Skip to main content

Impact of Lipidomics on the Microbial World of Hypersaline Environments

  • Chapter
  • First Online:
Halophiles and Hypersaline Environments

Abstract

Mass spectrometry analysis of the lipid extracts of saltern biomass represents a powerful tool to quickly obtain information on the presence of various archaeal and bacterial microorganisms in saltern ponds. In the last years, ESI-MS lipid profiling by a shotgun lipidomic approach has allowed the discovery of new lipid molecules in the membranes of archaeal and bacterial halophilic microorganisms. The recent introduction of the MALDI-TOF/MS technique in lipid analysis offers further possibilities of implementing the knowledge of lipid biology of halophilic prokaryotes. In this chapter, the structures and functional role of new lipids of extreme halophilic Archaea and Bacteria are illustrated in relation to adaptation to osmotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson R, Kates M, Volcani BE (1978) Identification of the sulfolipids in the non-photosynthetic diatom Nitzschia alba. Biochim Biophys Acta 528:89–106

    PubMed  CAS  Google Scholar 

  • Angelini R, Babudri F, Lobasso S, Corcelli A (2010) MALDI-TOF/MS analysis of archaebacterial lipids in lyophilized membranes dry-mixed with 9-aminoacridine. J Lipid Res 51:2818–2825

    Article  PubMed  CAS  Google Scholar 

  • Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed  Google Scholar 

  • Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    PubMed  Google Scholar 

  • Baronio M, Lattanzio VM, Vaisman N, Oren A, Corcelli A (2010) The acylhalocapnines of halophilic bacteria: structural details of unusual sulfonate sphingoids. J Lipid Res 51:1878–1885

    Article  PubMed  CAS  Google Scholar 

  • Catucci L, Lattanzio VMT, Lobasso S, Agostiano A, Corcelli A (2004) Role of endogenous lipids in the chromophore regeneration of bacteriorhodopsin. Bioelectrochemistry 63:111–115

    Article  PubMed  CAS  Google Scholar 

  • Corcelli A (2009) The cardiolipin analogues of Archaea. Biochim Biophys Acta 1788:2101–2106

    Article  PubMed  CAS  Google Scholar 

  • Corcelli A, Lobasso S (2006) Characterization of lipids of halophilic archaea. In: Rainey FA, Oren A (eds) Methods in microbiology, vol 35, Extremophiles. Elsevier/Academic, Amsterdam, pp 585–613

    Google Scholar 

  • Corcelli A, Colella M, Mascolo G, Fanizzi FP, Kates M (2000) A novel glycolipid and phospholipid in the purple membrane. Biochemistry 39:3318–3326

    Article  PubMed  CAS  Google Scholar 

  • Corcelli A, Lattanzio VMT, Mascolo G, Papadia P, Fanizzi FP (2002) Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane. J Lipid Res 43:132–140

    PubMed  CAS  Google Scholar 

  • Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M (2004) A novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 70:6678–6685

    Article  PubMed  CAS  Google Scholar 

  • Corcelli A, Lobasso S, Palese LL, Saponetti MS, Papa S (2007a) Cardiolipin is associated with the terminal oxidase of an extremely halophilic archaeon. Biochem Biophys Res Commun 354:795–801

    Article  PubMed  CAS  Google Scholar 

  • Corcelli A, Lobasso S, Saponetti MS, Leopold A, Dencher NA (2007b) Glycocardiolipin modulates the surface interaction of the proton pumped by bacteriorhodopsin in purple membrane preparations. Biochim Biophys Acta 1768:2157–2163

    Article  PubMed  CAS  Google Scholar 

  • De Leo V, Catucci L, Ventrella A, Milano F, Agostiano A, Corcelli A (2009) Cardiolipin increases in chromatophores isolated from Rhodobacter sphareroides after osmotic stress: structural and functional roles. J Lipid Res 50:256–264

    Article  PubMed  Google Scholar 

  • Ferreira CR, Saraiva SA, Catharino RR, Garcia JS, Gozzo FC, Sanvido GB, Santos LFA, Lo Turco EG, Ponte JHF, Basso AC, Bertolla RP, Sartori R, Guardieiro MM, Perecin F, Meirelles FV, Sangalli JR, Eberlin MN (2010) Single embryo and oocyte lipid fingerprinting by mass spectrometry. J Lipid Res 251:1218–1227

    Article  Google Scholar 

  • Godchaux W III, Leadbetter ER (1980) Capnocytophaga spp. contain sulfonolipids that are novel in procaryotes. J Bacteriol 144:592–602

