Skip to main content

The Canonical RNA Interference Pathway in Animals

  • Chapter
  • First Online:
Regulatory RNAs

Abstract

The canonical RNA interference (RNAi) pathway is defined as a sequence-specific mRNA degradation mediated by short RNA molecules which are generated from long double-stranded RNA. Since its discovery in 1998, RNAi has become a popular tool for experimental silencing of gene expression. On the other hand, its natural role received less attention. Recent studies in animal systems, particularly the use of the next generation sequencing and analysis of animals defective in some aspect of small RNA biogenesis, revealed novel functions of RNAi and cross talks between RNAi and other pathways employing small RNAs. This chapter provides a comprehensive view of the natural canonical RNAi pathway in animals including its molecular mechanism and different biological roles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr Biol 13(10):807–818. doi:S0960982203002872 [pii]

    PubMed  CAS  Google Scholar 

  • Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130(1):101–112. doi:S0092--8674(07)00583--1 [pii], 10.1016/j.cell.2007.04.037

    PubMed  CAS  Google Scholar 

  • Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764. doi:318/5851/761 [pii], 10.1126/science.1146484

    PubMed  CAS  Google Scholar 

  • Armisen J, Gilchrist MJ, Wilczynska A, Standart N, Miska EA (2009) Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis. Genome Res 19(10):1766–1775. doi:gr.093054.109 [pii]. 10.1101/gr.093054.109

    PubMed  CAS  Google Scholar 

  • Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2(12):e391

    PubMed  Google Scholar 

  • Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22(20):2773–2785. doi:22/20/2773 [pii]. 10.1101/gad.1705308

    PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. doi:S0092867404000455 [pii]

    PubMed  CAS  Google Scholar 

  • Bennasser Y, Le SY, Benkirane M, Jeang KT (2005) Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22(5):607–619. doi:S1074--7613(05)00105--6 [pii]. 10.1016/j.immuni.2005.03.010

    PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366

    PubMed  CAS  Google Scholar 

  • Billy E, Brondani V, Zhang H, Muller U, Filipowicz W (2001) Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc Natl Acad Sci USA 98(25):14428–14433

    PubMed  CAS  Google Scholar 

  • Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12(3):R85–86. doi:S0960982202006668 [pii]

    PubMed  CAS  Google Scholar 

  • Carlile M, Swan D, Jackson K, Preston-Fayers K, Ballester B, Flicek P, Werner A (2009) Strand selective generation of endo-siRNAs from the Na/phosphate transporter gene Slc34a1 in murine tissues. Nucleic Acids Res 37(7):2274–2282. doi:gkp088 [pii]. 10.1093/nar/gkp088

    PubMed  CAS  Google Scholar 

  • Carmell MA, Xuan Z, Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16(21):2733–2742

    PubMed  CAS  Google Scholar 

  • Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12(4):503–514. doi:S1534--5807(07)00100--1 [pii]. 10.1016/j.devcel.2007.03.001

    PubMed  CAS  Google Scholar 

  • Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16(19):2491–2496

    PubMed  CAS  Google Scholar 

  • Caudy AA, Ketting RF, Hammond SM, Denli AM, Bathoorn AM, Tops BB, Silva JM, Myers MM, Hannon GJ, Plasterk RH (2003) A micrococcal nuclease homologue in RNAi effector complexes. Nature 425(6956):411–414

    PubMed  CAS  Google Scholar 

  • Cenik ES, Fukunaga R, Lu G, Dutcher R, Wang Y, Hall TM, Zamore PD (2011) Phosphate and R2D2 Restrict the Substrate Specificity of Dicer-2, an ATP-Driven Ribonuclease. Mol Cell. doi:S1097--2765(11)00178-X [pii]. 10.1016/j.molcel.2011.03.002

    Google Scholar 

  • Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50(2):81–99. doi:10.1007/s00294--006--0078-x

    PubMed  CAS  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744

    PubMed  CAS  Google Scholar 

  • Chera S, de Rosa R, Miljkovic-Licina M, Dobretz K, Ghila L, Kaloulis K, Galliot B (2006) Silencing of the hydra serine protease inhibitor Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J Cell Sci 119(Pt 5):846–857. doi:jcs.02807 [pii]. 10.1242/jcs.02807

    PubMed  CAS  Google Scholar 

  • Chung WJ, Okamura K, Martin R, Lai EC (2008) Endogenous RNA interference provides a somatic defense against Drosophila transposons. Curr Biol 18(11):795–802. doi:S0960--9822(08)00603--9 [pii]. 10.1016/j.cub.2008.05.006

    PubMed  CAS  Google Scholar 

  • Cogoni C, Macino G (1999) Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399(6732):166–169. doi:10.1038/20215

    PubMed  CAS  Google Scholar 

  • Correa RL, Steiner FA, Berezikov E, Ketting RF (2010) MicroRNA-directed siRNA biogenesis in Caenorhabditis elegans. PLoS Genet 6(4):e1000903. doi:10.1371/journal.pgen.1000903

    PubMed  Google Scholar 

  • Cosentino GP, Venkatesan S, Serluca FC, Green SR, Mathews MB, Sonenberg N (1995) Double-stranded-RNA-dependent protein kinase and TAR RNA-binding protein form homo- and heterodimers in vivo. Proc Natl Acad Sci USA 92(21):9445–9449

    PubMed  CAS  Google Scholar 

  • Cullen BR (2006) Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat Immunol 7(6):563–567. doi:ni1352 [pii]. 10.1038/ni1352

    PubMed  CAS  Google Scholar 

  • Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12(1):19–31. doi:nrg2916 [pii]. 10.1038/nrg2916

    PubMed  CAS  Google Scholar 

  • Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel JA, Sachidanandam R, Hannon GJ, Brennecke J (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453(7196):798–802. doi:nature07007 [pii]. 10.1038/nature07007

    PubMed  CAS  Google Scholar 

  • Dalmay T, Horsefield R, Braunstein TH, Baulcombe DC (2001) SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J 20(8):2069–2078. doi:10.1093/emboj/20.8.2069

    PubMed  CAS  Google Scholar 

  • Daniels SM, Melendez-Pena CE, Scarborough RJ, Daher A, Christensen HS, El Far M, Purcell DF, Laine S, Gatignol A (2009) Characterization of the TRBP domain required for dicer interaction and function in RNA interference. BMC Mol Biol 10:38. doi:1471--2199--10--38 [pii]. 10.1186/1471--2199--10--38

    PubMed  Google Scholar 

  • Das PP, Bagijn MP, Goldstein LD, Woolford JR, Lehrbach NJ, Sapetschnig A, Buhecha HR, Gilchrist MJ, Howe KL, Stark R, Matthews N, Berezikov E, Ketting RF, Tavare S, Miska EA (2008) Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol Cell 31(1):79–90. doi:S1097--2765(08)00392--4 [pii]. 10.1016/j.molcel.2008.06.003

