Skip to main content

The Arthropoda: A Phylogenetic Framework

  • Chapter
  • First Online:
Arthropod Biology and Evolution

Abstract

Arthropoda, the best-known member of the clade Ecdysozoa, is a phylum of protostome animals, its closest relatives being Onychophora (velvet worms) and Tardigrada (water bears).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele LG, Kim W, Felgenhauer BE (1989) Molecular evidence for inclusion of the phylum Pentastomida in the Crustacea. Mol Biol Evol 6:685–691

    Google Scholar 

  • Abzhanov A, Kaufman TC (2000) Crustacean (malacostracan) Hox genes and the evolution of the arthropod trunk. Development 127:2239–2249

    PubMed  CAS  Google Scholar 

  • Adrain JM (2011) Class Trilobita Walch, 1771. In: Zhang Z-Q (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Magnolia Press, Auckland, pp 104–109

    Google Scholar 

  • Aguinaldo AMA, Turbeville JM, Lindford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    PubMed  CAS  Google Scholar 

  • Almeida WO, Christoffersen ML, Amorim DS, Garrafoni ARS, Silva GS (2003) Polychaeta, Annelida, and Articulata are not monophyletic: articulating the Metameria (Metazoa: Coelomata). Rev Bras Zool 20:23–57

    Google Scholar 

  • Anderson DT (1969) On the embryology of the cirripede crustaceans Tetraclita rosea (krauss), Tetraclita purpurascens (Wood), Chthamalus antennatus Darwin and Chamaesipho columna (Spengler) and some considerations of crustacean phylogenetic relationships. Philos Trans R Soc B 256:183–235

    Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford

    Google Scholar 

  • Andrew DR (2011) A new view of insect–crustacean relationships II: inferences from expressed sequence tags and comparisons with neural cladistics. Arthropod Struct Dev 40:289–302

    PubMed  Google Scholar 

  • Angelini DR, Kaufman TC (2005) Comparative developmental genetics and the evolution of arthropod body plans. Annu Rev Genet 39:95–119

    PubMed  CAS  Google Scholar 

  • Bäcker H, Fanenbruck M, Wägele JW (2008) A forgotten homology supporting the monophyly of Tracheata: The subcoxa of insects and myriapods re-visited. Zool Anz 247:185–207

    Google Scholar 

  • Ballard JWO, Ballard O, Olsen GJ, Faith DP, Odgers WA, Rowell DM, Atkinson P (1992) Evidence from 12S ribosomal RNA sequences that onychophorans are modified arthropods. Science 258:1345–1348

    PubMed  CAS  Google Scholar 

  • Bartolomaeus T, Quast B, Koch M (2009) Nephridial development and body cavity formation in Artemia salina (Crustacea: Branchiopoda): no evidence for any transitory coelom. Zoomorphology 128:247–262

    Google Scholar 

  • Bergström J (1979) Morphology of fossil arthropods as a guide to phylogenetic relationships. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 3–56

    Google Scholar 

  • Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177–207

    Google Scholar 

  • Bitsch C, Bitsch J (2004) Phylogenetic relationships of basal hexapods among the mandibulate arthropods: a cladistic analysis based on comparative morphological characters. Zool Scr 33:511–550

    Google Scholar 

  • Blair JE, Ikeo K, Gojobori T, Hedges SB (2002) The evolutionary position of nematodes. BMC Evol Biol 2:1–7

    Google Scholar 

  • Blanke A, Wipfler B, Letsch H, Koch M, Beckmann F, Beutel R, Misof B (2012) Revival of Palaeoptera—head characters support a monophyletic origin of Odonata and Ephemeroptera (Insecta). Cladistics 28:560–581

    Google Scholar 

  • Boore JL, Collins TM, Stanton D, Daehler LL, Brown WM (1995) Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376:163–165

    PubMed  CAS  Google Scholar 

  • Bourlat SJ, Nielsen C, Economou AD, Telford MJ (2008) Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom. Mol Phylogenet Evol 49:23–31

    PubMed  CAS  Google Scholar 

  • Brusca RC, Brusca GJ (1990) Invertebrates. Sinauer Associates, Sunderland

    Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Cameron SL, Barker SC, Whiting MF (2006) Mitochondrial genomics and the new insect order Mantophasmatodea. Mol Phylogenet Evol 38:274–279

    PubMed  CAS  Google Scholar 

  • Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 108:15920–15924

    PubMed  CAS  Google Scholar 

  • Carapelli A, Lió P, Nardi F, van der Wath E, Frati F (2007) Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and crustacea. BMC Evol Biol 7:S8

    PubMed  Google Scholar 

  • Caravas J, Friedrich M (2010) Of mites and millipedes: recent progress in resolving the base of the arthropod tree. BioEssays 32:488–495

    PubMed  CAS  Google Scholar 

  • Carmean D, Kimsey LS, Berbee ML (1992) 18S rDNA sequences and the holometabolous insects. Mol Phylogenet Evol 1:270–278

    PubMed  CAS  Google Scholar 

  • Castellani C, Maas A, Waloszek D, Haug JT (2011) New pentastomids from the late Cambrian of Sweden—deeper insight of the ontogeny of fossil tongue worms. Palaeontogr Abt A: Palaeozoology Stratigr 293:95–145

