Skip to main content

siRNA Therapeutic Design: Tools and Challenges

  • Chapter
  • First Online:
Regulatory RNAs
  • 1732 Accesses

Abstract

Current RNA-based therapeutics are principally focused toward activating the RNA interference (RNAi) pathway through exogenous administration of short interfering RNAs (siRNAs) and sometimes short hairpin RNAs (shRNAs). The promise of RNAi-based therapeutics arises from their broad applicability and excellent specificity. This chapter reviews siRNA design strategies for improving intracellular interactions with the RNAi pathway proteins as well as key characteristics required for the design of optimal delivery vehicles to maximize specific silencing in only the cells of interest. The status of previous and ongoing clinical trials will be described as these provide insight for overcoming future challenges for long-term use of RNAi as a therapeutic modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinc A, Thomas M, Klibanov AM, Langer R (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med 7(5):657–663. doi:10.1002/jgm.696

    PubMed  CAS  Google Scholar 

  • Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Jayaprakash KN, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DWY, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5):561–569. doi:10.1038/nbt1402

    PubMed  CAS  Google Scholar 

  • Aleku M, Schultz P, Keil O, Santel A, Schaeper U, Dieckhoff B, Janke O, Endruschat J, Durieux B, Roder N, Loffler K, Lange C, Fechtner M, Mopert K, Fisch G, Dames S, Arnold W, Jochims K, Giese K, Wiedenmann B, Scholz A, Kaufmann J (2008) Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res 68(23):9788–9798. doi:10.1158/0008--5472.CAN-08--2428

    PubMed  CAS  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3. Nature 413(6857):732–738. doi:10.1038/35099560

    PubMed  CAS  Google Scholar 

  • Alvarez R, Elbashir S, Borland T, Toudjarska I, Hadwiger P, John M, Roehl I, Morskaya SS, Martinello R, Kahn J, Van Ranst M, Tripp RA, DeVincenzo JP, Pandey R, Maier M, Nechev L, Manoharan M, Kotelianski V, Meyers R (2009) RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob Agents Chemother 53(9):3952–3962. doi:10.1128/aac.00014--09

    PubMed  CAS  Google Scholar 

  • Alvarez-Erviti L, Seow YQ, Yin HF, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345. doi:10.1038/nbt.1807

    PubMed  CAS  Google Scholar 

  • Ameres SL, Martinez J, Schroeder R (2007) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130(1):101–112. doi:10.1016/j.cell.2007.04.037

    PubMed  CAS  Google Scholar 

  • Andersen MO, Nygaard JV, Burns JS, Raarup MK, Nyengaard JR, Bunger C, Besenbacher F, Howard KA, Kassem M, Kjems J (2010) siRNA nanoparticle functionalization of nanostructured scaffolds enables controlled multilineage differentiation of stem cells. Mol Ther 18(11):2018–2027. doi:10.1038/mt.2010.166

    PubMed  CAS  Google Scholar 

  • Bain JR, Schisler JC, Takeuchi K, Newgard CB, Becker TC (2004) An adenovirus vector for efficient RNA interference-mediated suppression of target genes in insulinoma cells and pancreatic islets of Langerhans. Diabetes 53(9):2190–2194. doi:10.2337/diabetes.53.9.2190

    PubMed  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366. doi:10.1038/35053110

    PubMed  CAS  Google Scholar 

  • Bevilacqua PC, Cech TR (1996) Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry 35(31):9983–9994. doi:10.1021/bi9607259

    PubMed  CAS  Google Scholar 

  • Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, Karpilow J, Khvorova A (2007) A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2(9):2068–2078. doi:10.1038/nprot.2007.278

    PubMed  CAS  Google Scholar 

  • Bohula EA, Salisbury AJ, Sohail M, Playford MP, Riedemann J, Southern EM, Macaulay VM (2003) The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J Biol Chem 278(18):15991–15997. doi:10.1074/jbc.M300714200

    PubMed  CAS  Google Scholar 

  • Bramsen JB, Laursen MB, Damgaard CK, Lena SW, Babu BR, Wengel J, Kjems J (2007) Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res 35(17):5886–5897. doi:10.1093/nar/gkm548

    PubMed  CAS  Google Scholar 

  • Bramsen JB, Laursen MB, Nielsen AF, Hansen TB, Bus C, Langkjaer N, Babu BR, Hojland T, Abramov M, Van Aerschot A, Odadzic D, Smicius R, Haas J, Andree C, Barman J, Wenska M, Srivastava P, Zhou C, Honcharenko D, Hess S, Muller E, Bobkov GV, Mikhailov SN, Fava E, Meyer TF, Chattopadhyaya J, Zerial M, Engels JW, Herdewijn P, Wengel J, Kjems J (2009) A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res 37(9):2867–2881. doi:10.1093/nar/gkp106

    PubMed  CAS  Google Scholar 

  • Brown KM, Chu C-Y, Rana TM (2005) Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol 12(5):469–470. doi:10.1038/nsmb931

    PubMed  CAS  Google Scholar 

  • Burke RS, Pun SH (2008) Extracellular barriers to in Vivo PEI and PEGylated PEI polyplex-mediated gene delivery to the liver. Bioconjug Chem 19(3):693–704. doi:10.1021/bc700388u