    PubMed  CAS  Google Scholar 

  • Diallo M, Arenz C, Schmitz K, Sandhoff K, Schepers U (2003) Long endogenous dsRNAs can induce complete gene silencing in mammalian cells and primary cultures. Oligonucleotides 13(5):381–392. doi:10.1089/154545703322617069

    PubMed  CAS  Google Scholar 

  • Didiot MC, Subramanian M, Flatter E, Mandel JL, Moine H (2009) Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly. Mol Biol Cell 20(1):428–437. doi:E08--07--0737 [pii]. 10.1091/mbc.E08--07--0737

    PubMed  CAS  Google Scholar 

  • Dlakic M (2006) DUF283 domain of Dicer proteins has a double-stranded RNA-binding fold. Bioinformatics 22(22):2711–2714. doi:btl468 [pii]. 10.1093/bioinformatics/btl468

    PubMed  CAS  Google Scholar 

  • Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17(4):438–442. doi:10.1101/gad.1064703

    PubMed  CAS  Google Scholar 

  • Doyle M, Jantsch MF (2002) New and old roles of the double-stranded RNA-binding domain. J Struct Biol 140(1–3):147–153. doi:S1047847702005440 [pii]

    PubMed  CAS  Google Scholar 

  • Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132(21):4645–4652. doi:132/21/4645 [pii]. 10.1242/dev.02070

    PubMed  CAS  Google Scholar 

  • Du Z, Lee JK, Tjhen R, Stroud RM, James TL (2008) Structural and biochemical insights into the dicing mechanism of mouse Dicer: a conserved lysine is critical for dsRNA cleavage. Proc Natl Acad Sci USA 105(7):2391–2396. doi:0711506105 [pii]. 10.1073/pnas.0711506105

    PubMed  CAS  Google Scholar 

  • Duchaine TF, Wohlschlegel JA, Kennedy S, Bei Y, Conte D Jr, Pang K, Brownell DR, Harding S, Mitani S, Ruvkun G, 3rd Yates JR, Mello CC (2006) Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways. Cell 124(2):343–354, S0092–8674(05)01394–2 [pii]. 10.1016/j.cell.2005.11.036

    PubMed  CAS  Google Scholar 

  • Duxbury MS, Ashley SW, Whang EE (2005) RNA interference: a mammalian SID-1 homologue enhances siRNA uptake and gene silencing efficacy in human cells. Biochem Biophys Res Commun 331(2):459–463. doi:S0006--291X(05)00672--8 [pii]. 10.1016/j.bbrc.2005.03.199

    PubMed  CAS  Google Scholar 

  • Dzitoyeva S, Dimitrijevic N, Manev H (2003) Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence. Proc Natl Acad Sci USA 100(9):5485–5490. doi:10.1073/pnas.0830111100. 0830111100 [pii]

    PubMed  CAS  Google Scholar 

  • Eaton BA, Fetter RD, Davis GW (2002) Dynactin is necessary for synapse stabilization. Neuron 34(5):729–741. doi:S0896627302007213 [pii]

    PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498

    PubMed  CAS  Google Scholar 

  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5(1):R1. doi:10.1186/gb-2003--5--1-r1. gb-2003--5--1-r1 [pii]

    PubMed  Google Scholar 

  • Faehnle CR, Joshua-Tor L (2007) Argonautes confront new small RNAs. Curr Opin Chem Biol 11(5):569–577. doi:S1367--5931(07)00116--0 [pii]. 10.1016/j.cbpa.2007.08.032

    PubMed  CAS  Google Scholar 

  • Feinberg EH, Hunter CP (2003) Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301(5639):1545–1547. doi:10.1126/science.1087117. 301/5639/1545 [pii]

    PubMed  CAS  Google Scholar 

  • Felix MA, Ashe A, Piffaretti J, Wu G, Nuez I, Belicard T, Jiang Y, Zhao G, Franz CJ, Goldstein LD, Sanroman M, Miska EA, Wang D (2011) Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol 9(1):e1000586. doi:10.1371/journal.pbio.1000586

    PubMed  CAS  Google Scholar 

  • Fenner BJ, Thiagarajan R, Chua HK, Kwang J (2006) Betanodavirus B2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J Virol 80(1):85–94. doi:80/1/85 [pii]. 10.1128/JVI.80.1.85--94.2006

    PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    PubMed  CAS  Google Scholar 

  • Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3(7):e236. doi:05-PLBI-RA-0205R1 [pii]. 10.1371/journal.pbio.0030236

    PubMed  Google Scholar 

  • Galiana-Arnoux D, Dostert C, Schneemann A, Hoffmann JA, Imler JL (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in Drosophila. Nat Immunol 7(6):590–597. doi:ni1335 [pii]. 10.1038/ni1335

    PubMed  CAS  Google Scholar 

  • Gan L, Anton KE, Masterson BA, Vincent VA, Ye S, Gonzalez-Zulueta M (2002) Specific interference with gene expression and gene function mediated by long dsRNA in neural cells. J Neurosci Methods 121(2):151–157. doi:S0165027002002303 [pii]

    PubMed  CAS  Google Scholar 

  • Gantier MP, Williams BR (2007) The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev 18(5–6):363–371. doi:S1359--6101(07)00085--8 [pii]. 10.1016/j.cytogfr.2007.06.016

    PubMed  CAS  Google Scholar 

  • Geiss G, Jin G, Guo J, Bumgarner R, Katze MG, Sen GC (2001) A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J Biol Chem 276(32):30178–30182. doi:276/32/30178 [pii]

    PubMed  CAS  Google Scholar 

  • Geldhof P, Visser A, Clark D, Saunders G, Britton C, Gilleard J, Berriman M, Knox D (2007) RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects. Parasitology 134(Pt 5):609–619. doi:S0031182006002071 [pii]. 10.1017/S0031182006002071

    PubMed  CAS  Google Scholar 

  • Gent JI, Schvarzstein M, Villeneuve AM, Gu SG, Jantsch V, Fire AZ, Baudrimont A (2009) A Caenorhabditis elegans RNA-directed RNA polymerase in sperm development and endogenous RNA interference. Genetics 183(4):1297–1314. doi:genetics.109.109686 [pii]. 10.1534/genetics.109.109686

    PubMed  CAS  Google Scholar 

  • Gent JI, Lamm AT, Pavelec DM, Maniar JM, Parameswaran P, Tao L, Kennedy S, Fire AZ (2010) Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Mol Cell 37(5):679–689. doi:S1097-–2765(10)00041-–9 [pii]. 10.1016/j.molcel.2010.01.012

    PubMed  CAS  Google Scholar 

  • Gerbasi VR, Preall JB, Golden DE, Powell DW, Cummins TD, Sontheimer EJ (2011) Blanks, a nuclear siRNA/dsRNA-binding complex component, is required for Drosophila spermiogenesis. Proc Natl Acad Sci USA 108(8):3204–3209. doi:1009781108 [pii]. 10.1073/pnas.1009781108

    PubMed  CAS  Google Scholar 

  • Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320(5879):1077–1081. doi:1157396 [pii]. 10.1126/science.1157396