    Google Scholar 

  • Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, Pollard DA, Sackton TB, Larracuente AM, Singh ND, Abad JP, Abt DN, Adryan B, Aguade M, Akashi H, Anderson WW, Aquadro CF, Ardell DH, Arguello R, Artieri CG, Barbash DA, Barker D, Barsanti P, Batterham P, Batzoglou S, Begun D, Bhutkar A, Blanco E, Bosak SA, Bradley RK, Brand AD, Brent MR, Brooks AN, Brown RH, Butlin RK, Caggese C, Calvi BR, Bernardo de Carvalho A, Caspi A, Castrezana S, Celniker SE, Chang JL, Chapple C, Chatterji S, Chinwalla A, Civetta A, Clifton SW, Comeron JM, Costello JC, Coyne JA, Daub J, David RG, Delcher AL, Delehaunty K, Do CB, Ebling H, Edwards K, Eickbush T, Evans JD, Filipski A, Findeiss S, Freyhult E, Fulton L, Fulton R, Garcia AC, Gardiner A, Garfield DA, Garvin BE, Gibson G, Gilbert D, Gnerre S, Godfrey J, Good R, Gotea V, Gravely B, Greenberg AJ, Griffiths-Jones S, Gross S, Guigo R, Gustafson EA, Haerty W, Hahn MW, Halligan DL, Halpern AL, Halter GM, Han MV, Heger A, Hillier L, Hinrichs AS, Holmes I, Hoskins RA, Hubisz MJ, Hultmark D, Huntley MA, Jaffe DB, Jagadeeshan S, Jeck WR, Johnson J, Jones CD, Jordan WC, Karpen GH, Kataoka E, Keightley PD, Kheradpour P, Kirkness EF, Koerich LB, Kristiansen K, Kudrna D, Kulathinal RJ, Kumar S, Kwok R, Lander E, Langley CH, Lapoint R, Lazzaro BP, Lee SJ, Levesque L, Li R, Lin CF, Lin MF, Lindblad-Toh K, Llopart A, Long M, Low L, Lozovsky E, Lu J, Luo M, Machado CA, Makalowski W, Marzo M, Matsuda M, Matzkin L, McAllister B, McBride CS, McKernan B, McKernan K, Mendez-Lago M, Minx P, Mollenhauer MU, Montooth K, Mount SM, Mu X, Myers E, Negre B, Newfeld S, Nielsen R, Noor MA, O’Grady P, Pachter L, Papaceit M, Parisi MJ, Parisi M, Parts L, Pedersen JS, Pesole G, Phillippy AM, Ponting CP, Pop M, Porcelli D, Powell JR, Prohaska S, Pruitt K, Puig M, Quesneville H, Ravi Ram K, Rand D, Rasmussen MD, Reed LK, Reenan R, Reily A, Remington KA, Rieger TT, Ritchie MG, Robin C, Rogers YH, Rohde C, Rozas J, Rubenfield MJ, Ruiz A, Russo S, Salzberg SL, Sanchez-Gracia A, Saranga DJ, Sato H, Schaeffer SW, Schatz MC, Schlenke T, Schwartz R, Segarra C, Singh RS, Sirot L, Sirota M, Sisneros NB, Smith CD, Smith TF, Spieth J, Stage DE, Stark A, Stephan W, Strausberg RL, Strempel S, Sturgill D, Sutton G, Sutton GG, Tao W, Teichmann S, Tobari YN, Tomimura Y, Tsolas JM, Valente VL, Venter E, Craig Venter J, Vicario S, Vieira FG, Vilella AJ, Villasante A, Walenz B, Wang J, Wasserman M, Watts T, Wilson D, Wilson RK, Wing RA, Wolfner MF, Wong A, Ka-Shu Wong G, Wu CI, Wu G, Yamamoto D, Yang HP, Yang SP, Yorke JA, Yoshida K, Zdobnov E, Zhang P, Zhang Y, Zimin AV, Baldwin J, Abdouelleil A, Abdulkadir J, Abebe A, Abera B, Abreu J, Christophe Acer S, Aftuck L, Alexander A, An P, Anderson E, Anderson S, Arachi H, Azer M, Bachantsang P, Barry A, Bayul T, Berlin A, Bessette D, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Bourzgui I, Brown A, Cahill P, Channer S, Cheshatsang Y, Chuda L, Citroen M, Collymore A, Cooke P, Costello M, D’Aco K, Daza R, De Haan G, Degray S, Demaso C, Dhargay N, Dooley K, Dooley E, Doricent M, Dorje P, Dorjee K, Dupes A, Elong R, Falk J, Farina A, Faro S, Ferguson D, Fisher S, Foley CD, Franke A, Friedrich D, Gadbois L, Gearin G, Gearin CR, Giannoukos G, Goode T, Graham J, Grandbois E, Grewal S, Gyaltsen K, Hafez N, Hagos B, Hall J, Henson C, Hollinger A, Honan T, Huard MD, Hughes L, Hurhula B, Erii Husby M, Kamat A, Kanga B, Kashin S, Khazanovich D, Kisner P, Lance K, Lara M, Lee W, Lennon N, Letendre F, Levine R, Lipovsky A, Liu X, Liu J, Liu S, Lokyitsang T, Lokyitsang Y, Lubonja R, Lui A, Macdonald P, Magnisalis V, Maru K, Matthews C, McCusker W, McDonough S, Mehta T, Meldrim J, Meneus L, Mihai O, Mihalev A, Mihova T, Mittelman R, Mlenga V, Montmayeur A, Mulrain L, Navidi A, Naylor J, Negash T, Nguyen T, Nguyen N, Nicol R, Norbu C, Norbu N, Novod N, O’Neill B, Osman S, Markiewicz E, Oyono OL, Patti C, Phunkhang P, Pierre F, Priest M, Raghuraman S, Rege F, Reyes R, Rise C, Rogov P, Ross K, Ryan E, Settipalli S, Shea T, Sherpa N, Shi L, Shih D, Sparrow T, Spaulding J, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Strader C, Tesfaye S, Thomson T, Thoulutsang Y, Thoulutsang D, Topham K, Topping I, Tsamla T, Vassiliev H, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Young G, Yu Q, Zembek L, Zhong D, Zimmer A, Zwirko Z, Jaffe DB, Alvarez P, Brockman W, Butler J, Chin C, Gnerre S, Grabherr M, Kleber M, Mauceli E, Maccallum I (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    PubMed  Google Scholar 

  • Clouse RM, Sharma PP, Giribet G, Wheeler WC (submitted) Independent and isolated suites of paralogs in an arachnid elongation factor-1α, a purported single-copy nuclear gene. Mol Phylogenet Evol

    Google Scholar 

  • Colosi G (1967) Zoologia e biologia generale. UTET, Torino

    Google Scholar 

  • Cuvier G (1817) Le règne animal distribué d’après son organisation. A. Belin, Paris

    Google Scholar 

  • Dallai R, Carapelli A, Nardi F, Fanciulli PP, Lupetti P, Afzelius BA, Frati F (2004) Sperm structure and spermiogenesis in Coletinia sp. (Nicoletiidae, Zygentoma, Insecta) with a comparative analysis of sperm structure in Zygentoma. Tissue Cell 36:233–244

    PubMed  CAS  Google Scholar 

  • Dallai R, Mercati D, Carapelli A, Nardi F, Machida R, Sekiya K, Frati F (2011) Sperm accessory microtubules suggest the placement of Diplura as the sister-group of Insecta s.s. Arthropod Struct Dev 40:77–92