    PubMed  CAS  Google Scholar 

  • Buyens K, Lucas B, Raemdonck K, Braeckmans K, Vercammen J, Hendrix J, Engelborghs Y, De Smedt SC, Sanders NN (2008) A fast and sensitive method for measuring the integrity of siRNA-carrier complexes in full human serum. J Control Release 126(1):67–76. doi:10.1016/j.jconrel.2007.10.024

    PubMed  CAS  Google Scholar 

  • Cardoso ALC, Simoes S, de Almeida LP, Pelisek J, Culmsee C, Wagner E, de Lima MCP (2007) SiRNA detivery by a transferrin-associated lipid-based vector: a non-viral strategy to mediate gene silencing. J Gene Med 9(3):170–183. doi:10.1002/jgm.1006

    PubMed  CAS  Google Scholar 

  • Chang CI, Lee TY, Dua P, Kim S, Li CJ, Lee D-K (2011) Long double-stranded rna-mediated rna interference and immunostimulation: long interfering double-stranded rna as a potent anticancer therapeutics. Oligonucleotides 21(3):149–155. doi:10.1089/nat.2011.0296

    CAS  Google Scholar 

  • Cho YW, Kim JD, Park K (2003) Polycation gene delivery systems: escape from the endosomes to the cytosol. J Pharm Pharmacol 55:721–734

    PubMed  CAS  Google Scholar 

  • Cho EC, Zhang Q, Xia YN (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6(6):385–391. doi:10.1038/nnano.2011.58

    PubMed  CAS  Google Scholar 

  • Chu C-Y, Rana TM (2008) Potent RNAi by short RNA triggers. RNA 14(9):1714–1719. doi:10.1261/rna.1161908

    PubMed  CAS  Google Scholar 

  • Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36(3):184–204. doi:10.1007/s12033--007--0010--8

    PubMed  CAS  Google Scholar 

  • Coura RD, Nardi NB (2007) The state of the art of adeno-associated virus-based vectors in gene therapy. Virol J 4. doi:10.1186/1743--422x-4--99

    Google Scholar 

  • Dande P, Prakash TP, Sioufi N, Gaus H, Jarres R, Berdeja A, Swayze EE, Griffey RH, Bhat B (2006) Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J Med Chem 49(5):1624–1634. doi:10.1021/jm050822c

    PubMed  CAS  Google Scholar 

  • Dannull J, Lesher DT, Holzknecht R, Qi WN, Hanna G, Seigler H, Tyler DS, Pruitt SK (2007) Immunoproteasome down-modulation enhances the ability of dendritic cells to stimulate antitumor immunity. Blood 110(13):4341–4350. doi:10.1182/blood-2007--04--083188

    PubMed  CAS  Google Scholar 

  • Dausend J, Musyanovych A, Dass M, Walther P, Schrezenmeier H, Landfester K, Mailander V (2008) Uptake mechanism of oppositely charged fluorescent nanoparticles in hela cells. Macromol Biosci 8(12):1135–1143. doi:10.1002/mabi.200800123

    PubMed  CAS  Google Scholar 

  • Davidson BL, McCray PB (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12(5):329–340. doi:10.1038/nrg2968

    PubMed  CAS  Google Scholar 

  • Davis ME (2009) The first targeted delivery of sirna in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668. doi:10.1021/mp900015y

    PubMed  CAS  Google Scholar 

  • Dejneka NS, Wan SH, Bond OS, Kornbrust DJ, Reich SJ (2008) Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes. Mol Vis 14(116–19):997–1005

    PubMed  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reise Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303(5663):1529–1531. doi:10.1126/science.1093616

    PubMed  CAS  Google Scholar 

  • Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reise Sousa C (2006) Nucleic acid agonists for toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 36(12):3256–3267. doi:10.1002/eji.200636617

    PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001a) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498. doi:10.1038/35078107

    PubMed  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001b) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200. doi:10.1101/gad.862301

    PubMed  CAS  Google Scholar 

  • Feinstein E (2011) Prevention and treatment of acute renal failure and other kidney diseases by inhibition of p53 by siRNA. 7910566

    Google Scholar 

  • Frank F, Sonenberg N, Nagar B (2010) Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465(7299):818–822. doi:10.1038/nature09039

    PubMed  CAS  Google Scholar 

  • Gantier MP, Williams BRG (2007) The response of mammalian cells to double-stranded RNA. Cytok Growth Fact Rev 18(5–6):363–371. doi:10.1016/j.cytogfr.2007.06.016

    CAS  Google Scholar 

  • Gao GP, Alvira MR, Wang LL, Calcedo R, Johnston J, Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 99(18):11854–11859. doi:10.1073/pnas.182412299

    PubMed  CAS  Google Scholar 

  • Ghosh SS, Gopinath P, Ramesh A (2006) Adenoviral vectors—a promising tool for gene therapy. Appl Biochem Biotechnol 133(1):9–29. doi:10.1385/abab:133:1:9

    PubMed  CAS  Google Scholar 

  • Goodchild A, Nopper N, King A, Doan T, Tanudji M, Arndt GM, Poidinger M, Rivory LP, Passioura T (2009) Sequence determinants of innate immune activation by short interfering RNAs. BMC Immunol 10:40. doi:10.1186/1471--2172--10--40