    PubMed  CAS  Google Scholar 

  • Ghildiyal M, Xu J, Seitz H, Weng Z, Zamore PD (2010) Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16(1):43–56. doi:rna.1972910 [pii]. 10.1261/rna.1972910

    PubMed  CAS  Google Scholar 

  • Glanzer J, Miyashiro KY, Sul JY, Barrett L, Belt B, Haydon P, Eberwine J (2005) RNA splicing capability of live neuronal dendrites. Proc Natl Acad Sci USA 102(46):16859–16864. doi:0503783102 [pii]. 10.1073/pnas.0503783102

    PubMed  CAS  Google Scholar 

  • Gredell JA, Dittmer MJ, Wu M, Chan C, Walton SP (2010) Recognition of siRNA asymmetry by TAR RNA binding protein. Biochemistry 49(14):3148–3155. doi:10.1021/bi902189s

    PubMed  CAS  Google Scholar 

  • Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123(4):631–640. doi:S0092--8674(05)01109--8 [pii]. 10.1016/j.cell.2005.10.022

    PubMed  CAS  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34

    PubMed  CAS  Google Scholar 

  • Guang S, Bochner AF, Burkhart KB, Burton N, Pavelec DM, Kennedy S (2010) Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465(7301):1097–1101. doi:nature09095 [pii]. 10.1038/nature09095

    PubMed  CAS  Google Scholar 

  • Haase AD, Jaskiewicz L, Zhang H, Laine S, Sack R, Gatignol A, Filipowicz W (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6(10):961–967

    PubMed  CAS  Google Scholar 

  • Haasnoot J, de Vries W, Geutjes EJ, Prins M, de Haan P, Berkhout B (2007) The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog 3(6):e86. doi:06-PLPA-RA-0347 [pii]. 10.1371/journal.ppat.0030086

    PubMed  Google Scholar 

  • Haley B, Zamore PD (2004) Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 11(7):599–606. doi:10.1038/nsmb780. nsmb780 [pii]

    PubMed  CAS  Google Scholar 

  • Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297(5590):2232–2237

    PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441):950–952. doi:7953 [pii]

    PubMed  CAS  Google Scholar 

  • Han W, Sundaram P, Kenjale H, Grantham J, Timmons L (2008) The Caenorhabditis elegans rsd-2 and rsd-6 genes are required for chromosome functions during exposure to unfavorable environments. Genetics 178(4):1875–1893. doi:178/4/1875 [pii]. 10.1534/genetics.107.085472

    PubMed  Google Scholar 

  • Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, Thierry-Mieg D, Thierry-Mieg J, Kim JK (2009) 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 106(44):18674–18679. doi:0906378106 [pii]. 10.1073/pnas.0906378106

    PubMed  CAS  Google Scholar 

  • Hartig JV, Forstemann K (2011) Loqs-PD and R2D2 define independent pathways for RISC generation in Drosophila. Nucleic Acids Res. doi:gkq1324 [pii]. 10.1093/nar/gkq1324

    Google Scholar 

  • Hartig JV, Esslinger S, Bottcher R, Saito K, Forstemann K (2009) Endo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences. EMBO J 28(19):2932–2944. doi:emboj2009220 [pii]. 10.1038/emboj.2009.220

    PubMed  CAS  Google Scholar 

  • Hong J, Qian Z, Shen S, Min T, Tan C, Xu J, Zhao Y, Huang W (2005) High doses of siRNAs induce eri-1 and adar-1 gene expression and reduce the efficiency of RNA interference in the mouse. Biochem J 390(Pt 3):675–679. doi:BJ20050647 [pii]. 10.1042/BJ20050647

    PubMed  CAS  Google Scholar 

  • Hunter T, Hunt T, Jackson RJ, Robertson HD (1975) The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates. J Biol Chem 250(2):409–417

    PubMed  CAS  Google Scholar 

  • Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56(3):227–235. doi:S0022--1910(09)00342--4 [pii]. 10.1016/j.jinsphys.2009.10.004

    PubMed  CAS  Google Scholar 

  • Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16(19):2497–2508

    PubMed  CAS  Google Scholar 

  • Jaskiewicz L, Filipowicz W (2008) Role of Dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol 320:77–97

    PubMed  CAS  Google Scholar 

  • Jinek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457(7228):405–412. doi:nature07755 [pii]. 10.1038/nature07755

    PubMed  CAS  Google Scholar 

  • Johnson KL, Price BD, Eckerle LD, Ball LA (2004) Nodamura virus nonstructural protein B2 can enhance viral RNA accumulation in both mammalian and insect cells. J Virol 78(12):6698–6704. doi:10.1128/JVI.78.12.6698--6704.2004. 78/12/6698 [pii]

    PubMed  CAS  Google Scholar 

  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309(5740):1577–1581. doi:309/5740/1577 [pii]. 10.1126/science.1113329

    PubMed  CAS  Google Scholar 

  • Jose AM, Hunter CP (2007) Transport of sequence-specific RNA interference information between cells. Annu Rev Genet 41:305–330. doi:10.1146/annurev.genet.41.110306.130216

    PubMed  CAS  Google Scholar 

  • Kaneda M, Tang F, O'Carroll D, Lao K, Surani MA (2009) Essential role for Argonaute2 protein in mouse oogenesis. Epigenetics Chromatin 2(1):9. doi:1756--8935--2--9 [pii]. 10.1186/1756--8935--2--9

    PubMed  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501

    PubMed  CAS  Google Scholar 

  • Kawahara Y, Zinshteyn B, Chendrimada TP, Shiekhattar R, Nishikura K (2007a) RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer–TRBP complex. EMBO Rep 8(8):763–769. doi:7401011 [pii]. 10.1038/sj.embor.7401011

    PubMed  CAS  Google Scholar 

  • Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007b) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315(5815):1137–1140. doi:315/5815/1137 [pii]. 10.1126/science.1138050

    PubMed  CAS  Google Scholar 

  • Kawaji H, Nakamura M, Takahashi Y, Sandelin A, Katayama S, Fukuda S, Daub CO, Kai C, Kawai J, Yasuda J, Carninci P, Hayashizaki Y (2008) Hidden layers of human small RNAs. BMC Genomics 9:157. doi:1471--2164--9--157 [pii]. 10.1186/1471--2164--9--157

    PubMed  Google Scholar 

  • Kawamata T, Seitz H, Tomari Y (2009) Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol 16(9):953–960. doi:nsmb.1630 [pii]. 10.1038/nsmb.1630

    PubMed  CAS  Google Scholar 

  • Kawamura Y, Saito K, Kin T, Ono Y, Asai K, Sunohara T, Okada TN, Siomi MC, Siomi H (2008) Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453(7196):793–797. doi:nature06938 [pii]. 10.1038/nature06938

    PubMed  CAS  Google Scholar 

  • Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE (2004) RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci USA 101(49):17240–17245. doi:0406983101 [pii]. 10.1073/pnas.0406983101