    PubMed  CAS  Google Scholar 

  • Godchaux W III, Leadbetter ER (1984) Sulfonolipids of gliding bacteria. J Biol Chem 259:2982–2990

    PubMed  CAS  Google Scholar 

  • Jackson SN, Woods AS (2009) Direct profiling of tissue lipids by MALDI-TOF/MS. J Chromatogr B 877:2822–2829

    Article  CAS  Google Scholar 

  • Kates M (1993) Membrane lipids of Archaea. In: Kates M, Kushner DJ, Mateson AT (eds) The biochemistry of Archaea (Archaebacteria). Elsevier, Amsterdam, pp 261–295

    Chapter  Google Scholar 

  • Kates M, Jengoyan LS, Sastry PS (1965) A diether analog of phosphatidyl glycerophosphate in Halobacterium cutirubrum. Biochim Biophys Acta 98:252–268

    PubMed  CAS  Google Scholar 

  • Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem 69:2019–2034

    Article  PubMed  CAS  Google Scholar 

  • Lattanzio VM, Corcelli A, Mascolo G, Oren A (2002) Presence of two novel cardiolipins in the halophilic archaeal community in the crystallizer brines from the salterns of Margherita di Savoia (Italy) and Eilat (Israel). Extremophiles 6:437–444

    Article  PubMed  CAS  Google Scholar 

  • Lattanzio VMT, Baronio M, Oren A, Russell NJ, Corcelli A (2009) Characterization of polar membrane lipids of the extremely halophilic bacterium Salinibacter ruber and possible role of cardiolipin. Biochim Biophys Acta 1791:25–31

    PubMed  CAS  Google Scholar 

  • Lobasso S, Lopalco P, Lattanzio VMT, Corcelli A (2003) Osmotic shock induces the presence of glycocardiolipin in the purple membrane of Halobacterium salinarum. J Lipid Res 44:2120–2126

    Article  PubMed  CAS  Google Scholar 

  • Lobasso S, Lopalco P, Mascolo G, Corcelli A (2008) Lipids of the ultrathin square archaeon Haloquadratum walsbyi. Archaea 2:177–183

    Article  PubMed  CAS  Google Scholar 

  • Lopalco P, Lobasso S, Babudri F, Corcelli A (2004) Osmotic shock stimulates de novo synthesis of two cardiolipins in an extreme halophilic archaeon. J Lipid Res 45:194–201

    Article  PubMed  CAS  Google Scholar 

  • Lopez F, Lobasso S, Colella M, Agostiano A, Corcelli A (1999) Light-dependent and biochemical properties of two different bands of bacteriorhodopsin isolated on phenyl-sepharose CL-4B. Photochem Photobiol 69:599–604

    Article  CAS  Google Scholar 

  • Murakami C, Yamazaki T, Hanashima S, Takahashi S, Ohta K, Yoshida H, Sugawara F, Sakaguchi K, Mizushina Y (2002) Structure-function relationship of synthetic sulfoquinovosyl-acylglycerols as mammalian DNA polymerase inhibitors. Arch Biochem Biophys 403:229–236

    Article  PubMed  CAS  Google Scholar 

  • Sprott GD (1992) Structures of archaeabacteria membrane lipids. J Bioenerg Biomembr 24:555–566

    Article  PubMed  CAS  Google Scholar 

  • Sprott GD, Larocque S, Cadotte N, Dicaire CJ, McGee M, Brisson JR (2003) Novel polar lipids of halophilic eubacterium Planococcus H8 and archaeon Haloferax volcanii. Biochim Biophys Acta 1633:179–188

    PubMed  CAS  Google Scholar 

  • Sun G, Yang K, Zhao Z, Guan S, Han X, Gross RW (2008) Matrix assisted laser desorption/ionisation time of flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal Chem 80:7576–7585

    Article  PubMed  CAS  Google Scholar 

  • Vaisman N, Oren A (2009) Salisaeta longa gen. nov., sp. nov., a red, halophilic member of the Bacteroidetes. Int J Syst Evol Microbiol 59:2571–2574

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Corcelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lopalco, P., Lobasso, S., Baronio, M., Angelini, R., Corcelli, A. (2011). Impact of Lipidomics on the Microbial World of Hypersaline Environments. In: Ventosa, A., Oren, A., Ma, Y. (eds) Halophiles and Hypersaline Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20198-1_6

Download citation

Publish with us

Policies and ethics