    PubMed  Google Scholar 

  • Gorden KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, Qiu XH, Tomai MA, Alkan SS, Vasilakos JP (2005) Synthetic TLR Agonists reveal functional differences between human TLR7 and TLR8. J Immunol 174(3):1259–1268

    PubMed  CAS  Google Scholar 

  • Gredell JA, Berger AK, Walton SP (2008) Impact of target mRNA structure on siRNA silencing efficiency: a large-scale study. Biotechnol Bioeng 100(4):744–755. doi:10.1002/bit.21798

    PubMed  CAS  Google Scholar 

  • Gredell JA, Dittmer MJ, Wu M, Chan C, Walton SP (2010) Recognition of siRNA asymmetry by TAR RNA binding protein. Biochemistry 49(14):3148–3155. doi:10.1021/bi902189s

    PubMed  CAS  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F, Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541. doi:10.1038/nature04791

    PubMed  CAS  Google Scholar 

  • Guo PX, Coban O, Snead NM, Trebley J, Hoeprich S, Guo SC, Shu Y (2010a) Engineering RNA for targeted siRNA delivery and medical application. Adv Drug Deliv Rev 62(6):650–666. doi:10.1016/j.addr.2010.03.008

    PubMed  CAS  Google Scholar 

  • Guo ST, Huang YY, Jiang QA, Sun Y, Deng LD, Liang ZC, Du QA, Xing JF, Zhao YL, Wang PC, Dong AJ, Liang XJ (2010b) Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4(9):5505–5511. doi:10.1021/nn101638u

    PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775):293–296. doi:10.1038/35005107

    PubMed  CAS  Google Scholar 

  • Hansen BJ, Westergaard M, Frieden M, Hansen HF, Kjaerulff LS, Thrue CA, Wissenbach MH, Dalby LW, Kearney P, Oerum O (2006) SPC2996-A Bcl-2 RNA antagonist being studied in chronic lymphocytic leukemia. J Clin Oncol 24:6610

    Google Scholar 

  • Hartman ZC, Appledorn DM, Amalfitano A (2008) Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res 132(1–2):1–14. doi:10.1016/j.virusres.2007.10.005

    PubMed  CAS  Google Scholar 

  • Hickerson RP, Smith FJD, Reeves RE, Contag CH, Leake D, Leachman SA, Milstone LM, McLean WHI, Kaspar RL (2008) Single-nucleotide-specific siRNA targeting in a dominant-negative skin model. J Investig Dermatol 128(3):594–605. doi:10.1038/sj.jid.5701060

    PubMed  CAS  Google Scholar 

  • Hom C, Lu J, Liong M, Luo HZ, Li ZX, Zink JI, Tamanoi F (2010) Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells. Small 6(11):1185–1190. doi:10.1002/smll.200901966

    PubMed  CAS  Google Scholar 

  • Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11(3):263–270. doi:10.1038/nm1191

    PubMed  CAS  Google Scholar 

  • Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann K-K, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314(5801):994–997. doi:10.1126/science.1132505

    PubMed  Google Scholar 

  • Hossbach M, Gruber J, Osborn M, Weber K, Tuschl T (2006) Gene silencing with siRNA duplexes composed of target-mRNA-complementary and partially palindromic or partially complementary single-stranded siRNAs. RNA Biol 3(2):82–89

    PubMed  CAS  Google Scholar 

  • Huesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J, Meloon B, Engel S, Rosenberg A, Cohen D, Labow M, Reinhardt M, Natt F, Hall J (2005) Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol 23(8):995–1001. doi:10.1038/nbt1118

    PubMed  CAS  Google Scholar 

  • Hutvagner G (2005) Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation. FEBS Lett 579(26):5850–5857. doi:10.1016/j.febslet.2005.08.071

    PubMed  CAS  Google Scholar 

  • Ishihara S, Haga H, Yasuda M, Mizutani T, Kawabata K, Shirato H, Nishioka T (2010) Integrin beta 1-dependent invasive migration of irradiation-tolerant human lung adenocarcinoma cells in 3D collagen matrix. Biochem Biophys Res Commun 396(3):651–655. doi:10.1016/j.bbrc.2010.04.150

    PubMed  CAS  Google Scholar 

  • Ivanov AI, Hopkins AM, Brown GT, Gerner-Smidt K, Babbin BA, Parkos CA, Nusrat A (2008) Myosin II regulates the shape of three-dimensional intestinal epithelial cysts. J Cell Sci 121(11):1803–1814. doi:10.1242/jcs.015842

    PubMed  CAS  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995. doi:10.1038/ni1112

    PubMed  CAS  Google Scholar 

  • Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9(1):57–67. doi:10.1038/nrd3010

    PubMed  CAS  Google Scholar 

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21(6):635–637. doi:10.1038/nbt831

    PubMed  CAS  Google Scholar 

  • Jimenez AI, Sesto A, Gascon I, Roman JP, Gonzalez de Buitrago G (2011) Methods and compositions for the treatment of eye disorders with increased intraocular pressure. 7902169, 8 Mar 2011

    Google Scholar 

  • Johnson JE, Gonzales RA, Olson SJ, Wright PF, Graham BS (2007) The histopathology of fatal untreated human respiratory syncytial virus infection. Mod Pathol 20(1):108–119. doi:10.1038/modpathol.3800725

    PubMed  CAS  Google Scholar 

  • Judge A, Maclachlan I (2008) Overcoming the innate immune response to small interfering RNA. Hum Gene Ther 19(2):111–124. doi:10.1089/hum.2007.179

