Skip to main content

Cold-Tolerant PGPRs as Bioinoculants for Stress Management

  • Chapter
  • First Online:
Bacteria in Agrobiology: Stress Management

Abstract

Cold stress is a major environmental constraint to plant productivity. Cold-induced losses in yield probably exceed those from all other causes, since both the severity and duration of the stress are critical. Plants have evolved special mechanisms to overcome the life-endangering influence of low temperature and to survive freezing. Plant-growth-promoting rhizobacteria (PGPRs) have a high potential in agriculture because they can improve plant growth, especially under limiting or stress (cold/chilling) conditions. The agricultural importance of cold-tolerant microbes stems from the fact that the world over temperate agro-ecosystems is characterized by low temperatures and short growing seasons that subject both plant and microbial life to cold-temperature induced stress. Hence, there is a need to identify a group of potential PGPRs that could retain their functional traits under cold (low)-temperature conditions. Such microbes can be profitably used as bioinoculants in agricultural production systems in the temperate regions of the world. This chapter deals with the effect of temperature on plants and management of cold stress by using cold-tolerant PGPRs in improving soil quality and productivity of agricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abromeit M, Askman P, Samihhaven E, Dorfling K (1992) Accumulation of high molecular weight protein in response to cold hardening and abscisic acid treatment in two winter wheat varieties with different frost tolerance. J Plant Physiol 140:617–622

    CAS  Google Scholar 

  • Adams WW, Zarter CR, Ebbert V, Demmig-Adams B (2004) Photoprotective strategies of overwintering evergreens. Bioscience 54:41–49

    Google Scholar 

  • Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry (Mosc) 68:945–951

    CAS  Google Scholar 

  • Anderson RM, Gordon DM, Crawley MJ, Hassell MP (1982) Variability in the abundance of animal and plant species. Nature 296:243–248

    Google Scholar 

  • Andrews JH, Harris RF (2003) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    Google Scholar 

  • Atici O, Nalbantoglu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187–1196

    PubMed  CAS  Google Scholar 

  • Barka AE, Audran JC (1997) Response of champenoise grapevine to low temperature: changes of shoot and bud proline concentration in response to low temperatures and correlation with freezing tolerance. J Hortic Sci Biotechnol 72:577–582

    Google Scholar 

  • Barka AE, Nowk J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with plant growth promoting rhizobacteria Burkholderia phytofermans strain PsJN. Appl Environ Microbiol 72:7246–7252

    CAS  Google Scholar 

  • Beck E, Hansen J, Heim R, Schafer C, Vogg G, Leborgne N, Teulieres C, Boudet AM (1995) Cold hardening and dehardening of evergreen trees. In: Sandermann H, Bonnet-Masimbert M (eds) EUROSILVA-contribution to forest tree physiology, vol 76. INRA, Paris, pp 171–193

    Google Scholar 

  • Bisht SC, Mishra PK, Pooja R, Joshi P, Suyal P, Bisht JK, Srivastva AK (2009) Enhancement of chilling tolerance and productivity of inoculated wheat with cold tolerant plant growth promoting Pseudomonas spp. PPERs23. In: Abstract of 4th USSTC, 10–12 Nov 2009

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    PubMed  CAS  Google Scholar 

  • Bravo L-A, Griffith M (2005) Characterization of antifreeze activity in Antarctic plants. J Exp Bot 56:1189–1196

    PubMed  CAS  Google Scholar 

  • Bric JM, Bostock RM, Silverstone SR (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Microbiol 57:535–538

    CAS  Google Scholar 

  • Briigge W, Beyel V, Brodka M, Poth H, Weil M, Stockhaus J (1999) Antioxidants and antioxidative enzymes in wild type and transgenic lycopersicon genotypes of different chilling tolerance. Plant Sci 140:145–154

    Google Scholar 

  • Chen TH, Gusta LV (1983) Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73:71–75

    PubMed  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918

    PubMed  CAS  Google Scholar 

  • Chung H, Par M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilization bacteria from the rhizosphere of crop plant of Korea. Soil Biol Biochem 37:1970–1974