    PubMed  Google Scholar 

  • De Grave S, Pentcheff ND, Ahyong ST, Chan T-Y, Crandall KA, Dworschak PC, Felder DL, Feldmann RM, Fransen CHJM, Goulding LYD, Lemaitre R, Low MEY, Martin JW, Naaaag PKL, Schweitzer CE, Tan SH, Tshudy D, Wetzer R (2009) A classification of living and fossil genera of decapod crustaceans. Raffles Bull Zool, pp 1–109

    Google Scholar 

  • Dohle W (1980) Sind die Myriapoden eine monophyletische Gruppe? Eine Diskussion der Verwandtschaftsbeziehungen der Antennaten. Abh naturwiss Ver Hamburg NF 23:45–104

    Google Scholar 

  • Dong Y, Sun H, Guo H, Pan D, Qian C, Hao S, Zhou K (2012) The complete mitochondrial genome of Pauropus longriamus (Myriapoda: Pauropoda): implications on early diversification of the myriapods revealed from comparative analysis. Gene 505:57–65

    PubMed  CAS  Google Scholar 

  • Dopazo H, Santoyo J, Dopazo J (2004) Phylogenomics and the number of characters required for obtaining an accurate phylogeny of eukaryote model species. Bioinformatics 20(Suppl 1):116–121

    Google Scholar 

  • Dove H, Stollewerk A (2003) Comparative analysis of neurogenesis in the myriapod Glomeris marginata (Diplopoda) suggests more similarities to chelicerates than to insects. Development 130:2161–2171

    PubMed  CAS  Google Scholar 

  • Dunlop JA (2010) Geological history and phylogeny of Chelicerata. Arthropod Struct Dev 39:124–142

    PubMed  Google Scholar 

  • Dunlop JA, Alberti G (2008) The affinities of mites and ticks: a review. J Zool Syst Evol Res 46:1–18

    Google Scholar 

  • Dunlop JA, Arango CP (2005) Pycnogonid affinities: a review. J Zool Syst Evol Res 43:8–21

    Google Scholar 

  • Dunlop JA, Penney D, Tetlie OE, Anderson LI (2008) How many species of fossil arachnids are there? J Arachnol 36:267–272

    Google Scholar 

  • Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver EC, Rouse GW, Obst M, Edgecombe GD, Sørensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad taxon sampling improves resolution of the animal tree of life. Nature 452:745–749

    PubMed  CAS  Google Scholar 

  • Eberhard MJB, Picker MD, Klass K-D (2011) Sympatry in Mantophasmatodea, with the description of a new species and phylogenetic considerations. Org Divers Evol 11:43–59

    Google Scholar 

  • Edgecombe GD (2009) Palaeontological and molecular evidence linking arthropods, onychophorans, and other Ecdysozoa. Evo Edu Outreach 2:178–190

    Google Scholar 

  • Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87

    PubMed  Google Scholar 

  • Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sørensen MV (2011) Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172

    Google Scholar 

  • Edgecombe GD, Richter S, Wilson GDF (2003) The mandibular gnathal edges: Homologous structures throughout Mandibulata? Afr Invertebr 44:115–135

    Google Scholar 

  • Eernisse DJ, Albert JS, Anderson FE (1992) Annelida and Arthropoda are not sister taxa: A phylogenetic analysis of spiralian metazoan morphology. Syst Biol 41:305–330

    Google Scholar 

  • Eriksson BJ, Stollewerk A (2010a) Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis. Proc Natl Acad Sci USA 107:22576–22581

    PubMed  CAS  Google Scholar 

  • Eriksson BJ, Stollewerk A (2010b) The morphological and molecular processes of onychophoran brain development show unique features that are neither comparable to insects nor to chelicerates. Arthropod Struct Dev 39:478–490

    PubMed  CAS  Google Scholar 

  • Ertas B, von Reumont BM, Wägele JW, Misof B, Burmester T (2009) Hemocyanin suggests a close relationship of Remipedia and Hexapoda. Mol Biol Evol 26:2711–2718

    PubMed  CAS  Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097

    PubMed  CAS  Google Scholar 

  • Friedrich F, Beutel RG (2010) Goodbye Halteria? The thoracic morphology of Endopterygota (Insecta) and its phylogenetic implications. Cladistics 26:579–612

    Google Scholar 

  • Friedrich M, Tautz D (1995) Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376:165–167

    PubMed  CAS  Google Scholar 

  • Gabriel WN, Goldstein B (2007) Segmental expression of Pax3/7 and Engrailed homologs in tardigrade development. Dev Genes Evol 217:421–433

    PubMed  CAS  Google Scholar 

  • Gai Y, Song D, Sun H, Yang Q, Zhou K (2008) The complete mitochondrial genome of Symphylella sp. (Myriapoda: Symphyla): extensive gene order rearrangement and evidence in favor of Progoneata. Mol Phylogenet Evol 49:574–585

    PubMed  CAS  Google Scholar 

  • Gao Y, Bu Y, Luan YX (2008) Phylogenetic relationships of basal hexapods reconstructed from nearly complete 18S and 28S rRNA gene sequences. Zool Sci 25:1139–1145

    PubMed  CAS  Google Scholar 

  • Giribet G (1997) Filogenia molecular de Artrópodos basada en la secuencia de genes ribosomales. Universitat de Barcelona: Departament de Biologia Animal, Barcelona

    Google Scholar 

  • Giribet G (2003) Molecules, development and fossils in the study of metazoan evolution; Articulata versus Ecdysozoa revisited. Zoology 106:303–326

    PubMed  CAS  Google Scholar 

  • Giribet G (2010) A new dimension in combining data? The use of morphology and phylogenomic data in metazoan systematics. Acta Zool 91:11–19

    Google Scholar 

  • Giribet G, Carranza S, Baguñà J, Riutort M, Ribera C (1996) First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol Biol Evol 13:76–84

    PubMed  CAS  Google Scholar 

  • Giribet G, Distel DL, Polz M, Sterrer W, Wheeler WC (2000) Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. Syst Biol 49:539–562

    PubMed  CAS  Google Scholar 

  • Giribet G, Edgecombe GD (2006) Conflict between data sets and phylogeny of centipedes: an analysis based on seven genes and morphology. Proc R Soc B 273:531–538