    PubMed  CAS  Google Scholar 

  • Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23(4):457–462. doi:10.1038/nbt1081

    PubMed  CAS  Google Scholar 

  • Kaiser J (2007) Clinical research: death prompts a review of gene therapy vector. Science 317(5838):580. doi:10.1126/science.317.5838.580

    PubMed  CAS  Google Scholar 

  • Kalina WV, Gershwin LJ (2004) Progress in defining the role of RSV in allergy and asthma: from clinical observations to animal models. Clin Dev Immunol 11(2):113–119. doi:10.1080/10446670410001722131

    PubMed  CAS  Google Scholar 

  • Karikó K, Bhuyan P, Capodici J, Weissman D (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172(11):6545–6549

    PubMed  Google Scholar 

  • Katas H, Alpar HO (2006) Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release 115(2):216–225. doi:10.1016/j.jconrel.2006.07.021

    PubMed  CAS  Google Scholar 

  • Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, Dermody TS, Fujita T, Akira S (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205(7):1601–1610. doi:10.1084/jem.20080091

    PubMed  CAS  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216. doi:10.1016/S0092--8674(03)00801--8

    PubMed  CAS  Google Scholar 

  • Kim D-H, Longo M, Han Y, Lundberg P, Cantin E, Rossi JJ (2004) Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat Biotechnol 22(3):321–325. doi:10.1038/nbt940

    PubMed  CAS  Google Scholar 

  • Kiryu H, Terai G, Imamura O, Yoneyama H, Suzuki K, Asai K (2011) A detailed investigation of accessibilities around target sites of siRNAs and miRNAs. Bioinformatics 27(13):1788–1797. doi:10.1093/bioinformatics/btr276

    PubMed  CAS  Google Scholar 

  • Kodym R, Kodym E, Story MD (2009) 2′-5′-Oligoadenylate synthetase is activated by a specific RNA sequence motif. Biochem Biophys Res Commun 388(2):317–322. doi:10.1016/j.bbrc.2009.07.167

    PubMed  CAS  Google Scholar 

  • Kok KH, Ng MHJ, Ching YP, Jin DY (2007) Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem 282(24):17649–17657. doi:10.1074/jbc.M611768200

    PubMed  CAS  Google Scholar 

  • Kretschmer-Kazemi Far R, Sczakiel G (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 31(15):4417–4424. doi:10.1093/nar/gkg649

    PubMed  CAS  Google Scholar 

  • Krieg AM (2011) Is RNAi dead? Mol Ther 19(6):1001–1002. doi:10.1038/mt.2011.94

    PubMed  CAS  Google Scholar 

  • Kwon EJ, Bergen JM, Pun SH (2008) Application of an HIV gp41-derived peptide for enhanced intracellular trafficking of synthetic gene and siRNA delivery vehicles. Bioconjug Chem 19(4):920–927. doi:10.1021/bc700448h

    PubMed  CAS  Google Scholar 

  • Leachman SA, Hickerson RP, Hull PR, Smith FJD, Milstone LM, Lane EB, Bale SJ, Roop DR, McLean WHI, Kaspar RL (2008) Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita. J Dermatol Sci 51(3):151–157. doi:10.1016/j.jdermsci.2008.04.003

    PubMed  CAS  Google Scholar 

  • Leader S, Kohlhase K (2002) Respiratory syncytial virus-coded pediatric hospitalizations, 1997 to 1999. Pediatr Infect Dis J 21(7):629–632. doi:10.1097/00006454--200207000--00005

    PubMed  Google Scholar 

  • Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway. EMBO J 25(3):522–532. doi:10.1038/sj.emboj.7600942

    PubMed  CAS  Google Scholar 

  • Lee SH, Bae KH, Kim SH, Lee KR, Park TG (2008) Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. Int J Pharm 364(1):94–101. doi:10.1016/j.ijpharm.2008.07.027

    PubMed  CAS  Google Scholar 

  • Lee JS, Green JJ, Love KT, Sunshine J, Langer R, Anderson DG (2009) Gold, Poly(Beta-Amino Ester) nanoparticles for small interfering RNA delivery. Nano Lett 9(6):2402–2406. doi:10.1021/nl9009793

    PubMed  CAS  Google Scholar 

  • Lee S, Shim G, Kim S, Kim YB, Kim CW, Byun Y, Oh YK (2011) Enhanced transfection rates of small-interfering RNA using dioleylglutamide-based magnetic lipoplexes. Oligonucleotides 21(3):165–172. doi:10.1089/nat.2010.0274

    CAS  Google Scholar 

  • Lei YG, Ng QKT, Segura T (2010) Two and three-dimensional gene transfer from enzymatically degradable hydrogel scaffolds. Microsc Res Tech 73(9):910–917. doi:10.1002/jemt.20840

    PubMed  CAS  Google Scholar 

  • Leuschner PJF, Ameres SL, Kueng S, Martinez J (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7(3):314–320. doi:10.1038/sj.embor.7400637

    PubMed  CAS  Google Scholar 

  • Lima WF, Murray H, Nichols JG, Wu H, Sun H, Prakash TP, Berdeja AR, Gaus HJ, Crooke ST (2009) Human Dicer binds short single-strand and double-strand RNA with high affinity and interacts with different regions of the nucleic acids. J Biol Chem 284(4):2535–2548. doi:10.1074/jbc.M803748200