    PubMed  CAS  Google Scholar 

  • Kennedy S, Wang D, Ruvkun G (2004) A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427(6975):645–649. doi:10.1038/nature02302. nature02302 [pii]

    PubMed  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95(7):1017–1026. doi:S0092--8674(00)81725--0 [pii]

    PubMed  CAS  Google Scholar 

  • Ketting RF (2011) The many faces of RNAi. Dev Cell 20(2):148–161. doi:S1534--5807(11)00040--2 [pii]. 10.1016/j.devcel.2011.01.012

    PubMed  CAS  Google Scholar 

  • Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99(2):133–141

    PubMed  CAS  Google Scholar 

  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659. doi:10.1101/gad.927801

    PubMed  CAS  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385

    PubMed  CAS  Google Scholar 

  • Kim K, Lee YS, Carthew RW (2007) Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. RNA 13(1):22–29. doi:rna.283207 [pii]. 10.1261/rna.283207

    PubMed  CAS  Google Scholar 

  • Kok KH, Ng MH, Ching YP, Jin DY (2007) Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem 282(24):17649–17657. doi:M611768200 [pii]. 10.1074/jbc.M611768200

    PubMed  CAS  Google Scholar 

  • Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308(5721):557–560. doi:308/5721/557 [pii]. 10.1126/science.1108784

    PubMed  CAS  Google Scholar 

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117(1):69–81

    PubMed  CAS  Google Scholar 

  • Lee RC, Hammell CM, Ambros V (2006) Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA 12(4):589–597. doi:rna.2231506 [pii]. 10.1261/rna.2231506

    PubMed  CAS  Google Scholar 

  • Lehmann KA, Bass BL (1999) The importance of internal loops within RNA substrates of ADAR1. J Mol Biol 291(1):1–13. doi:10.1006/jmbi.1999.2914. S0022--2836(99)92914--5 [pii]

    PubMed  CAS  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798

    PubMed  CAS  Google Scholar 

  • Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296(5571):1319–1321. doi:10.1126/science.1070948. 296/5571/1319 [pii]

    PubMed  CAS  Google Scholar 

  • Li WX, Li H, Lu R, Li F, Dus M, Atkinson P, Brydon EW, Johnson KL, Garcia-Sastre A, Ball LA, Palese P, Ding SW (2004) Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci USA 101(5):1350–1355. doi:10.1073/pnas.0308308100. 0308308100 [pii]

    PubMed  CAS  Google Scholar 

  • Li C, Vagin VV, Lee S, Xu J, Ma S, Xi H, Seitz H, Horwich MD, Syrzycka M, Honda BM, Kittler EL, Zapp ML, Klattenhoff C, Schulz N, Theurkauf WE, Weng Z, Zamore PD (2009) Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137(3):509–521. doi:S0092--8674(09)00452--8 [pii]. 10.1016/j.cell.2009.04.027

    PubMed  CAS  Google Scholar 

  • Lingel A, Simon B, Izaurralde E, Sattler M (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426(6965):465–469. doi:10.1038/nature02123. nature02123 [pii]

    PubMed  CAS  Google Scholar 

  • Lingel A, Simon B, Izaurralde E, Sattler M (2004) Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol 11(6):576–577. doi:10.1038/nsmb777. nsmb777 [pii]

    PubMed  CAS  Google Scholar 

  • Lipardi C, Paterson BM (2009) Identification of an RNA-dependent RNA polymerase in Drosophila involved in RNAi and transposon suppression. Proc Natl Acad Sci USA 106(37):15645–15650. doi:0904984106 [pii]. 10.1073/pnas.0904984106

    PubMed  CAS  Google Scholar 

  • Lipardi C, Wei Q, Paterson BM (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107(3):297–307. doi:S0092--8674(01)00537--2 [pii]

    PubMed  CAS  Google Scholar 

  • Liu Q, Rand TA, Kalidas S, Du F, Kim HE, Smith DP, Wang X (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301(5641):1921–1925. doi:10.1126/science.1088710. 301/5641/1921 [pii]

    PubMed  CAS  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    PubMed  CAS  Google Scholar 

  • Liu X, Jiang F, Kalidas S, Smith D, Liu Q (2006) Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA 12(8):1514–1520. doi:rna.101606 [pii]. 10.1261/rna.101606

    PubMed  CAS  Google Scholar 

  • Liu Y, Ye X, Jiang F, Liang C, Chen D, Peng J, Kinch LN, Grishin NV, Liu Q (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325(5941):750–753. doi:325/5941/750 [pii]. 10.1126/science.1176325

    PubMed  CAS  Google Scholar 

  • Lohmann JU, Endl I, Bosch TC (1999) Silencing of developmental genes in Hydra. Dev Biol 214(1):211–214. doi:10.1006/dbio.1999.9407. S0012--1606(99)99407--1 [pii]

    PubMed  CAS  Google Scholar 

  • Lu S, Cullen BR (2004) Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J Virol 78(23):12868–12876. doi:78/23/12868 [pii]. 10.1128/JVI.78.23.12868--12876.2004

    PubMed  CAS  Google Scholar 

  • Lu R, Maduro M, Li F, Li HW, Broitman-Maduro G, Li WX, Ding SW (2005) Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436(7053):1040–1043

    PubMed  CAS  Google Scholar 

  • Lucchetta EM, Carthew RW, Ismagilov RF (2009) The endo-siRNA pathway is essential for robust development of the Drosophila embryo. PLoS One 4(10):e7576. doi:10.1371/journal.pone.0007576

    PubMed  Google Scholar 

  • Ma JB, Ye K, Patel DJ (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429(6989):318–322. doi:10.1038/nature02519. nature02519 [pii]

    PubMed  CAS  Google Scholar 

  • Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434(7033):666–670. doi:nature03514 [pii]. 10.1038/nature03514

    PubMed  CAS  Google Scholar 

  • Ma E, MacRae IJ, Kirsch JF, Doudna JA (2008) Autoinhibition of human dicer by its internal helicase domain. J Mol Biol 380(1):237–243. doi:S0022--2836(08)00547--0 [pii]. 10.1016/j.jmb.2008.05.005

    PubMed  CAS  Google Scholar 

  • Ma J, Flemr M, Stein P, Berninger P, Malik R, Zavolan M, Svoboda P, Schultz RM (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20(3):265–270. doi:S0960--9822(09)02205--2 [pii]. 10.1016/j.cub.2009.12.042

    PubMed  CAS  Google Scholar 

  • Macrae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311(5758):195–198. doi:311/5758/195 [pii]. 10.1126/science.1121638

    PubMed  CAS  Google Scholar 

  • MacRae IJ, Zhou K, Doudna JA (2007) Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol 14(10):934–940. doi:nsmb1293 [pii]. 10.1038/nsmb1293

    PubMed  CAS  Google Scholar 

  • MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci USA 105(2):512–517. doi:0710869105 [pii]. 10.1073/pnas.0710869105