    PubMed  CAS  Google Scholar 

  • Giribet G, Edgecombe GD (2012) Reevaluating the arthropod tree of life. Annu Rev Entomol 57:167–186

    PubMed  CAS  Google Scholar 

  • Giribet G, Edgecombe GD, Carpenter JM, D’Haese CA, Wheeler WC (2004) Is Ellipura monophyletic? A combined analysis of basal hexapod relationships with emphasis on the origin of insects. Org Divers Evol 4:319–340

    Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161

    PubMed  CAS  Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC, Babbitt C (2002) Phylogeny and systematic position of opiliones: a combined analysis of chelicerate relationships using morphological and molecular data. Cladistics 18:5–70

    PubMed  Google Scholar 

  • Giribet G, Ribera C (1998) The position of arthropods in the animal kingdom: a search for a reliable outgroup for internal arthropod phylogeny. Mol Phylogenet Evol 9:481–488

    PubMed  CAS  Google Scholar 

  • Giribet G, Ribera C (2000) A review of arthropod phylogeny: new data based on ribosomal DNA sequences and direct character optimization. Cladistics 16:204–231

    Google Scholar 

  • Giribet G, Richter S, Edgecombe GD, Wheeler WC (2005) The position of crustaceans within the Arthropoda—evidence from nine molecular loci and morphology. In: Koenemann S, Jenner RA (eds) Crustacean issues 16: crustacea and arthropod relationships. Taylor & Francis, Boca Raton, pp 307–352

    Google Scholar 

  • Giribet G, Wheeler WC (1999) The position of arthropods in the animal kingdom: Ecdysozoa, islands, trees, and the “parsimony ratchet”. Mol Phylogenet Evol 13:619–623

    PubMed  CAS  Google Scholar 

  • Glenner H, Hansen AJ, Sørensen MV, Ronquist F, Huelsenbeck JP, Willerslev E (2004) Bayesian inference of the metazoan phylogeny; a combined molecular and morphological approach. Curr Biol 14:1644–1649

    PubMed  CAS  Google Scholar 

  • Grimaldi DA (2010) 400 million years on six legs: on the origin and early evolution of Hexapoda. Arthropod Struct Dev 39:191–203

    PubMed  Google Scholar 

  • Hanström B (1926) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere unter Berücksichtigung seiner Funktion. Springer, Berlin

    Google Scholar 

  • Harvey TH, Velez MI, Butterfield NJ (2012) Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation. Proc Natl Acad Sci USA 109:1589–1594

    PubMed  CAS  Google Scholar 

  • Harzsch S (2004) Phylogenetic comparison of serotonin-immunoreactive neurons in representatives of the Chilopoda, Diplopoda, and Chelicerata: implications for arthropod relationships. J Morphol 259:198–213

    PubMed  CAS  Google Scholar 

  • Harzsch S (2006) Neurophylogeny: architecture of the nervous system and a fresh view on arthropod phyologeny. Integr Comp Biol 46:162–194

    PubMed  Google Scholar 

  • Harzsch S, Hafner G (2006) Evolution of eye development in arthropods: Phylogenetic aspects. Arthropod Struct Dev 35:319–340

    PubMed  Google Scholar 

  • Hejnol A, Obst M, Stamatakis AMO, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Müller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW (2009) Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B 276:4261–4270

    PubMed  Google Scholar 

  • Hessler RR (1992) Reflections on the phylogenetic position of the Cephalocarida. Acta Zool 73:315–316

    Google Scholar 

  • Holton TA, Pisani D (2010) Deep genomic-scale analyses of the Metazoa reject Coelomata: evidence from single- and multigene families analyzed under a supertree and supermatrix paradigm. Genome Biol Evol 2:310–324

    PubMed  Google Scholar 

  • Hörnschemeyer T, Beutel RG, Pasop F (2002) Head structures of Priacma serrata Leconte (Coleptera, Archostemata) inferred from X-ray tomography. J Morphol 252:298–314

    PubMed  Google Scholar 

  • Hovmöller R, Pape T, Källersjö M (2002) The Palaeoptera problem: basal pterygote phylogeny inferred from 18S and 28S rDNA sequences. Cladistics 18:313–323

    Google Scholar 

  • Huckstorf K, Wirkner CS (2011) Comparative morphology of the hemolymph vascular system in krill (Euphausiacea; Crustacea). Arthropod Struct Dev 40:39–53

    PubMed  Google Scholar 

  • Hwang UW, Friedrich M, Tautz D, Park CJ, Kim W (2001) Mitochondrial protein phylogeny joins myriapods with chelicerates. Nature 413:154–157

    PubMed  CAS  Google Scholar 

  • Illumina_Inc (2007) DNA sequencing with Solexa® technology

    Google Scholar 

  • Inward D, Beccaloni G, Eggleton P (2007) Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol Lett 3:331–335

    PubMed  CAS  Google Scholar 

  • Irimia M, Maeso I, Penny D, Garcia-Fernàndez J, Roy SW (2007) Rare coding sequence changes are consistent with Ecdysozoa, not Coelomata. Mol Biol Evol 24:1604–1607

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Sasaki G, Ogawa J, Miyata T, Su Z-H (2011) Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Mol Phylogenet Evol 58:169–180

    PubMed  CAS  Google Scholar 

  • Janssen R, Damen WGM, Budd GE (2011) Expression of collier in the premandibular segment of myriapods: support for the traditional Atelocerata concept or a case of convergence? BMC Evol Biol 11:50

    PubMed  Google Scholar 

  • Janssen R, Eriksson JB, Budd GE, Akam M, Prpic N-M (2010) Gene expression patterns in onychophorans reveal that regionalization predates limb segmentation in pan-arthropods. Evol Dev 12:363–372

    PubMed  CAS  Google Scholar 

  • Jenner RA (2010) Higher-level crustacean phylogeny: consensus and conflicting hypotheses. Arthropod Struct Dev 39:143–153

    PubMed  Google Scholar 

  • Jenner RA, Scholtz G (2005) Playing another round of metazoan phylogenetics: historical epistemology, sensitivity analysis, and the position of Arthropoda within Metazoa on the basis of morphology. In: Koenemann S, Jenner RA (eds) Crustacean Issues 16: Crustacea and arthropod relationships. Taylor & Francis, Boca Raton, pp 355–385