    PubMed  CAS  Google Scholar 

  • Liu Q (2003) R2D2, a bridge between the initiation and effector steps of the drosophila RNAi pathway. Science 301(5641):1921–1925. doi:10.1126/science.1088710

    PubMed  CAS  Google Scholar 

  • Liu Y-J (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306. doi:10.1146/annurev.immunol.23.021704.115633

    PubMed  CAS  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song J-J, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 Is the catalytic engine of mammalian RNAi. Sci Signal 305(5689):1437. doi:10.1126/science.1102513

    CAS  Google Scholar 

  • Liu XD, Howard KA, Dong MD, Andersen MO, Rahbek UL, Johnsen MG, Hansen OC, Besenbacher F, Kjems J (2007) The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials 28(6):1280–1288. doi:10.1016/j.biomaterials.2006.11.004

    PubMed  CAS  Google Scholar 

  • Liu Y, Ye X, Jiang F, Liang C, Chen D, Peng J, Kinch LN, Grishin NV, Liu Q (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325(5941):750–753. doi:10.1126/science.1176325

    PubMed  CAS  Google Scholar 

  • Lu ZJ, Mathews DH (2008a) Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res 36(2):640–647. doi:10.1093/nar/gkm920

    PubMed  CAS  Google Scholar 

  • Lu ZJ, Mathews DH (2008b) Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res 36(2):640–647. doi:10.1093/nar/gkm920

    PubMed  CAS  Google Scholar 

  • Lu JJ, Langer R, Chen JZ (2009) A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol Pharm 6(3):763–771. doi:10.1021/mp900023v

    PubMed  CAS  Google Scholar 

  • Lu W, Zhang GD, Zhang R, Flores LG, Huang Q, Gelovani JG, Li C (2010) Tumor site-specific silencing of NF-kappa B p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res 70(8):3177–3188. doi:10.1158/0008--5472.can-09--3379

    PubMed  CAS  Google Scholar 

  • Lynn DM, Langer R (2000) Degradable poly(beta-amino esters): synthesis, characterization, and self-assembly with plasmid DNA. J Am Chem Soc 122(44):10761–10768. doi:10.1021/ja0015388

    CAS  Google Scholar 

  • Malathi K, Dong B, Gale M, Silverman RH (2007) Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448(7155):816–819. doi:10.1038/nature06042

    PubMed  CAS  Google Scholar 

  • Malone RW, Felgner PL, Verma IM (1989) CATIONIC liposome-mediated RNA transfection. Proc Natl Acad Sci USA 86(16):6077–6081. doi:10.1073/pnas.86.16.6077

    PubMed  CAS  Google Scholar 

  • Manche L, Green SR, Schmedt C, Mathews MB (1992) Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol 12(11):5238–5248

    PubMed  CAS  Google Scholar 

  • Mao SR, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, Kissel T (2006) Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug Chem 17(5):1209–1218. doi:10.1021/bc060129j

    PubMed  CAS  Google Scholar 

  • Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, Fujita T, Behlke MA, Williams BR (2006) A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol 24(5):559–565. doi:10.1038/nbt1205

    PubMed  CAS  Google Scholar 

  • Mathews D, Sabina J, Zuker M, Turner D (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288(5):911–940. doi:10.1006/jmbi.1999.2700

    PubMed  CAS  Google Scholar 

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123(4):607–620. doi:10.1016/j.cell.2005.08.044

    PubMed  CAS  Google Scholar 

  • Matveeva OV, Kang Y, Spiridonov AN, Saetrom P, Nemtsov VA, Ogurtsov AY, Nechipurenko YD, Shabalina SA (2010) Optimization of duplex stability and terminal asymmetry for shRNA design. PLoS One 5(4):e10180. doi:10.1371/journal.pone.0010180

    Google Scholar 

  • Medina-Kauwe LK, Xie J, Hamm-Alvarez S (2005) Intracellular trafficking of nonviral vectors. Gene Ther 12(24):1734–1751. doi:10.1038/sj.gt.3302592

    PubMed  CAS  Google Scholar 

  • Meng HA, Liong M, Xia TA, Li ZX, Ji ZX, Zink JI, Nel AE (2010) Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4(8):4539–4550. doi:10.1021/nn100690m

    PubMed  CAS  Google Scholar 

  • Meyers R (2010) Methods and compostions for prevention or treatment of RSV infection using modified duplex RNA molecules. WO 2010/048590 A1, 29 Apr 2010

    Google Scholar 

  • Meyers R (2011) RNAi modulation of RSV and therapeutic uses thereof. US Patent 7,981,869 B2, 19 July 2011

    Google Scholar 

  • Minks MA, Benvin S, Maroney PA, Baglioni C (1979) Metabolic stability of 2′S’oligo (A) and activity of 2′ S’oligo (A)-dependent endonuclease in extracts of interferon-treated and control HeLa cells. Nucleic Acids Res 6(2):767–780

    PubMed  CAS  Google Scholar 

  • Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila argonautes and its involvement in RISC formation. Genes Dev 19(23):2837–2848. doi:10.1101/gad.1370605