    CAS  Google Scholar 

  • Compant S, Reister B, Sessitsch A, Nowak J, Clement C, Barka AE (2005) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp. Strain PsJN. Appl Environ Microbiol 71:1685–1693

    PubMed  CAS  Google Scholar 

  • Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:570–599

    Google Scholar 

  • Das K, Katiyar V, Goel R (2003) P solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158:359–362

    PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:213–215

    Google Scholar 

  • Demir Y, Kocacaliskan I (2001) Effects of NaCl and proline on polyphenol oxidase activity in bean seedling. Biol Plant 44:607–609

    CAS  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    PubMed  CAS  Google Scholar 

  • Glick BR, Penrose DM, Jiping L (1998) A model for the lowering plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Goldstein A (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram-negative bacteria. Biol Agric Hortic 12:185–193

    Google Scholar 

  • Griffith M, Antikainen M, Pihakaski-Maunsbach H, Yu XM, Chun JU, Yang (1997) Antifreeze proteins in winter rye. Plant Physiol 100:327–332

    CAS  Google Scholar 

  • Gulati A, Vyas P, Rai P, Kasana RC (2009) Plant growth promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377

    PubMed  CAS  Google Scholar 

  • Guy CL, Huber JLA, Huber SC (1992) Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol 100:502–508

    PubMed  CAS  Google Scholar 

  • Hacker J, Neuner G (2006) Photosynthetic capacity and PS II efficiency of the evergreen alpine cushion plant Saxifraga paniculata during winter at different altitudes. Arct Antarct Alp Res 38(2):198–205

    Google Scholar 

  • Haggblom M, Margesin R (2005) Microbial life in cold ecosystems. FEMS Microbiol Ecol Thematic Issue 53:186–188

    Google Scholar 

  • Hasegawa T, Mochida T, Kondo R, Kagoshima S, Iwasa Y, Akutagawa T, Nakamura T, Saito G (2000) Mixed-stack organic charge-transfer complexes with intercolumnar networks. Phys Rev 62:10059–10066

    CAS  Google Scholar 

  • Hellegren J, Li PH (1981) Survival of Solanum tuberosum suspension cultures to −14 °C the mode of action of proline. J Plant Physiol 52:449–453

    Google Scholar 

  • Hiilovaara-Teijo M, Palva ET (1999) Molecular responses in cold adapted plants. In: Margesin R, Schinner F (eds) Cold adapted organisms. Ecology, physiology, enzymology and molecular biology. Springer, Berlin, pp 349–384

    Google Scholar 

  • Hincha DK (2002) Cryoprotectin: a plant lipid transfer protein homologue that stabilizes membranes during freezing. Phil Trans R Soc Lond 357:909–916

    CAS  Google Scholar 

  • Hontzeas N, Hontzeas CE, Glick BR (2006) Reaction mechanisms of the bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase. Biotechnol Adv 24:420–426

    PubMed  CAS  Google Scholar 

  • Huner NPA, Öquist G, Melis A (2003) Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR, Parson WW (ed) Advances in photosynthesis and respiration. Light-harvesting antennas in photosynthesis, vol 13. Kluwer, Dordrecht, pp 402–421

    Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    PubMed  CAS  Google Scholar 

  • Kasuga M, Liu O, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    PubMed  CAS  Google Scholar 

  • Kasuga M, Miural S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell physiol 45:346–350

    PubMed  CAS  Google Scholar 

  • Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:163–168

    PubMed  CAS  Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42:239–244

    CAS  Google Scholar 

  • Kaushik R, Saxena AK, Tilak KVBR (2000) Selection of Tn5::lac Z mutants isogenic to wild type Azospirillum brasilense strains capable of growing at sub-optimal temperature. World J Microbiol Biotechnol 16:567–570

    Google Scholar 

  • Kaushik R, Saxena AK, Tilak KVBR (2001) Selection and evaluation of Azospirillum brasilense strains capable of growing at sub-optimal temperature in rhizocoenosis with wheat. Folia Microbiol 46:327–332