    PubMed  CAS  Google Scholar 

  • Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N, Kasim V, Hayashizaki Y, Hahn WC, Masutomi K (2009) An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461(7261):230–235. doi:nature08283 [pii]. 10.1038/nature08283

    PubMed  CAS  Google Scholar 

  • Malone CD, Hannon GJ (2009a) Molecular evolution of piRNA and transposon control pathways in Drosophila. Cold Spring Harb Symp Quant Biol 74:225–234. doi:sqb.2009.74.052 [pii]. 10.1101/sqb.2009.74.052

    PubMed  CAS  Google Scholar 

  • Malone CD, Hannon GJ (2009b) Small RNAs as guardians of the genome. Cell 136(4):656–668. doi:S0092--8674(09)00127--5 [pii]. 10.1016/j.cell.2009.01.045

    PubMed  CAS  Google Scholar 

  • Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, Hannon GJ (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137(3):522–535. doi:S0092--8674(09)00377--8 [pii]. 10.1016/j.cell.2009.03.040

    PubMed  CAS  Google Scholar 

  • Maniataki E, Mourelatos Z (2005) A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 19(24):2979–2990. doi:19/24/2979 [pii]. 10.1101/gad.1384005

    PubMed  CAS  Google Scholar 

  • Marques JT, Carthew RW (2007) A call to arms: coevolution of animal viruses and host innate immune responses. Trends Genet 23(7):359–364. doi:S0168--9525(07)00152--7 [pii]. 10.1016/j.tig.2007.04.004

    PubMed  CAS  Google Scholar 

  • Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, Fujita T, Behlke MA, Williams BR (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24(5):559–565. doi:nbt1205 [pii]. 10.1038/nbt1205

    PubMed  CAS  Google Scholar 

  • Marques JT, Kim K, Wu PH, Alleyne TM, Jafari N, Carthew RW (2010) Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nat Struct Mol Biol 17(1):24–30. doi:nsmb.1735 [pii]. 10.1038/nsmb.1735

    PubMed  CAS  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110(5):563–574. doi:S009286740200908X [pii]

    PubMed  CAS  Google Scholar 

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620. doi:S0092--8674(05)00922--0 [pii]. 10.1016/j.cell.2005.08.044

    PubMed  CAS  Google Scholar 

  • Meins F Jr, Si-Ammour A, Blevins T (2005) RNA silencing systems and their relevance to plant development. Annu Rev Cell Dev Biol 21:297–318. doi:10.1146/annurev.cellbio.21.122303.114706

    PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349. doi:10.1038/nature02873. nature02873 [pii]

    PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    PubMed  CAS  Google Scholar 

  • Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Luhrmann R, Tuschl T (2005) Identification of novel argonaute-associated proteins. Curr Biol 15(23):2149–2155. doi:S0960--9822(05)01301--1 [pii]. 10.1016/j.cub.2005.10.048

    PubMed  CAS  Google Scholar 

  • Meurs E, Chong K, Galabru J, Thomas NS, Kerr IM, Williams BR, Hovanessian AG (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62(2):379–390. doi:0092--8674(90)90374-N [pii]

    PubMed  CAS  Google Scholar 

  • Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19(23):2837–2848. doi:gad.1370605 [pii]. 10.1101/gad.1370605

    PubMed  CAS  Google Scholar 

  • Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16(6):720–728

    PubMed  CAS  Google Scholar 

  • Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101(5):533–542. doi:S0092--8674(00)80863--6 [pii]

    PubMed  CAS  Google Scholar 

  • Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102(34):12135–12140. doi:0505479102 [pii]. 10.1073/pnas.0505479102

    PubMed  CAS  Google Scholar 

  • Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ (2007) Critical roles for Dicer in the female germline. Genes Dev 21(6):682–693. doi:21/6/682 [pii]. 10.1101/gad.1521307

    PubMed  CAS  Google Scholar 

  • Murphy D, Dancis B, Brown JR (2008) The evolution of core proteins involved in microRNA biogenesis. BMC Evol Biol 8:92. doi:1471--2148--8--92 [pii]. 10.1186/1471--2148--8--92

    PubMed  Google Scholar 

  • Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A, Deng C, Krutchinsky A, Gross J, Antoniewski C, Andino R (2010) Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat Struct Mol Biol 17(5):547–554. doi:nsmb.1810 [pii]. 10.1038/nsmb.1810

    PubMed  CAS  Google Scholar 

  • Nejepinska J, Malik R, Filkowski J, Flemr M, Filipowicz W, Svoboda P. dsRNA expression in the mouse elicits RNAi in oocytes and low adenosine deamination in somatic cells. Nucleic Acids Res, published online September 8, 2011 doi:10.1093/nar/gkr702

    Google Scholar 

  • Newmark PA, Reddien PW, Cebria F, Sanchez Alvarado A (2003) Ingestion of bacterially expressed double-stranded RNA inhibits gene expression in planarians. Proc Natl Acad Sci USA 100(Suppl 1):11861–11865. doi:10.1073/pnas.1834205100. 1834205100 [pii]

    PubMed  CAS  Google Scholar 

  • Ng KK, Arnold JJ, Cameron CE (2008) Structure–function relationships among RNA-dependent RNA polymerases. Curr Top Microbiol Immunol 320:137–156

    PubMed  CAS  Google Scholar 

  • Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349. doi:10.1146/annurev-biochem-060208--105251

    PubMed  CAS  Google Scholar 

  • Nishikura K, Yoo C, Kim U, Murray JM, Estes PA, Cash FE, Liebhaber SA (1991) Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J 10(11):3523–3532

    PubMed  CAS  Google Scholar 

  • Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107(3):309–321. doi:S0092--8674(01)00547--5 [pii]

    PubMed  CAS  Google Scholar 

  • Ohnishi Y, Totoki Y, Toyoda A, Watanabe T, Yamamoto Y, Tokunaga K, Sakaki Y, Sasaki H, Hohjoh H (2010) Small RNA class transition from siRNA/piRNA to miRNA during pre-implantation mouse development. Nucleic Acids Res 38(15):5141–5151. doi:gkq229 [pii]. 10.1093/nar/gkq229

    PubMed  CAS  Google Scholar 

  • Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18(14):1655–1666. doi:10.1101/gad.1210204. 1210204 [pii]

    PubMed  CAS  Google Scholar 

  • Okamura K, Chung WJ, Ruby JG, Guo H, Bartel DP, Lai EC (2008) The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453(7196):803–806. doi:nature07015 [pii]. 10.1038/nature07015

    PubMed  CAS  Google Scholar 

  • Okamura K, Robine N, Liu Y, Liu Q, Lai EC (2011) R2D2 organizes small regulatory RNA pathways in Drosophila. Mol Cell Biol 31(4):884–896. doi:MCB.01141--10 [pii]. 10.1128/MCB.01141--10

    PubMed  CAS  Google Scholar 

  • Orii H, Mochii M, Watanabe K (2003) A simple “soaking method” for RNA interference in the planarian Dugesia japonica. Dev Genes Evol 213(3):138–141. doi:10.1007/s00427--003--0310--3