    PubMed  CAS  Google Scholar 

  • Nguyen J, Steele TWJ, Merkel O, Reul R, Kissel T (2008) Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy. J Control Release 132(3):243–251. doi:10.1016/j.jconrel.2008.06.010

    PubMed  CAS  Google Scholar 

  • Noland CL, Ma E, Doudna JA (2011) siRNA repositioning for guide strand selection by human Dicer complexes. Mol cell 43(1):110–121. doi:10.1016/j.molcel.2011.05.028

    PubMed  CAS  Google Scholar 

  • Nykänen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107(3):309–321. doi:10.1016/S0092--8674(01)00547--5

    PubMed  Google Scholar 

  • Overhoff M, Alken M, Far RK-K, Lemaitre M, Lebleu B, Sczakiel G, Robbins I (2005) Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol 348(4):871–881. doi:10.1016/j.jmb.2005.03.012

    PubMed  CAS  Google Scholar 

  • Patel PC, Hao L, Yeung WSA, Mirkin CA (2011) Duplex end breathing determines serum stability and intracellular potency of siRNA-Au NPs. Mol Pharm 8:6

    Google Scholar 

  • Patzel V, Rutz S, Dietrich I, Koberle C, Scheffold A, Kaufmann SHE (2005) Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Nat Biotechnol 23(11):1440–1444. doi:10.1038/nbt1151

    PubMed  CAS  Google Scholar 

  • Peebles RS Jr (2004) Viral infections, atopy, and asthma: is there a causal relationship? J Allergy Clin Immunol 113(1 Suppl):S15–S18. doi:10.1016/j.jaci.2003.10.033

    PubMed  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reise Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314(5801):997–1001. doi:10.1126/science.1132998

    PubMed  CAS  Google Scholar 

  • Pollack A (2011) Drugmakers’ fever for the power of RNA interference has cooled. New York Times, 8 Feb 2011

    Google Scholar 

  • Portis AM, Carballo G, Baker GL, Chan C, Walton SP (2010) Confocal microscopy for the analysis of siRNA delivery by polymeric nanoparticles. Microsc Res Tech 73(9):878–885. doi:10.1002/jemt.20861

    PubMed  CAS  Google Scholar 

  • Psarras S, Papadopoulos NG, Johnston SL (2004) Pathogenesis of respiratory syncytial virus bronchiolitis-related wheezing. Paediatr Respir Rev 5(Suppl A):S179–S184. doi:10.1016/s1526-–0542(04)90034-–6

    PubMed  Google Scholar 

  • Raeber GP, Lutolf MP, Hubbell JA (2005) Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys J 89(2):1374–1388. doi:10.1529/biophysj.104.050682

    PubMed  CAS  Google Scholar 

  • Rand TA, Petersen S, Du F, Wang X (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123(4):621–629. doi:10.1016/j.cell.2005.10.020

    PubMed  CAS  Google Scholar 

  • Ren T, Song YK, Zhang G, Liu D (2000) Structural basis of DOTMA for its high intravenous transfection activity in mouse. Gene Ther 7(9):764–768. doi:10.1038/sj.gt.3301153

    PubMed  CAS  Google Scholar 

  • Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22(3):326–330. doi:10.1038/nbt936

    PubMed  CAS  Google Scholar 

  • Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu JD, Hannon GJ, Joshua-Tor L (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12(4):340–349. doi:10.1038/nsmb918

    PubMed  CAS  Google Scholar 

  • Robbins M, Judge A, MacLachlan I (2009) siRNA and innate immunity. Oligonucleotides 19(2):89–101. doi:10.1089/oli.2009.0180

    PubMed  CAS  Google Scholar 

  • Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312(5776):1027–1030. doi:10.1126/science.1125559

    PubMed  CAS  Google Scholar 

  • Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV, Hagstrom JE, Wolff JA (2007) Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci USA 104(32):12982–12987. doi:10.1073/pnas.0703778104

    PubMed  CAS  Google Scholar 

  • Rubin SD (2009) OPKO health announces update on phase III clinical trial of Bevasiranib

    Google Scholar 

  • Sakurai K, Amarzguioui M, Kim D-H, Alluin J, Heale B, M-s S, Gatignol A, Behlke MA, Rossi JJ (2011) A role for human Dicer in pre-RISC loading of siRNAs. Nucleic Acids Res 39(4):1510–1525. doi:10.1093/nar/gkq846

    PubMed  CAS  Google Scholar 

  • Samuel-Abraham S, Leonard JN (2010) Staying on message: design principles for controlling nonspecific responses to siRNA. FEBS J 277(23):4828–4836. doi:10.1111/j.1742--4658.2010.07905.x

    PubMed  CAS  Google Scholar 

  • Sashital DG, Doudna JA (2010) Structural insights into RNA interference. Curr Opin Struct Biol 20(1):90–97. doi:10.1016/j.sbi.2009.12.001

    PubMed  CAS  Google Scholar 

  • Schlee M, Hartmann G (2010) The chase for the RIG-I ligand—recent advances. Mol Ther 18(7):1254–1262. doi:10.1038/mt.2010.90

    PubMed  CAS  Google Scholar 

  • Schlee M, Hornung V, Hartmann G (2006) siRNA and isRNA: two edges of one sword. Mol Ther 14(4):463–470. doi:10.1016/j.ymthe.2006.06.001