    CAS  Google Scholar 

  • Kaushik R, Saxena AK, Tilak KVBR (2002) Can Azospirillum strains capable of growing at a sub-optimal temperature perform better in field-grown-wheat rhizosphere. Biol Fertil Soils 35:92–95

    Google Scholar 

  • Kim KY, Hwangbo H, Kim YW, Kim HJ, Park KH, Kim YC, Seoung KY (2002) Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2 G. Kor J Soil Sci Fertil 35:59–67

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria. Gilbert-Clarey, Tours, France, pp 879–882

    Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SVS, Singh HB, Nautiyall CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52: 363–368

    PubMed  CAS  Google Scholar 

  • Lee RE, Warren GJ, Gusta LV (1995) Biochemistry of bacterial ice nuclei. In: Ray F, Paul WK (eds) Biological ice nucleation and its application. APS Press, St Paul, MI, pp 63–83

    Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol 1, 2nd edn. Academic, New York

    Google Scholar 

  • Lindow SE (1983) The role of bacterial ice nucleation in frost injury to plants. Rev Phytopathol 21:363–384

    Google Scholar 

  • Lindow SE, Leveau JHJ (2002) Phyllospheric microbiology. Curr Opin Biotechnol 13:238–243

    PubMed  CAS  Google Scholar 

  • Lynch DH, Smith DL (1994) The effects of low temperature stress on two soybean (Glycine max) genotypes when combined with Bradyrhizobium strains of varying geographic origin. Physiol Plant 90:105–113

    Google Scholar 

  • Maheshwari DK (ed) (2010) Plant growth and health promoting bacteria, Microbiology monographs 18. Springer, Berlin

    Google Scholar 

  • Malviya MK, Pandey A, Trivedi P, Gupta G, Kumar B (2009) Chitinolytic activity of cold tolerant antagonistic species of Streptomyces isolated from glacial sites of Indian Himalaya. Curr Microbiol 59:502–508

    PubMed  CAS  Google Scholar 

  • Marentes E, Griffith M, Mlynarz A, Brush RA (1993) Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiol Plant 87:499–507

    CAS  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold-loving microbes, plants, and animals-fundamental and applied aspects. Naturwissenschaften 94:77–99

    PubMed  CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soil 30:433–439

    CAS  Google Scholar 

  • McBeath J (1995) Cold tolerant Trichoderma. US Patent #5,418,165

    Google Scholar 

  • McCue P, Zheng Z, Pinkham JL, Shetty K (2000) A model for enhanced pea seedling vigour following low pH and salicylic acid treatments. Proc Biochem 35:603–613

    CAS  Google Scholar 

  • McKay IA, Djordjevic MA (1993) Production and excretion of nod metabolites by Rhizobium leguminosarum bv. trifolii are disrupted by the same environmental factors that reduce nodulation in the field. Appl Environ Microbiol 59:3385–3392

    PubMed  CAS  Google Scholar 

  • Misaghi IJ, Stowell LJ, Grogan RG, Spearman LC (1982) Fungistatic activity of water-soluble fluorescent pigments of fluorescent pseudomonads. Phytopathology 72:33–36

    CAS  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Gupta HS (2008) Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:561–568

    Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Bisht JK (2009b) Enhancement of chilling tolerance of inoculated wheat seedlings with cold tolerant plant growth promoting Pseudomonads from N.W. Himalayas. In: Abstract of first Asian PGPR conference, ANGRAU, Hyderabad, 22–24 June 2009

    Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009b) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42:305–313

    PubMed  CAS  Google Scholar 

  • Morita RY (1975) Psycrophilic bacteria of microorganism. Bacteriol Rev 39:144–167

    PubMed  CAS  Google Scholar 

  • Munne-Bosch S, Penuelas J (2003) Photo‐ and antioxidative protection during summer leaf senescence in Pistacia lentiscus L. grown under mediterranean field conditions. Ann Bot 92:385–391