    Google Scholar 

  • Kadner D, Stollewerk A (2004) Neurogenesis in the chilopod Lithobius forficatus suggests more similarities to chelicerates than to insects. Dev Genes Evol 214:367–379

    PubMed  CAS  Google Scholar 

  • Kenrick P, Wellman CH, Schneider H, Edgecombe GD (2012) A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos Trans R Soc B 367:519–536

    Google Scholar 

  • Kim W, Abele LG (1990) Molecular phylogeny of selected decapod crustaceans based on 18S rRNA nucleotide sequences. J Crustacean Biol 10:1–13

    CAS  Google Scholar 

  • Klass KD, Zompro O, Kristensen NP, Adis J (2002) Mantophasmatodea: a new insect order with extant members in the afrotropics. Science 296:1456–1459

    PubMed  CAS  Google Scholar 

  • Koch M (1997) Monophyly and phylogenetic position of the Diplura (Hexapoda). Pedobiologia 41:9–12

    Google Scholar 

  • Koch M (2000) The cuticular cephalic endoskeleton of primarily wingless hexapods: ancestral state and evolutionary changes. Pedobiologia 44:374–385

    Google Scholar 

  • Koch M (2003a) Monophyly of Myriapoda? Reliability of current arguments. Afr Invertebr 44:137–153

    Google Scholar 

  • Koch M (2003b) Towards a phylogenetic system of the Zygentoma. Entomol Abh 61:122–125

    Google Scholar 

  • Koch M (2009) Protura. In: Resh VH, Carde R (eds) Encyclopedia of insects, 2nd edn. Academic Press/Elsevier Science, San Diego, pp 855–858

    Google Scholar 

  • Kraus O, Kraus M (1994) Phylogenetic system of the Tracheata (Mandibulata): on “Myriapoda”: Insecta interrelationships, phylogenetic age and primary ecological niches. Verh naturwiss Ver Hamburg 34:5–31

    Google Scholar 

  • Kraus O, Kraus M (1996) On myriapod/insect interrelationships. Mem Mus nat Hist Nat 169:283–290

    Google Scholar 

  • Kristensen RM (1991) Loricifera. In: Harrison FW, Ruppert EE (eds) Microscopic anatomy of invertebrates, vol 4., AschelminthesWiley-Liss, New York, pp 351–375

    Google Scholar 

  • Lankester ER (1904) The structure and classification of the Arthropoda. Q J Microscop Sci 38:523–582

    Google Scholar 

  • Lavrov DV, Boore JL, Brown WM (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol 19:163–169

    PubMed  CAS  Google Scholar 

  • Liu J, Steiner M, Dunlop JA, Keupp H, Shu D, Ou Q, Han J, Zhang Z, Zhang X (2011) An armoured Cambrian lobopodian from China with arthropod-like appendages. Nature 470:526–530

    PubMed  CAS  Google Scholar 

  • Loesel R, Nässel DR, Strausfeld NJ (2002) Common design in a unique midline neuropil in the brains of arthropods. Arthropod Struct Dev 31:77–91

    PubMed  Google Scholar 

  • Luan YX, Mallatt JM, Xie RD, Yang YM, Yin WY (2005) The phylogenetic positions of three basal-hexapod groups (Protura, Diplura, and Collembola) based on ribosomal RNA gene sequences. Mol Biol Evol 22:1579–1592

    PubMed  CAS  Google Scholar 

  • Machida R (2006) Evidence from embryology for reconstructing the relationships of hexapod basal clades. Arthropod Syst Phyl 64:95–104

    Google Scholar 

  • Machner J, Scholtz G (2010) A scanning electron microscopy study of the embryonic development of Pycnogonum litorale (Arthropoda, Pycnogonida). J Morphol 271:1306–1318

    PubMed  Google Scholar 

  • Mallatt J, Craig CW, Yoder MJ (2010) Nearly complete rRNA genes assembled from across the metazoan animals: effects of more taxa, a structure-based alignment, and paired-sites evolutionary models on phylogeny reconstruction. Mol Phylogenet Evol 55:1–17

    PubMed  Google Scholar 

  • Mallatt J, Giribet G (2006) Further use of nearly complete 28S and 18S rRNA genes to classify Ecdysozoa: 37 more arthropods and a kinorhynch. Mol Phylogenet Evol 40:772–794

    PubMed  CAS  Google Scholar 

  • Mallatt J, Winchell CJ (2002) Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol Biol Evol 19:289–301

    PubMed  CAS  Google Scholar 

  • Mallatt JM, Garey JR, Shultz JW (2004) Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 31:178–191

    PubMed  CAS  Google Scholar 

  • Manton SM (1964) Mandibular mechanisms and the evolution of arthropods. Philos Trans R Soc B 247:1–183

    Google Scholar 

  • Manton SM (1973) Arthropod phylogeny-a modern synthesis. J Zool 171:11–130

    Google Scholar 

  • Manton SM (1977) The Arthropoda: habits, functional morphology, and evolution. Clarendon Press, Oxford

    Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Maslakova SA, Martindale MQ, Norenburg JL (2004) Fundamental properties of the spiralian developmental program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Dev Biol 267:342–360

    PubMed  CAS  Google Scholar 

  • Masta SE, Boore JL (2008) Parallel evolution of truncated transfer RNA genes in arachnid mitochondrial genomes. Mol Biol Evol 25:949–959

    PubMed  CAS  Google Scholar 

  • Masta SE, Longhorn SJ, Boore JL (2009) Arachnid relationships based on mitochondrial genomes: asymmetric nucleotide and amino acid bias affects phylogenetic analyses. Mol Phylogenet Evol 50:117–128

    PubMed  CAS  Google Scholar 

  • Mayer G, Whitington PM (2009) Velvet worm development links myriapods with chelicerates. Proc R Soc B 276:3571–3579

    PubMed  Google Scholar 

  • Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, von Haeseler A, Burmester T, Hadrys H, Wägele JW, Misof B (2010) A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 27:2451–2464

    PubMed  CAS  Google Scholar 

  • Minelli A, Bortoletto S (1988) Myriapod metamerism and arthropod segmentation. Biol J Linn Soc 33:323–343

    Google Scholar 

  • Miyazaki K (2002) On the shape of foregut lumen in sea spiders (Arthropoda: Pycnogonida). J Mar Biol Assoc UK 82:1037–1038

    Google Scholar 

  • Møller OS, Olesen J, Avenant-Oldewage A, Thomsen PF, Glenner H (2008) First maxillae suction discs in Branchiura (Crustacea): development and evolution in light of the first molecular phylogeny of Branchiura, Pentastomida, and other “Maxillopoda”. Arthropod Struct Dev 37:333–346

    PubMed  Google Scholar 

  • Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151

    PubMed  CAS  Google Scholar 

  • Murienne J, Edgecombe GD, Giribet G (2010) Including secondary structure, fossils and molecular dating in the centipede tree of life. Mol Phylogenet Evol 57:301–313

    PubMed  Google Scholar 

  • Niehuis O, Hartig G, Grath S, Pohl H, Lehmann J, Tafer H, Donath A, Krauss V, Eisenhardt C, Hertel J, Petersen M, Mayer C, Meusemann K, Peters RS, Stadler PF, Beutel RG, Bornberg-Bauer E, McKenna DD, Misof B (2012) Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Current biology: CB 22:1309–1313.