    PubMed  CAS  Google Scholar 

  • Pak J, Fire A (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315(5809):241–244. doi:1132839 [pii]. 10.1126/science.1132839

    PubMed  CAS  Google Scholar 

  • Palladino MJ, Keegan LP, O’Connell MA, Reenan RA (2000) A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102(4):437–449

    PubMed  CAS  Google Scholar 

  • Park H, Davies MV, Langland JO, Chang HW, Nam YS, Tartaglia J, Paoletti E, Jacobs BL, Kaufman RJ, Venkatesan S (1994) TAR RNA-binding protein is an inhibitor of the interferon-induced protein kinase PKR. Proc Natl Acad Sci USA 91(11):4713–4717

    PubMed  CAS  Google Scholar 

  • Parker JS, Roe SM, Barford D (2004) Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J 23(24):4727–4737. doi:7600488 [pii]. 10.1038/sj.emboj.7600488

    PubMed  CAS  Google Scholar 

  • Parker GS, Eckert DM, Bass BL (2006) RDE-4 preferentially binds long dsRNA and its dimerization is necessary for cleavage of dsRNA to siRNA. RNA 12(5):807–818. doi:rna.2338706 [pii]. 10.1261/rna.2338706

    PubMed  CAS  Google Scholar 

  • Parker GS, Maity TS, Bass BL (2008) dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi. J Mol Biol 384(4):967–979. doi:S0022--2836(08)01261--8 [pii]. 10.1016/j.jmb.2008.10.002

    PubMed  CAS  Google Scholar 

  • Parrish S, Fire A (2001) Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans. RNA 7(10):1397–1402

    PubMed  CAS  Google Scholar 

  • Patel RC, Sen GC (1998) PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J 17(15):4379–4390. doi:10.1093/emboj/17.15.4379

    PubMed  CAS  Google Scholar 

  • Pavelec DM, Lachowiec J, Duchaine TF, Smith HE, Kennedy S (2009) Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in Caenorhabditis elegans. Genetics 183(4):1283–1295. doi:genetics.109.108134 [pii]. 10.1534/genetics.109.108134

    PubMed  CAS  Google Scholar 

  • Pelczar H, Woisard A, Lemaitre JM, Chachou M, Andeol Y (2010) Evidence for an RNA polymerization activity in axolotl and xenopus egg extracts. PLoS One 5(12):e14411. doi:10.1371/journal.pone.0014411

    PubMed  CAS  Google Scholar 

  • Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623. doi:S1097--2765(07)00257--2 [pii]. 10.1016/j.molcel.2007.05.001

    PubMed  CAS  Google Scholar 

  • Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304(5671):734–736. doi:10.1126/science.1096781. 304/5671/734 [pii]

    PubMed  CAS  Google Scholar 

  • Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T (2005) Identification of microRNAs of the herpesvirus family. Nat Methods 2(4):269–276. doi:nmeth746 [pii]. 10.1038/nmeth746

    PubMed  CAS  Google Scholar 

  • Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ (2004) A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117(1):83–94. doi:S0092867404002582 [pii]

    PubMed  CAS  Google Scholar 

  • Polson AG, Bass BL (1994) Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J 13(23):5701–5711

    PubMed  CAS  Google Scholar 

  • Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O (2002) Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21(21):5864–5874

    PubMed  CAS  Google Scholar 

  • Qin H, Chen F, Huan X, Machida S, Song J, Yuan YA (2010) Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein–protein interaction. RNA 16(3):474–481. doi:rna.1965310 [pii]. 10.1261/rna.1965310

    PubMed  CAS  Google Scholar 

  • Roignant JY, Carre C, Mugat B, Szymczak D, Lepesant JA, Antoniewski C (2003) Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9(3):299–308

    PubMed  CAS  Google Scholar 

  • Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127(6):1193–1207. doi:S0092-–8674(06)01468-–1 [pii]. 10.1016/j.cell.2006.10.040

    PubMed  CAS  Google Scholar 

  • Sadler AJ, Williams BR (2007) Structure and function of the protein kinase R. Curr Top Microbiol Immunol 316:253–292

    PubMed  CAS  Google Scholar 

  • Saito K, Ishizuka A, Siomi H, Siomi MC (2005) Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol 3(7):e235. doi:05-PLBI-RA-0198R1 [pii]. 10.1371/journal.pbio.0030235

    PubMed  Google Scholar 

  • Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R (2009) Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 458(7236):346–350. doi:nature07712 [pii]. 10.1038/nature07712

    PubMed  CAS  Google Scholar 

  • Sam M, Wurst W, Kluppel M, Jin O, Heng H, Bernstein A (1998) Aquarius, a novel gene isolated by gene trapping with an RNA-dependent RNA polymerase motif. Dev Dyn 212(2):304–317. doi:10.1002/(SICI)1097--0177(199806)212:2<304::AID-AJA15>3.0.CO;2--3 [pii]. 10.1002/(SICI)1097--0177(199806)212:2<304::AID-AJA15>3.0.CO;2--3

    PubMed  CAS  Google Scholar 

  • Sanchez Alvarado A, Newmark PA (1999) Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA 96(9):5049–5054

    PubMed  CAS  Google Scholar 

  • Sanchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, Olson KE, Blair CD (2009) Dengue virus type 2 infections of aedes aegypti are modulated by the mosquito's RNA interference pathway. PLoS Pathog 5(2):e1000299. doi:10.1371/journal.ppat.1000299

    PubMed  Google Scholar 

  • Scadden AD (2005) The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat Struct Mol Biol 12(6):489–496

    PubMed  CAS  Google Scholar 

  • Scadden AD, Smith CW (2001) RNAi is antagonized by A→I hyper-editing. EMBO Rep 2(12):1107–1111. doi:10.1093/embo-reports/kve244. kve244 [pii]

    PubMed  CAS  Google Scholar 

  • Schott DH, Cureton DK, Whelan SP, Hunter CP (2005) An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc Natl Acad Sci USA 102(51):18420–18424. doi:0507123102 [pii]. 10.1073/pnas.0507123102

    PubMed  CAS  Google Scholar 

  • Schwarz DS, Hutvagner G, Haley B, Zamore PD (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 10(3):537–548

    PubMed  CAS  Google Scholar 

  • Schwarz DS, Tomari Y, Zamore PD (2004) The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr Biol 14(9):787–791. doi:10.1016/j.cub.2004.03.008. S0960982204001769 [pii]

    PubMed  CAS  Google Scholar 

  • Shih JD, Fitzgerald MC, Sutherlin M, Hunter CP (2009) The SID-1 double-stranded RNA transporter is not selective for dsRNA length. RNA 15(3):384–390. doi:rna.1286409 [pii]. 10.1261/rna.1286409

    PubMed  CAS  Google Scholar 

  • Shinagawa T, Ishii S (2003) Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev 17(11):1340–1345. doi:10.1101/gad.1073003. 17/11/1340 [pii]