    PubMed  CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356:710–713

    CAS  Google Scholar 

  • Nabti E, Sahnoune M, Ghoul M, Fischer D, Hofmann A, I Rothballer M, Schmid M, Hartmann A (2010) Restoration of growth of durum wheat (Triticum durum var.waha) under saline conditions due to inoculation with the rhizosphere bacterium Azospirillum brasilense NH and extracts of the marine alga Ulva lactuca. J Plant Growth Regul 29:6–22

    CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshida Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suspention of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    PubMed  CAS  Google Scholar 

  • Negi YK, Kumar J, Garg SK (2005) Cold-tolerant fluorescent Pseudomonas isolates from Garhwal Himalayas as potential plant growth promoting and biocontrol agents in pea. Curr Sci 89:2151–2156

    Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    PubMed  CAS  Google Scholar 

  • Neilands JD (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    PubMed  CAS  Google Scholar 

  • Neuner G, Ambach D, Aichner K (1999) Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. Tree Physiol 19:725–732

    PubMed  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol 47:541–568

    CAS  Google Scholar 

  • Nomura M, Muramoto Y, Ýasuda S, Takabe T, Kishitani S (1995) The accumulation of glycine betaine during cold acclimation in early and late cultivars of barley. Euphytica 83:247–250

    CAS  Google Scholar 

  • Öquist G, Huner NPA (2003) Photosynthesis of overwintering evergreen plants. Annu Rev Plant Biol 54:329–355

    PubMed  Google Scholar 

  • Ottander C, Campbell D, Öquist G (1995) Seasonal changes in photosystem II organisation and pigment composition in Pinus sylvestris. Planta 197:176–183

    CAS  Google Scholar 

  • Pandey A, Trivedi P, Palni LMS (2006) Characterization of phosphate Solubilizing and Antagonistic Strain of Pseudomonas putida (BO) Isolated from a sub-alpine location in the Indian Central Himalaya. Curr Microbiol 53:102–107

    PubMed  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    PubMed  CAS  Google Scholar 

  • Prevost D, Drouin P, Antoun H (1999) The potential use of cold adapted rhizobia to improve nitrogen fixation in legumes cultivated in temperate regions. In: Margesin R, Schinner F (eds) Biotechnological application of cold-adapted organisms. Springer, Berlin, pp 161–176

    Google Scholar 

  • Prevost D, Drouin P, Laberge S, Bertrand A, Cloutier J, Levesque G (2003) Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot 81:1153–1161

    CAS  Google Scholar 

  • Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–753

    PubMed  CAS  Google Scholar 

  • Renaut J, Hausman J-F, Wisniewski M (2006) Proteomics and low temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant 126:97–109

    CAS  Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. In: Billings WD, Golley F, Lange OL, Olson S, Remmert H (eds) Ecological studies, vol 62. Springer, Berlin

    Google Scholar 

  • Sakai A, Yoshida S (1968) The role of sugar and related compounds in variations of freezing resistance. Cryobiology 5:160–174

    PubMed  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    PubMed  CAS  Google Scholar 

  • Saltveit ME (2000) Discovery of chilling injury. In: Kung S-D, Yang S-F (eds) Discoveries in plant biology. World Scientific, Singapore, pp 423–448

    Google Scholar 

  • Savitch LV, Leonardos ED, Krol M, Jansson S, Grodzinski B, Huner NPA, Oquist G (2002) Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ 25:761–771

    CAS  Google Scholar 

  • Schachtman DP, Liu W (1999) Piecing together the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4:281–287

    PubMed  Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

    Google Scholar 

  • Seki M, Kamei A, Yamguchi-Shinozaki K, Schinozaki K (2003) Molecular responses to drought salinity and frost: common and different plants for plant protection. Curr Opin Biotechnol 14:194–1999

    PubMed  CAS  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Gupta AD, Nazim S, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960

    CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    PubMed  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta (2009a) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984) a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64:239–245

    CAS  Google Scholar 

  • Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS (2009b) Mountain aspect influences the genetic clustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol 59:432–438