    PubMed  CAS  Google Scholar 

  • Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, Coch C, Janke M, Mihailovic A, Wardle G, Juranek S, Kato H, Kawai T, Poeck H, Fitzgerald KA, Takeuchi O, Akira S, Tuschl T, Latz E, Ludwig J, Hartmann G (2009) Recognition of 5′-triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31(1):25–34. doi:10.1016/j.immuni.2009.05.008

    PubMed  CAS  Google Scholar 

  • Schubert S, Grünweller A, Erdmann VA, Kurreck J (2005) Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 348(4):883–893. doi:10.1016/j.jmb.2005.03.011

    PubMed  CAS  Google Scholar 

  • Schwarz D, Hutvagner G, Du T, Xu Z, Aronin N, Zamore P (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    PubMed  CAS  Google Scholar 

  • Seitz H, Tushir J, Zamore P (2011) A 5′-uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA-induced silencing complex formation. Silence 2:1–10

    Google Scholar 

  • Seow Y, Wood MJ (2009) Biological gene delivery vehicles: beyond viral vectors. Mol Ther 17(5):767–777. doi:10.1038/mt.2009.41

    PubMed  CAS  Google Scholar 

  • Shabalina SA, Spiridonov AN, Ogurtsov AY (2006) Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinforma 7:65. doi:10.1186/1471--2105--7--65

    Google Scholar 

  • Shao Y, Chan CY, Maliyekkel A, Lawrence CE, Roninson IB, Ding Y (2007) Effect of target secondary structure on RNAi efficiency. RNA 13(10):1631–1640. doi:10.1261/rna.546207

    PubMed  CAS  Google Scholar 

  • Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, Hackett SF, Zinnen S, Kossen K, Fosnaugh K, Vargeese C, Gomez A, Bouhana K, Aitchison R, Pavco P, Campochiaro PA (2006) Suppression of ocular neovascularization with siRNA targeting of VEGF receptor 1. Gene Ther 13(3):225–234. doi:10.1038/sj.gt.3302641

    PubMed  CAS  Google Scholar 

  • Shim MS, Kwon YJ (2010) Efficient and targeted delivery of siRNA in vivo. FEBS J 277(23):4814–4827. doi:10.1111/j.1742--4658.2010.07904.x

    PubMed  CAS  Google Scholar 

  • Siegwart DJ, Whitehead KA, Nuhn L, Sahay G, Cheng H, Jiang S, Ma M, Lytton-Jean A, Vegas A, Fenton P, Levins CG, Love KT, Lee H, Cortez C, Collins SP, Li YF, Jang J, Querbes W, Zurenko C, Novobrantseva T, Langer R, Anderson DG (2011) Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery. Proc Natl Acad Sci USA. doi:10.1073/pnas.1106379108

    Google Scholar 

  • Singerman L (2009) Combination therapy using the small interfering RNA bevasiranib. Retina-J Retin Vitr Dis 29(6):S49–S50

    Google Scholar 

  • Sioud M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348(5):1079–1090. doi:10.1016/j.jmb.2005.03.013

    PubMed  CAS  Google Scholar 

  • Sioud M (2006) Innate sensing of self and non-self RNAs by toll-like receptors. Trends Mol Med 12(4):167–176. doi:10.1016/j.molmed.2006.02.004

    PubMed  CAS  Google Scholar 

  • Sioud M (2007) RNA interference and innate immunity. Adv Drug Deliver Rev 59(2–3):153–163. doi:10.1016/j.addr.2007.03.006

    CAS  Google Scholar 

  • Sonawane ND, Szoka FC, Verkman AS (2003) Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 278(45):44826–44831. doi:10.1074/jbc.M308643200

    PubMed  CAS  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432(7014):173–178. doi:10.1038/nature03121

    PubMed  CAS  Google Scholar 

  • Stevens TP, Hall CB (2004) Controversies in palivizumab use. Pediatr Infect Dis J 23(11):1051–1052. doi:10.1097/01.inf.0000145759.71531.d8

    PubMed  Google Scholar 

  • Sun X, Rogoff HA, Li CJ (2008) Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol 26(12):1379–1382. doi:10.1038/nbt.1512

    PubMed  CAS  Google Scholar 

  • Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21(1):335–376. doi:10.1146/annurev.immunol.21.120601.141126

    PubMed  CAS  Google Scholar 

  • Tang MX, Redemann CT, Szoka FC (1996) In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug Chem 7(6):703–714. doi:10.1021/bc9600630

    PubMed  CAS  Google Scholar 

  • Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biology Reports 3

    Google Scholar 

  • Tomari Y, Du T, Haley B, Schwarz D, Bennett R, Cook H, Koppetsch B, Theurkauf W, Zamore P (2004a) RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116(6):831–841

    PubMed  CAS  Google Scholar 

  • Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD (2004b) A protein sensor for siRNA asymmetry. Science 306(5700):1377–1380. doi:10.1126/science.1102755

    PubMed  CAS  Google Scholar 

  • Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, Ueda R, Saigo K (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32(3):936–948. doi:10.1093/nar/gkh247

    PubMed  CAS  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):U654–U672. doi:10.1038/ncb1596

    Google Scholar 

  • van de Water FM, Boerman OC, Wouterse AC, Peters JGP, Russel FGM, Masereeuw R (2006) Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules. Drug Metab Dispos 34(8):1393–1397. doi:10.1124/dmd.106.009555