    PubMed  CAS  Google Scholar 

  • Sijen T, Plasterk RH (2003) Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426(6964):310–314. doi:10.1038/nature02107. nature02107 [pii]

    PubMed  CAS  Google Scholar 

  • Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107(4):465–476

    PubMed  CAS  Google Scholar 

  • Sijen T, Steiner FA, Thijssen KL, Plasterk RH (2007) Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315(5809):244–247. doi:1136699 [pii]. 10.1126/science.1136699

    PubMed  CAS  Google Scholar 

  • Sinkkonen L, Hugenschmidt T, Filipowicz W, Svoboda P (2010) Dicer is associated with ribosomal DNA chromatin in mammalian cells. PLoS One 5(8):e12175. doi:10.1371/journal.pone.0012175

    PubMed  Google Scholar 

  • Smalheiser NR, Lugli G, Thimmapuram J, Cook EH, Larson J (2011) Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training. RNA 17(1):166–181. doi:rna.2123811 [pii]. 10.1261/rna.2123811

    PubMed  CAS  Google Scholar 

  • Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N, Maine EM (2000) EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol 10(4):169–178, S0960–9822(00)00323–7 [pii]

    PubMed  CAS  Google Scholar 

  • Soifer HS, Sano M, Sakurai K, Chomchan P, Saetrom P, Sherman MA, Collingwood MA, Behlke MA, Rossi JJ (2008) A role for the Dicer helicase domain in the processing of thermodynamically unstable hairpin RNAs. Nucleic Acids Res 36(20):6511–6522. doi:gkn687 [pii]. 10.1093/nar/gkn687

    PubMed  CAS  Google Scholar 

  • Song JJ, Liu J, Tolia NH, Schneiderman J, Smith SK, Martienssen RA, Hannon GJ, Joshua-Tor L (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat Struct Biol 10(12):1026–1032. doi:10.1038/nsb1016. nsb1016 [pii]

    PubMed  CAS  Google Scholar 

  • Song JJ, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305(5689):1434–1437

    PubMed  CAS  Google Scholar 

  • Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6(2):127–138

    PubMed  CAS  Google Scholar 

  • Stein P, Svoboda P, Anger M, Schultz RM (2003) RNAi: mammalian oocytes do it without RNA-dependent RNA polymerase. RNA 9(2):187–192

    PubMed  CAS  Google Scholar 

  • Stein P, Zeng F, Pan H, Schultz RM (2005) Absence of non-specific effects of RNA interference triggered by long double-stranded RNA in mouse oocytes. Dev Biol 286(2):464–471

    PubMed  CAS  Google Scholar 

  • Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R (2010) MicroRNA function is globally suppressed in mouse oocytes and early embryos. Curr Biol 20(3):271–277. doi:S0960--9822(09)02207--6 [pii]. 10.1016/j.cub.2009.12.044

    PubMed  CAS  Google Scholar 

  • Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435(7042):682–686. doi:nature03576 [pii]. 10.1038/nature03576

    PubMed  CAS  Google Scholar 

  • Svoboda P, Cara AD (2006) Hairpin RNA: a secondary structure of primary importance. Cell Mol Life Sci 63(7–8):901–908

    PubMed  CAS  Google Scholar 

  • Svoboda P, Stein P, Hayashi H, Schultz RM (2000) Selective reduction of dormant maternal mRNAs in mouse oocytes by RNA interference. Development 127(19):4147–4156

    PubMed  CAS  Google Scholar 

  • Svoboda P, Stein P, Anger M, Bernstein E, Hannon GJ, Schultz RM (2004) RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev Biol 269(1):276–285

    PubMed  CAS  Google Scholar 

  • Tabara H, Grishok A, Mello CC (1998) RNAi in C. elegans: soaking in the genome sequence. Science 282(5388):430–431

    PubMed  CAS  Google Scholar 

  • Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A, Timmons L, Fire A, Mello CC (1999) The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99(2):123–132

    PubMed  CAS  Google Scholar 

  • Tabara H, Yigit E, Siomi H, Mello CC (2002) The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109(7):861–871

    PubMed  CAS  Google Scholar 

  • Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz RM, Hannon GJ (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453(7194):534–538. doi:nature06904 [pii]. 10.1038/nature06904

    PubMed  CAS  Google Scholar 

  • Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA (2007) Maternal microRNAs are essential for mouse zygotic development. Genes Dev 21(6):644–648. doi:21/6/644 [pii]. 10.1101/gad.418707

    PubMed  CAS  Google Scholar 

  • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6(5):377–382. doi:nmeth.1315 [pii]. 10.1038/nmeth.1315

    PubMed  CAS  Google Scholar 

  • Tian B, Bevilacqua PC, Diegelman-Parente A, Mathews MB (2004) The double-stranded-RNA-binding motif: interference and much more. Nat Rev Mol Cell Biol 5(12):1013–1023. doi:nrm1528 [pii]. 10.1038/nrm1528

    PubMed  CAS  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395(6705):854. doi:10.1038/27579

    PubMed  CAS  Google Scholar 

  • Tomari Y, Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19(5):517–529. doi:19/5/517 [pii]. 10.1101/gad.1284105

    PubMed  CAS  Google Scholar 

  • Tomari Y, Du T, Haley B, Schwarz DS, Bennett R, Cook HA, Koppetsch BS, Theurkauf WE, Zamore PD (2004a) RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116(6):831–841. doi:S0092867404002181 [pii]

    PubMed  CAS  Google Scholar 

  • Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD (2004b) A protein sensor for siRNA asymmetry. Science 306(5700):1377–1380. doi:306/5700/1377 [pii]. 10.1126/science.1102755

    PubMed  CAS  Google Scholar 

  • Tomari Y, Du T, Zamore PD (2007) Sorting of Drosophila small silencing RNAs. Cell 130(2):299–308. doi:S0092--8674(07)00761--1 [pii]. 10.1016/j.cell.2007.05.057

    PubMed  CAS  Google Scholar 

  • Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9(1):R10. doi:gb-2008--9--1-r10 [pii]. 10.1186/gb-2008--9--1-r10

    PubMed  Google Scholar 

  • Tonkin LA, Bass BL (2003) Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302(5651):1725

    PubMed  CAS  Google Scholar 

  • Tonkin LA, Saccomanno L, Morse DP, Brodigan T, Krause M, Bass BL (2002) RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. Embo J 21(22):6025–6035

    PubMed  CAS  Google Scholar 

  • Tran N, Raponi M, Dawes IW, Arndt GM (2004) Control of specific gene expression in mammalian cells by co-expression of long complementary RNAs. FEBS Lett 573(1–3):127–134. doi:10.1016/j.febslet.2004.07.075. S0014579304009573 [pii]

    PubMed  CAS  Google Scholar 

  • Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999) Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13(24):3191–3197

