et al (2011) Improvements in the super-elasticity and change in deformation mode of β-type TiNb24Zr2 alloys caused by aging treatments. Metall Mater Trans A 42:2843–2849

    Google Scholar 

  101. Niinomi M, Akahori T, Nakai N (2008) In situ X-ray analysis of mechanism of nonlinear super elastic behavior of Ti-Nb-Ta-Zr system beta-type titanium alloy for biomedical applications. Mater Sci Eng C 28:406–413

    Google Scholar 

  102. Wu MH (2003) Assessment of a superelastic beta TiMo alloy for biomedical applications. In: Proceedings of ASM materials & processes for medical devices conference, 8–10 September, Anaheim, California, USA, pp 343–348

    Google Scholar 

  103. Obbard EG, Hao YL, Akahori T et al (2010) Mechanics of superplasticity in Ti-30Nb-(8-10)Ta-Zr alloy. Acta Mater 58:6790–6798

    Google Scholar 

  104. Nakai M, Niinomi M, Akahori T et al (2009) Anomalous thermal expansion of cold-rolled Ti-Nb-Ta-Zr alloy. Mater Trans 50:423–426

    Google Scholar 

  105. Geng F, Niinomi M, Nakai M (2011) Observation of yielding and strain hardening in a titanium alloy having high oxygen content. Mater Sci Eng A 528:5435–5445

    Google Scholar 

  106. Nakai M, Niinomi M, Akahori T et al (2009) Effect of oxygen content on microstructure and mechanical properties of biomedical Ti-29Nb-13Ta-4.6Zr alloy under solutionized and aged conditions. Mater Trans 50(2):2716–2720

    Google Scholar 

  107. Lopez MF, Jimenez JA, Gutierrez A (2003) Corrosion study of surface-modified vanadium-free titanium alloys. Electrochim Acta 48:1395–1401

    Google Scholar 

  108. Metikos-Hukovic M, Tkalcec E, Kwokal A et al (2003) An in vitro study of Ti and Ti-alloys coated with sol–gel derived hydroxyapatite coatings. Surf Coat Technol 165:40–50

    Google Scholar 

  109. Cai Z, Shafer T, Watanabe I et al (2003) Electrochemical characterization of cast titanium alloys. Biomaterials 24:213–218

    Google Scholar 

  110. Iijima D, Yoneyama T, Doi H et al (2003) Wear properties of Ti and Ti–6Al–7Nb castings for dental prostheses. Biomaterials 24:1519–1524

    Google Scholar 

  111. Khan MA, Williams RL, Williams DF (1999) The corrosion behavior of Ti–6Al–4V, Ti–6Al–7Nb and Ti–13Nb–13Zr in protein solutions. Biomaterials 20:631–637

    Google Scholar 

  112. Papakyriacou M, Mayer H, Pypen C et al (2000) Effects of surface treatments on high cycle corrosion fatigue of metallic implant materials. Int J Fatigue 22:873–888

    Google Scholar 

  113. Semlitsch MF, Weber H, Streicher RM et al (1992) Joint replacement components made of hot-forged and surface-treated Ti-6Al-7Nb alloy. Biomaterials 13(11):781–788

    Google Scholar 

  114. Watanabe I, Tanaka Y, Watanabe E et al (2004) Tensile properties and hardness of cast Fe-Pt magnetic alloys. J Prosthet Dent 92(3):278–282

    Google Scholar 

  115. Akahori T, Niinomi M, Fukunaga K et al (2000) Effects of microstructure on the short fatigue crack initiation and propagation characteristics of biomedical α/β titanium alloys. Metall Mater Trans A 31(8):1949–1958

    Google Scholar 

  116. Morant C, López MF, Gutiérrez A et al (2003) AFM and SEM characterization of non-toxic vanadium-free Ti alloys used as biomaterials. Appl Surf Sci 220(1–4):79–87

    Google Scholar 

  117. Khan MA, Williams RL, Williams DF (1999) Conjoint corrosion and wear in titanium alloys. Biomaterials 20(8):765–772

    Google Scholar 

  118. Watanabe K, Miyakawa O, Takada Y et al (2003) Casting behavior of titanium alloys in a centrifugal casting machine. Biomaterials 24(10):1737–1743

    Google Scholar 

  119. Metikos-Hukovic M, Kwokal A, Piljac J (2003) The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution. Biomaterials 24(21):3765–3775

    Google Scholar 

  120. Boehlert CJ (2010) Ti, Al, and Nb alloys for biomedical applications. US Patent 7,682,47345, February 2010

    Google Scholar 

  121. Boehlert CJ, Cowen CJ, Jaeger CR et al (2005) Tensile and fatigue evaluation of Ti-15Al-33Nb(at.%) and Ti-21Al-29Nb(at.%) alloys for biomedical applications. Mater Sci Eng C 25:263–275

    Google Scholar 

  122. Boehlert CJ, Cowen CJ, Quast JP et al (2008) Fatigue and wear evaluation of Ti-Al-Nb alloys for biomedical applications. Mater Sci Eng C 28:323–330

    Google Scholar 

  123. Boehlert CJ, Rider KA, Flick LM (2005) Biocompatibility evaluation of Ti-15Al-33Nb(at.%) and Ti-21Al-29Nb(at.%). Mater Trans 46(7):1618–1626

    Google Scholar 

  124. Schlaud MA, Friederichs RJ, Baumann MJ et al (2010) Osteoblast attachment and growth on novel TiNbAl alloys. Red Cedar Undergrad Res J August (1):33–37

    Google Scholar 

  125. Childs LM, Goater JJ, O’Keefe RJ et al (2001) Efficacy of etanercept for wear debris-induced osteolysis. J Bone Miner Res 16:338–347

    Google Scholar 

  126. Wang JY, Wicklund BH, Gustilo RB et al (1996) Titanium, chromium, and cobalt ions modulate the release of bone associated cytokines by human monocytes/macrophages in vitro. Biomaterials 17:2233–2240

    Google Scholar 

  127. Blaine TA (1997) Modulation of the production of cytokines in titanium-stimulated human peripheral blood monocytes by pharmacological agents. The role of cAMP-mediated signaling mechanisms. J Bone Joint Surg Am 79:1519–1528

    Google Scholar 

  128. Lee SH (1997) Human monocyte/macrophage response to cobalt chromium corrosion products and titanium particles in patients with total joint replacements. J Orthop Res 15:40–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuo Niinomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niinomi, M., Boehlert, C.J. (2015). Titanium Alloys for Biomedical Applications. In: Niinomi, M., Narushima, T., Nakai, M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46836-4_8

Download citation

Publish with us

Policies and ethics