    PubMed  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Kundu S, Gupta HS (2009c) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microbiol Biotechnol 25:131–137

    Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2010) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol. doi:10.1007/s11274-010-0559-4

    Google Scholar 

  • Senser M, Beck E (1982) Frost resistance in spruce (Picea abies (L.) Karst). IV. The lipid composition of frost resistant and frost sensitive spruce chloroplasts. Z Pflanzenphysiol 105:241–253

    CAS  Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey RC, Maheashwari DK, Kang SC (2010) Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promontory activity in chir-pine. Crop Protect. doi:10.1016/j.cropro.2010.04.008

    Google Scholar 

  • Smallwood M, Bowles DJ (2002) Plants in cold climate. Phil Trans R Soc Lond 357:831–847

    CAS  Google Scholar 

  • Sprent JI (1979) The biology of nitrogen-fixing organisms. McGraw-Hill Book, New York

    Google Scholar 

  • Steponkus PL, Webb MS (1992) Freeze-induced dehydration and membrane destabilization in plants. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life: comparative analysis of water relationships at the organismic, cellular and molecular level. Springer, Berlin, pp 338–362

    Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomshow MF (1998) Mode of action of the COR14a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    PubMed  CAS  Google Scholar 

  • Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187

    PubMed  CAS  Google Scholar 

  • Tripathi AK, Klingmuller W (1992) Temperature sensitivity of nitrogen fixation in Azospirillum sp. Can J Microbiol 38:1238–1241

    CAS  Google Scholar 

  • Trivedi P, Sa T (2008) Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at low temperatures. Curr Microbiol 56:140–144

    PubMed  CAS  Google Scholar 

  • Uemura M, Yoshida S (1984) Involvement of plasma membrane alterations in cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 75:818–826

    PubMed  CAS  Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30

    PubMed  CAS  Google Scholar 

  • Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A (2006) Responses of the plasma membrane to low temperatures. Physiol Plant 126:81–89

    CAS  Google Scholar 

  • Ulmer W (1937) Über den Jahresgang der Frosthärte einiger immergrüner Arten der alpinen Stufe, sowie Zirbe und Fichte. Jb Wiss Bot 84:553–592

    Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velazquez E, Rodrıguez-Barrueco C, Cervantes E, Chamber M, Igual JM (2006) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil 287:43–50

    CAS  Google Scholar 

  • Volkmar KM, Bremer E (1998) Effects of seed inoculation with strain of Pseudomonas fluorescents on root growth and activity of wheat in well-watered and draught-stressed grass-fronted rhizotrons. Can J Plant Sci 78:545–551

    Google Scholar 

  • Vyas P, Rahi P, Gulati A (2009) Stress tolerance and genetic variability of phosphate-solubilizing fluorescent Pseudomonas from the cold deserts of the Trans-Himalayas. Microb Ecol 58:425–434

    PubMed  CAS  Google Scholar 

  • Wang C, Knill E, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHAO and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    PubMed  CAS  Google Scholar 

  • Webb MS, Uemura M, Steponkus PL (1994) A comparison of freezing injury in oat and rye-two cereals at the extremes of freezing tolerance. Plant Physiol 104:467–478

    PubMed  CAS  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) Popp the question: what do Lea proteins do? Trends Plant Sci 9:13–17

    PubMed  CAS  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Google Scholar 

  • Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice-nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73

    CAS  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and anti-nucleation in nature. Cryobiology 41:257–279

    PubMed  CAS  Google Scholar 

  • Zhang H, Prithiviraj B, Charles TC, Driscoll BT, Smith DL (2003) Low temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. Eur J Agron 19:205–213

    CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the generous support of Indian Council of Agricultural Research through the project “Application of Microorganisms in Agriculture and Allied Sectors” (AMAAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mishra, P.K., Bisht, S.C., Bisht, J.K., Bhatt, J.C. (2012). Cold-Tolerant PGPRs as Bioinoculants for Stress Management. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Stress Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23465-1_6

Download citation

Publish with us

Policies and ethics