    PubMed  Google Scholar 

  • Veiseh O, Kievit FM, Mok H, Ayesh J, Clark C, Fang C, Leung M, Arami H, Park JO, Zhang MQ (2011) Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials 32(24):5717–5725. doi:10.1016/j.biomaterials.2011.04.039

    PubMed  CAS  Google Scholar 

  • Ventre K, Randolph AG (2007) Ribavirin for respiratory syncytial virus infection of the lower respiratory tract in infants and young children. Cochrane Database of Syst Rev (1):Cd000181. doi:10.1002/14651858.CD000181.pub3

    Google Scholar 

  • Vickers TA, Koo S, Bennett CF, Crooke ST, Dean NM, Baker BF (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278(9):7108–7118. doi:10.1074/jbc.M210326200

    PubMed  CAS  Google Scholar 

  • Walton SP, Wu M, Gredell JA, Chan C (2010) Designing highly active siRNAs for therapeutic applications. FEBS J 277(23):4806–4813. doi:10.1111/j.1742--4658.2010.07903.x

    PubMed  CAS  Google Scholar 

  • Wang HW, Noland C, Siridechadilok B, Taylor DW, Ma EB, Felderer K, Doudna JA, Nogales E (2009) Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 16(11):1148–1153. doi:10.1038/nsmb.1673

    PubMed  CAS  Google Scholar 

  • Weitzer S, Martinez J (2007) The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447(7141):222–227. doi:10.1038/nature05777

    PubMed  CAS  Google Scholar 

  • Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138. doi:10.1038/nrd2742

    PubMed  CAS  Google Scholar 

  • Whitehead KA, Sahay G, Li GZ, Love KT, Alabi CA, Ma M, Zurenko C, Querbes W, Langer R, Anderson DG (2011) Synergistic silencing: combinations of lipid-like materials for efficacious siRNA delivery. Mol Ther:7. doi:10.1038/mt.2011.141

    Google Scholar 

  • Xiang SL, Fruehauf J, Li CJ (2006) Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol 24(6):697–702. doi:10.1038/nbt1211

    PubMed  CAS  Google Scholar 

  • Xiong XB, Uludag H, Lavasanifar A (2009) Biodegradable amphiphilic poly(ethylene oxide)-block-polyesters with grafted polyamines as supramolecular nanocarriers for efficient siRNA delivery. Biomaterials 30(2):242–253. doi:10.1016/j.biomaterials.2008.09.025

    PubMed  CAS  Google Scholar 

  • Ye X, Huang N, Liu Y, Paroo Z, Huerta C, Li P, Chen S, Liu Q, Zhang H (2011) Structure of C3PO and mechanism of human RISC activation. Nat Struct Mol Biol 18(6):650–657. doi:10.1038/nsmb.2032

    PubMed  CAS  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5(7):730–737. doi:10.1038/ni1087

    PubMed  CAS  Google Scholar 

  • Yoshinari K, Miyagishi M, Taira K (2004) Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res 32(2):691–699. doi:10.1093/nar/gkh221

    PubMed  CAS  Google Scholar 

  • Zamora MR, Budev M, Rolfe M, Gottlieb J, Humar A, DeVincenzo J, Vaishnaw A, Cehelsky J, Albert G, Nochur S, Gollob JA, Glanville AR (2011) RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am J Respir Crit Care Med 183(4):531–538. doi:10.1164/rccm.201003--0422OC

    PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25–33. doi:10.1016/S0092--8674(00)80620--0

    PubMed  CAS  Google Scholar 

  • Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W (2002a) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21(21):5875–5885

    PubMed  CAS  Google Scholar 

  • Zhang LQ, Peeples ME, Boucher RC, Collins PL, Pickles RJ (2002b) Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol 76(11):5654–5666. doi:10.1128/jvi.76.11.5654--5666.2002

    PubMed  CAS  Google Scholar 

  • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118(1):57–68. doi:10.1016/j.cell.2004.06.017

    PubMed  CAS  Google Scholar 

  • Zhang SB, Zhao B, Jiang HM, Wang B, Ma BC (2007) Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release 123(1):1–10. doi:10.1016/j.jconrel.2007.07.016

    PubMed  CAS  Google Scholar 

  • Zhang HY, Lee MY, Hogg MG, Dordick JS, Sharfstein ST (2010) Gene delivery in three-dimensional cell cultures by superparamagnetic nanoparticles. ACS Nano 4(8):4733–4743. doi:10.1021/nn9018812

    PubMed  CAS  Google Scholar 

  • Zhou XM, Rowe RG, Hiraoka N, George JP, Wirtz D, Mosher DF, Virtanen I, Chernousov MA, Weiss SJ (2008) Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev 22(9):1231–1243. doi:10.1101/gad.1643308

    PubMed  CAS  Google Scholar 

  • Zintchenko A, Philipp A, Dehshahri A, Wagner E (2008) Simple modifications of branched PEI lead to highly efficient siRNA carriers with low toxicity. Bioconjug Chem 19(7):1448–1455. doi:10.1021/bc800065f

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Patrick Walton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malefyt, A.P., Angart, P.A., Chan, C., Walton, S.P. (2012). siRNA Therapeutic Design: Tools and Challenges. In: Mallick, B., Ghosh, Z. (eds) Regulatory RNAs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22517-8_19

Download citation

Publish with us

Policies and ethics