    PubMed  CAS  Google Scholar 

  • Vasale JJ, Gu W, Thivierge C, Batista PJ, Claycomb JM, Youngman EM, Duchaine TF, Mello CC, Conte D Jr (2010) Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. Proc Natl Acad Sci USA 107(8):3582–3587. doi:0911908107 [pii]. 10.1073/pnas.0911908107

    PubMed  CAS  Google Scholar 

  • Vastenhouw NL, Fischer SE, Robert VJ, Thijssen KL, Fraser AG, Kamath RS, Ahringer J, Plasterk RH (2003) A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr Biol 13(15):1311–1316. doi:S0960982203005396 [pii]

    PubMed  CAS  Google Scholar 

  • Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci USA 96(24):14147–14152

    PubMed  CAS  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297(5588):1833–1837

    PubMed  CAS  Google Scholar 

  • Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312(5772):452–454. doi:1125694 [pii]. 10.1126/science.1125694

    PubMed  CAS  Google Scholar 

  • Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39(3):380–385. doi:ng1969 [pii]. 10.1038/ng1969

    PubMed  CAS  Google Scholar 

  • Wang HW, Noland C, Siridechadilok B, Taylor DW, Ma E, Felderer K, Doudna JA, Nogales E (2009a) Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 16(11):1148–1153. doi:nsmb.1673 [pii]. 10.1038/nsmb.1673

    PubMed  CAS  Google Scholar 

  • Wang Y, Juranek S, Li H, Sheng G, Wardle GS, Tuschl T, Patel DJ (2009b) Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461(7265):754–761. doi:nature08434 [pii]. 10.1038/nature08434

    PubMed  CAS  Google Scholar 

  • Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H (2006) Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 20(13):1732–1743. doi:gad.1425706 [pii]. 10.1101/gad.1425706

    PubMed  CAS  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453(7194):539–543. doi:nature06908 [pii]. 10.1038/nature06908

    PubMed  CAS  Google Scholar 

  • Whangbo JS, Hunter CP (2008) Environmental RNA interference. Trends Genet 24(6):297–305. doi:S0168--9525(08)00126--1 [pii]. 10.1016/j.tig.2008.03.007

    PubMed  CAS  Google Scholar 

  • Wianny F, Zernicka-Goetz M (2000) Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2(2):70–75

    PubMed  CAS  Google Scholar 

  • Wilkins C, Dishongh R, Moore SC, Whitt MA, Chow M, Machaca K (2005) RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436(7053):1044–1047

    PubMed  CAS  Google Scholar 

  • Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295(5564):2456–2459. doi:10.1126/science.1068836. 1068836 [pii]

    PubMed  CAS  Google Scholar 

  • Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP (2007) Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci USA 104(25):10565–10570. doi:0611282104 [pii]. 10.1073/pnas.0611282104

    PubMed  CAS  Google Scholar 

  • Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM, Zimmermann T, Koteliansky V, Manoharan M, Stoffel M (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25(10):1149–1157. doi:nbt1339 [pii]. 10.1038/nbt1339

    PubMed  CAS  Google Scholar 

  • Xie Q, Guo HS (2006) Systemic antiviral silencing in plants. Virus Res 118(1–2):1–6. doi:S0168--1702(05)00351--5 [pii]. 10.1016/j.virusres.2005.11.012

    PubMed  CAS  Google Scholar 

  • Xu W, Han Z (2008) Cloning and phylogenetic analysis of sid-1-like genes from aphids. J Insect Sci 8:1–6. doi:10.1673/031.008.3001

    PubMed  Google Scholar 

  • Yan KS, Yan S, Farooq A, Han A, Zeng L, Zhou MM (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426(6965):468–474. doi:10.1038/nature02129. nature02129 [pii]

    PubMed  Google Scholar 

  • Yang N, Kazazian HH Jr (2006) L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13(9):763–771. doi:nsmb1141 [pii]. 10.1038/nsmb1141

    PubMed  CAS  Google Scholar 

  • Yang S, Tutton S, Pierce E, Yoon K (2001) Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol Cell Biol 21(22):7807–7816

    PubMed  CAS  Google Scholar 

  • Yang W, Wang Q, Howell KL, Lee JT, Cho DS, Murray JM, Nishikura K (2005) ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J Biol Chem 280(5):3946–3953

    PubMed  CAS  Google Scholar 

  • Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, Nishikura K (2006) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13(1):13–21

    PubMed  CAS  Google Scholar 

  • Yi CE, Bekker JM, Miller G, Hill KL, Crosbie RH (2003) Specific and potent RNA interference in terminally differentiated myotubes. J Biol Chem 278(2):934–939. doi:10.1074/jbc.M205946200. M205946200 [pii]

    PubMed  CAS  Google Scholar 

  • Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, Joshua-Tor L, Mitani S, Simard MJ, Mello CC (2006) Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127(4):747–757. doi:S0092-–8674(06)01293-–1 [pii]. 10.1016/j.cell.2006.09.033

    PubMed  CAS  Google Scholar 

  • Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q, Tomari Y (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17(1):17–23. doi:nsmb.1733 [pii]. 10.1038/nsmb.1733

    PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737. doi:10.1038/ni1087. ni1087 [pii]

    PubMed  CAS  Google Scholar 

  • Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Dauter Z, Tuschl T, Patel DJ (2005) Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol Cell 19(3):405–419. doi:S1097-–2765(05)01475-–9 [pii]. 10.1016/j.molcel.2005.07.011

    PubMed  CAS  Google Scholar 

  • Zambon RA, Vakharia VN, Wu LP (2006) RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell Microbiol 8(5):880–889. doi:CMI688 [pii]. 10.1111/j.1462--5822.2006.00688.x

    PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25–33

    PubMed  CAS  Google Scholar 

  • Zhang X, Wang C, Schook LB, Hawken RJ, Rutherford MS (2000) An RNA helicase, RHIV-1, induced by porcine reproductive and respiratory syndrome virus (PRRSV) is mapped on porcine chromosome 10q13. Microb Pathog 28(5):267–278. doi:10.1006/mpat.1999.0349. S0882--4010(99)90349--2 [pii]

    PubMed  CAS  Google Scholar 

  • Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21(21):5875–5885

    PubMed  CAS  Google Scholar 

  • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118(1):57–68. doi:10.1016/j.cell.2004.06.017. S009286740400618X [pii]

    PubMed  CAS  Google Scholar 

  • Zhou R, Czech B, Brennecke J, Sachidanandam R, Wohlschlegel JA, Perrimon N, Hannon GJ (2009) Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform. RNA 15(10):1886–1895. doi:rna.1611309 [pii]. 10.1261/rna.1611309

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Radek Malik for help with manuscript preparation. Our research is supported by the following grants: EMBO SDIG project 1483, GACR 204/09/0085, GACR P305/10/2215, and Kontakt ME09039. P.S. is a holder of the J.E. Purkyne Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Svoboda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nejepinska, J., Flemr, M., Svoboda, P. (2012). The Canonical RNA Interference Pathway in Animals. In: Mallick, B., Ghosh, Z. (eds) Regulatory RNAs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22517-8_5

Download citation

Publish with us

Policies and ethics