    Google Scholar 

  • Nielsen C (2001) Animal evolution: interrelationships of the living phyla, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen C (2003) Proposing a solution to the articulata-ecdysozoa controversy. Zool Scr 32:475–482

    Google Scholar 

  • Nielsen C (2012) Animal evolution: interrelationships of the living phyla, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen C, Scharff N, Eibye-Jacobsen D (1996) Cladistic analyses of the animal kingdom. Biol J Linn Soc 57:385–410

    Google Scholar 

  • Oakley TH, Wolfe JM, Lindgren AR, Zaharoff (2013) Phylogenomics to bring the understudied into the fold: monophyletic Ostracoda, fossil placement, and pancrustacean phylogeny. Mol Biol Evol. 30:215–233

    PubMed  CAS  Google Scholar 

  • Ogden TH, Whiting MF (2003) The problem with “the Palaeoptera problem”: sense and sensitivity. Cladistics 19:432–442

    Google Scholar 

  • Panganiban G, Irvine SM, Lowe C, Roehl H, Corley LS, Sherbon B, Grenier JK, Fallon JF, Kimble J, Walker M, Wray GA, Swalla BJ, Martindale MQ, Carroll SB (1997) The origin and evolution of animal appendages. Proc Natl Acad Sci USA 94:5162–5166

    PubMed  CAS  Google Scholar 

  • Paps J, Baguñà J, Riutort M (2009a) Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Mol Biol Evol 26:2397–2406

    PubMed  CAS  Google Scholar 

  • Paps J, Baguñà J, Riutort M (2009b) Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes. Proc R Soc B 276:1245–1254

    PubMed  CAS  Google Scholar 

  • Pashley DP, McPheron BA, Zimmer EA (1993) Systematics of holometabolous insect orders based on 18S ribosomal RNA. Mol Phylogenet Evol 2:132–142

    PubMed  CAS  Google Scholar 

  • Pechmann M, Prpic NM (2009) Appendage patterning in the South American bird spider Acanthoscurria geniculata (Araneae: Mygalomorphae). Dev Genes Evol 219:189–198

    PubMed  Google Scholar 

  • Pepato AR, da Rocha CE, Dunlop JA (2010) Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evol Biol 10:235

    PubMed  Google Scholar 

  • Peterson KJ, Eernisse DJ (2001) Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol Dev 3:170–205

    PubMed  CAS  Google Scholar 

  • Philip GK, Creevey CJ, McInerney JO (2005) The Opisthokonta and the Ecdysozoa may not be clades: stronger support for the grouping of plant and animal than for animal and fungi and stronger support for the coelomata than ecdysozoa. Mol Biol Evol 22:1175–1184

    PubMed  CAS  Google Scholar 

  • Philippe H, Brinkmann H, Copley RR, Moroz LL, Nakano H, Poustka AJ, Wallberg A, Peterson KJ, Telford MJ (2011) Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470:255–258

    PubMed  CAS  Google Scholar 

  • Pisani D (2009) Arthropods (Arthropoda). In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 251–254

    Google Scholar 

  • Pisani D, Poling LL, Lyons-Weiler M, Hedges SB (2004) The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biol 2:1–10

    PubMed  Google Scholar 

  • Prpic N-M, Telford MJ (2008) Expression of homothorax and extradenticle mRNA in the legs of the crustacean Parhyale hawaiensis: evidence for a reversal of gene expression regulation in the pancrustacean lineage. Dev Genes Evol 218:333–339

    PubMed  CAS  Google Scholar 

  • Prpic NM, Damen WGM (2004) Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Dev Genes Evol 214:296–302

    PubMed  Google Scholar 

  • Prpic NM, Janssen R, Wigand B, Klingler M, Damen WGM (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling. Dev Biol 264:119–140

    PubMed  CAS  Google Scholar 

  • Rauther M (1909) Morphologie und Verwandtschaftsbeziehungen der Nematoden und einiger ihnen nahe gestellter Vermalien. Ergebnisse und Fortschritte der Zoologie 1:491–596

    Google Scholar 

  • Regier JC, Shultz JW (1997) Molecular phylogeny of the major arthropod groups indicates polyphyly of crustaceans and a new hypothesis for the origin of hexapods. Mol Biol Evol 14:902–913

    PubMed  CAS  Google Scholar 

  • Regier JC, Shultz JW (2001) Elongation factor-2: a useful gene for arthropod phylogenetics. Mol Phylogenet Evol 20:136–148

    PubMed  CAS  Google Scholar 

  • Regier JC, Shultz JW, Ganley AR, Hussey A, Shi D, Ball B, Zwick A, Stajich JE, Cummings MP, Martin JW, Cunningham CW (2008) Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. Syst Biol 57:920–938

    PubMed  CAS  Google Scholar 

  • Regier JC, Shultz JW, Kambic RE (2004) Phylogeny of basal hexapod lineages and estimates of divergence times. Ann Entomol Soc Amer 97:411–419

    Google Scholar 

  • Regier JC, Shultz JW, Kambic RE (2005a) Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc R Soc B 272:395–401

    PubMed  Google Scholar 

  • Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    PubMed  CAS  Google Scholar 

  • Regier JC, Wilson HM, Shultz JW (2005b) Phylogenetic analysis of Myriapoda using three nuclear protein-coding genes. Mol Phylogenet Evol 34:147–158

    PubMed  CAS  Google Scholar 

  • Regier JC, Zwick A (2011) Sources of signal in 62 protein-coding nuclear genes for higher-level phylogenetics of arthropods. PLoS ONE 6:e23408

    PubMed  CAS  Google Scholar 

  • Rehm P, Borner J, Meusemann K, von Reumont BM, Simon S, Hadrys H, Misof B, Burmester T (2011) Dating the arthropod tree based on large-scale transcriptome data. Mol Phylogenet Evol 61:880–887

    PubMed  Google Scholar 

  • Richter S (2002) The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of crustacea. Org Divers Evol 2:217–237

    Google Scholar 

  • Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Doring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S (2010) Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 7:29

    PubMed  Google Scholar 

  • Richter S, Møller OS, Wirkner CS (2009) Advances in crustacean phylogenetics. Arthropod Syst Phyl 67:275–286

    Google Scholar 

  • Riesgo A, Andrade SCS, Sharma PP, Novo M, Pérez-Porro AR, Vahtera V, González VL, Kawauchi GY, Giribet G (2012) Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Front Zool 9:33

    PubMed  CAS  Google Scholar 

  • Roeding F, Borner J, Kube M, Klages S, Reinhardt R, Burmester T (2009) A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Mol Phylogenet Evol 53:826–834

    PubMed  CAS  Google Scholar 

  • Roeding F, Hagner-Holler S, Ruhberg H, Ebersberger I, von Haeseler A, Kube M, Reinhardt R, Burmester T (2007) EST sequencing of Onychophora and phylogenomic analysis of Metazoa. Mol Phylogenet Evol 45:942–951

    PubMed  CAS  Google Scholar 

  • Rota-Stabelli O, Campbell L, Brinkmann H, Edgecombe GD, Longhorn SJ, Peterson KJ, Pisani D, Philippe H, Telford MJ (2011) A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proc R Soc B 278:298–306

    PubMed  CAS  Google Scholar 

  • Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore JL, Telford MJ, Pisani D, Blaxter M, Lavrov DV (2010) Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol Evol 2:425–440

    PubMed  Google Scholar 

  • Rota-Stabelli O, Lartillot N, Philippe H, Pisani D (2013) Serine codon usage bias in deep phylogenomics: pancrustacean relationships as a case study. Syst Biol. 62:121–133

    PubMed  CAS  Google Scholar 

  • Rota-Stabelli O, Telford MJ (2008) A multi criterion approach for the selection of optimal outgroups in phylogeny: recovering some support for Mandibulata over Myriochelata using mitogenomics. Mol Phylogenet Evol 48:103–111

    PubMed  CAS  Google Scholar 

  • Roy SW, Gilbert W (2005) Resolution of a deep animal divergence by the pattern of intron conservation. Proc Natl Acad Sci USA 102:4403–4408

    PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguñà J, Riutort M (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci USA 99:11246–11251

    PubMed  CAS  Google Scholar 

  • Sanders KL, Lee MS (2010) Arthropod molecular divergence times and the Cambrian origin of pentastomids. Syst Biodiv 8:63–74

    Google Scholar 

  • Schmidt-Rhaesa A, Bartolomaeus T, Lemburg C, Ehlers U, Garey JR (1998) The position of the Arthropoda in the phylogenetic system. J Morphol 238:263–285

    Google Scholar 

  • Scholtz G (1998) Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 317–332

    Google Scholar 

  • Scholtz G (2002) The Articulata hypothesis—or what is a segment? Org Divers Evol 2:197–215

    Google Scholar 

  • Schram FR, Koenemann S (2004) Are the crustaceans monophyletic? In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, New York, pp 319–329

    Google Scholar 

  • Sharma PP, Schwager EE, Extavour CG, Giribet G (2012) Evolution of the chelicera: a dachshund domain is retained in the deutocerebral appendage of Opiliones (Arthropoda, Chelicerata). Evol Dev 14:522–533

    Google Scholar 

  • Shear WA, Edgecombe GD (2010) The geological record and phylogeny of Myriapoda. Arthropod Struct Dev 39:174–190

    PubMed  Google Scholar 

  • Shultz JW (1990) Evolutionary morphology and phylogeny of Arachnida. Cladistics 6:1–38

    Google Scholar 

  • Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linn Soc 150:221–265

    Google Scholar 

  • Shultz JW, Regier JC (2000) Phylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean + hexapod clade. Proc R Soc B 267:1011–1019

    PubMed  CAS  Google Scholar 

  • Simon S, Strauss S, von Haeseler A, Hadrys H (2009) A phylogenomic approach to resolve the basal pterygote divergence. Mol Biol Evol 26:2719–2730

    PubMed  CAS  Google Scholar 

  • Simonetta AM (2004) Are the traditional classes of arthropods natural ones?—recent advances in palaeontology and some considerations on morphology. Ital J Zool 71:247–264

    Google Scholar 

  • Snodgrass RE (1938) Evolution of the Annelida, Onychophora and Arthropoda. Smithsonian Misc Coll 97:1–159

    Google Scholar 

  • Sørensen M, Hebsgaard MB, Heiner I, Glenner H, Willerslev E, Kristensen RM (2008) New data from an enigmatic phylum: evidence from molecular sequence data supports a sister-group relationship between Loricifera and Nematomorpha. J Zool Syst Evol Res 46:231–239

    Google Scholar 

  • Sørensen MV, Funch P, Willerslev E, Hansen AJ, Olesen J (2000) On the phylogeny of Metazoa in the light of Cycliophora and Micrognathozoa. Zool Anz 239:297–318

    Google Scholar 

  • Spears T, Abele LG, Kim W (1992) The monophyly of brachyuran crabs: a phylogenetic study based on 18S rRNA. Syst Biol 41:446–461

    Google Scholar 

  • Stegner MEJ, Richter S (2011) Morphology of the brain in Hutchinsoniella macracantha (Cephalocarida, Crustacea). Arthropod Struct Dev 40:221–243

    PubMed  Google Scholar 

  • Strausfeld NJ (2009) Brain organization and the origin of insects: an assessment. Proc R Soc B 276:1929–1937

    PubMed  Google Scholar 

  • Strausfeld NJ (2012) Arthropod brains: evolution, functional elegance, and historical significance. The Balknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Strausfeld NJ, Andrew DR (2011) A new view of insect-crustacean relationships inferred from neural cladistics. Arthropod Struct Dev 40:276–280

    PubMed  Google Scholar 

  • Strausfeld NJ, Strausfeld CM, Loesel R, Rowell D, Stowe S (2006) Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc R Soc B 273:1857–1866

    PubMed  Google Scholar 

  • Telford MJ, Wise MJ, Gowri-Shankar V (2005) Consideration of RNA secondary structure significantly improves likelihood-based estimates of phylogeny: examples from the Bilateria. Mol Biol Evol 22:1129–1136

    PubMed  CAS  Google Scholar 

  • Terry MD, Whiting MF (2005) Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics 21:240–257

    Google Scholar 

  • Tiegs OW, Manton SM (1958) The evolution of the Arthropoda. Biol Rev 33:255–337

    Google Scholar 

  • Timmermans MJTN, Roelofs D, Mariën J, van Straalen NM (2008) Revealing pancrustacean relationships: phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers. BMC Evol Biol 8:83

    PubMed  CAS  Google Scholar 

  • Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK (2012) Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol 57:449–468

    PubMed  CAS  Google Scholar 

  • Turbeville JM, Pfeifer DM, Field KG, Raff RA (1991) The phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Mol Biol Evol 8:669–686

    PubMed  CAS  Google Scholar 

  • Ungerer P, Eriksson BJ, Stollewerk A (2011) Neurogenesis in the water flea Daphnia magna (Crustacea, Branchiopoda) suggests different mechanisms of neuroblast formation in insects and crustaceans. Dev Biol 357:42–52

    PubMed  CAS  Google Scholar 

  • Ungerer P, Scholtz G (2008) Filling the gap between identified neuroblasts and neurons in crustaceans adds new support for Tetraconata. Proc R Soc B 275:369–376

    PubMed  Google Scholar 

  • von Reumont BM, Burmester T (2010) Remipedia and the evolution of hexapods: Encyclopedia of Life Sciences. John Wiley & Sons, Chichester

    Google Scholar 

  • von Reumont BM, Jenner RA, Wills MA, Dell’Ampio E, Pass G, Ebersberger I, Meyer B, Koenemann S, Iliffe TM, Stamatakis A, Niehuis O, Meusemann K, Misof B (2012) Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol Biol Evol 29:1031–1045

    Google Scholar 

  • von Reumont BM, Meusemann K, Szucsich NU, Dell’Ampio E, Gowri-Shankar V, Bartel D, Simon S, Letsch HO, Stocsits RR, Y-x Luan, Wägele JW, Pass G, Hadrys H, Misof B (2009) Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships. BMC Evol Biol 9:1–19

    Google Scholar 

  • Waloszek D, Repetski JE, Maas A (2006) A new late Cambrian pentastomid and a review of the relationships of this parasitic group. Trans Roy Soc Edin Earth Sci 96:163–176

    Google Scholar 

  • Weygoldt P, Paulus HF (1979) Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata: I Morphologische Untersuchungen. Z zool Syst Evol 17:85–116

    Google Scholar 

  • Wheeler WC (1989) The systematics of insect ribosomal DNA. In: Fernhölm B, Bremer K, Jörnvall H (eds) The hierarchy of life: molecules and morphology in phylogenetic analysis. Elsevier Science Publishers B. V, Amsterdam, pp 307–321

    Google Scholar 

  • Wheeler WC, Cartwright P, Hayashi CY (1993) Arthropod phylogeny: a combined approach. Cladistics 9:1–39

    Google Scholar 

  • Wheeler WC, Hayashi CY (1998) The phylogeny of the extant chelicerate orders. Cladistics 14:173–192

    Google Scholar 

  • Whitfield JB, Kjer KM (2008) Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annu Rev Entomol 53:449–472

    PubMed  CAS  Google Scholar 

  • Whiting MF (2002) Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zool Scr 31:93–104

    Google Scholar 

  • Whiting MF, Carpenter JM, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46:1–68

    PubMed  CAS  Google Scholar 

  • Whitington PM, Mayer G (2011) The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev 40:193–209

    PubMed  Google Scholar 

  • Wiegmann BM, Trautwein MD, Kim JW, Cassel BK, Bertone MA, Winterton SL, Yeates DK (2009) Single-copy nuclear genes resolve the phylogeny of the holometabolous insects. BMC Biol 7:34

    PubMed  Google Scholar 

  • Willmer PG (1990) Invertebrate relationships: patterns in animal evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Wirkner CS, Prendini L (2007) Comparative morphology of the hemolymph vascular system in scorpions–a survey using corrosion casting, microCT, and 3D-reconstruction. J Morphol 268:401–413

    PubMed  Google Scholar 

  • Wirkner CS, Richter S (2004) Improvement of microanatomical research by combining corrosion casts with microCT and 3D reconstruction, exemplified in the circulatory organs of the woodlouse. Microsc Res Tech 64:250–254

    PubMed  Google Scholar 

  • Wolf YI, Rogozin IB, Koonin EV (2004) Coelomata and not Ecdysozoa: evidence from genome-wide phylogenetic analysis. Genome Res 14:29–36

    PubMed  CAS  Google Scholar 

  • Wygodzinsky P (1961) On a surviving representative of the Lepidotrichidae (Thysanura). Ann Entomol Soc Amer 54:621–627

    Google Scholar 

  • Zhang XG, Maas A, Haug JT, Siveter DJ, Waloszek D (2010) A eucrustacean metanauplius from the lower Cambrian. Curr Biol 20:1075–1079

    PubMed  CAS  Google Scholar 

  • Zhang Z-Q (ed) (2011) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Magnolia Press, Auckland

    Google Scholar 

  • Zrzavý J (2003) Gastrotricha and metazoan phylogeny. Zool Scr 32:61–81

    Google Scholar 

  • Zrzavý J, Hypša V, Tietz DF (2001) Myzostomida are not annelids: Molecular and morphological support for a clade of animals with anterior sperm flagella. Cladistics 17:170–198

    Google Scholar 

  • Zrzavý J, Hypša V, Vlášková M (1998a) Arthropod phylogeny: taxonomic congruence, total evidence and conditional combination approaches to morphological and molecular data sets. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 97–107

    Google Scholar 

  • Zrzavý J, Mihulka S, Kepka P, Bezdek A, Tietz D (1998b) Phylogeny of the Metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Giribet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giribet, G., Edgecombe, G.D. (2013). The Arthropoda: A Phylogenetic Framework. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_2

Download citation

Publish with us

Policies and ethics