Skip to main content

Interactions Between Legumes and Rhizobia Under Stress Conditions

  • Chapter
  • First Online:
Bacteria in Agrobiology: Stress Management

Abstract

Biological nitrogen fixation is an important factor contributing to the increased productivity of legume plants. However, this process may be affected by adverse conditions to plant, bacterium, or both. Suboptimal conditions in water status, salinity, pH, temperature, and the presence of chemicals and pathogens, among other factors, greatly influence the growth, survival, and metabolic activity of microorganisms and plants, and their ability to enter into symbiotic interactions. In this chapter, we review stressors in the soil and their influence on the symbiotic fixation of nitrogen and some solutions that the research provides in order to extend the cultivation of legumes in suboptimal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alaa-Eldin MN, Mahmoud S, Makawi A, Abdel-Nasser M, Herzallah N (1981) Effect of preemergence application of some herbicides on nodulation, nitrogen fixation and growth of soybean. Pesq Agrop Bras 16:883–889

    Google Scholar 

  • Al-Rashidi RK, Loynachan TE, Frederick LR (1982) Desiccation tolerance of four strains of Rhizobium japonicum. Soil Biol Biochem 14:489–493

    Google Scholar 

  • Andrés JA, Correa NS, Rosas SB (1995) Exudados radicales de alfalfa (Medicago sativa L.) en condiciones de estrés salino. Expresión de genes nod en Rhizobium. Agriscientia 12:87–91

    Google Scholar 

  • Andrés JA, Correa NS, Rosas SB (1998a) Alfalfa and soybean seed and root exudates treated with thiram inhibit the expression of rhizobia nodulation genes. Int J Exp Bot 62:47–53

    Google Scholar 

  • Andrés JA, Correa NS, Rosas SB (1998b) Survival and symbiotic properties of Bradyrhizobium japonicum in the presence of thiram: Isolation of fungicide resistant strains. Biol Fertil Soils 26:141–145

    Google Scholar 

  • Andrews CS (1976) Effect of calcium, pH and nitrogen on the growth and chemical composition of some tropical and temperate pasture legumes. I. Nodulation and growth. Aust J Agric Res 27:611–623

    Google Scholar 

  • Angelini J, Castro S, Fabra A (2003) Alterations in root colonization and nodC gene induction in the peanut-rhizobia interaction under acidic conditions. Plant Physiol Biochem 41:289–294

    CAS  Google Scholar 

  • Appunu C, Dhar B (2008) Morphology and general characteristics of lytic phages infective on strains of Bradyrhizobium japonicum. Curr Microbiol 56:21–27

    PubMed  CAS  Google Scholar 

  • Aranjuelo I, Yrigoyen JJ, Sánchez-Díaz M (2007) Effect of elevated temperature and water availability on CO2 exchange and nitrogen fixation of nodulated alfalfa plants. Environ Exp Bot 59:99–108

    CAS  Google Scholar 

  • Arora NK, Singhal V, Maheshwari DK (2006) Salinity-induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22(6):603–606

    CAS  Google Scholar 

  • Arora NK, Khare E, Singh S, Maheshwari DK (2010) Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J Microbiol Biotechnol 26:811–816

    CAS  Google Scholar 

  • Aurag J, Sasson A (1992) Tolerance of Rhizobium leguminosarum bv. phaseoli to acidity and drought. World J Microbiol Biotechnol 8:532–533

    Google Scholar 

  • Barbour WM, Elkan GH (1989) Relationship of the presence and copy number of plasmids to exopolysaccharide production and symbiotic effectiveness in Rhizobium fredii USDA 206. Appl Environ Microbiol 55:813–818

    PubMed  CAS  Google Scholar 

  • Ben Salah I, Albacete A, Martínez Andújar C, Haouala R, Labidi N, Zribi F, Martínez V, Pérez-Alfocea F, Abdelly C (2009) Response of nitrogen fixation in relation to nodule carbohydrate metabolismo in Medicago ciliaris lines subjected to salt stress. J Plant Physiol 166:477–488

    PubMed  CAS  Google Scholar 

  • Bhat MY, Munawar F, Muddin H (2009) Effect of Meloidogyne incognita Race-1 on the functioning of rhizobial nodules on black gram (Vigna mungo). Indian J Nematol 39:59–64

    Google Scholar 

  • Bikrol A, Saxena N, Singh K (2005) Response of Glycine max in relation to nitrogen fixation as influenced by fungicide seed treatment. Afr J Biotechnol 4:667–671

    CAS  Google Scholar 

  • Bollich PK, Dunigan EP, Jadi WM (1985) Effects of seven herbicides on N2 (C2H2) fixation by soybeans. Weed Sci 33:427–430

    CAS  Google Scholar 

  • Bottomley P (1991) Ecology of Rhizobium and Bradyrhizobium. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 292–347

    Google Scholar 

  • Bowra B, Dillworth M (1981) Motility and chemotaxis toward sugars in Rhizobium leguminosarum. J Gen Microbiol 126:231–235

    CAS  Google Scholar 

  • Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Appl Environ Microbiol 62:3030–3033

    PubMed  CAS  Google Scholar 

  • Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as negative regulators of Auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535

    PubMed  CAS  Google Scholar 

  • Cooper JE (1988) Nodulation of legumes by rhizobia in acid soils. In: Vancura V, Kunc F (eds) Developments in soil science, 18. Elsevier Science, Amsterdam, pp 57–61

    Google Scholar 

  • Correa N, Thuar A, Rosas S (1989) Efectos del fungicida thiram sobre nodulación en soja. X Reunión de la Sociedad Latinoamericana de Fisiología Vegetal, Puerto Iguazú, Argentina, p 129

    Google Scholar 

  • Coventry DR, Evans J (1989) Symbiotic nitrogen fixation and soil acidity. In: Robson AD (ed) Soil acidity and plant growth. Academic, Sidney, pp 103–137

    Google Scholar 

  • Cunningham SD, Munns DN (1984) The correlation between extracelular polysaccharide production and acid tolerance in Rhizobium. Soil Sci Soc Am J 48:1273–1276

    CAS  Google Scholar 

  • Curley RL, Burton JC (1975) Compatibility of Rhizobium japonicum with chemical seed protectants. Agron J 67:807–808

    CAS  Google Scholar 

  • Day DA, Copeland L (1991) Carbon metabolisms and compartmentation in nitrogen fixing legume nodules. Plant Physiol Biochem 29:185–201

    CAS  Google Scholar 

  • Dardanelli MS, Fernández de Córdoba FJ, Espuny MR, Rodríguez Carvajal MA, Soria Díaz ME, Gil Serrano AM, Okon Y, Megías M (2008) Effects of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    CAS  Google Scholar 

  • de Maagd R, Rao A, Mulders H, Leentje G, Loosdrecht M, Wijffeelman C, Lugtenberg B (1989) Isolation and characterization of mutants of Rhizobium leguminosarum bv. viciae 248 with altered lipopolysaccharides: possible role of surface charge or hydrophobicity in bacterial release from the infection thread. J Bacteriol 171:1143–1150

    PubMed  Google Scholar 

  • de Rijke E, Out P, Niessen WM, Ariese F, Gooijer C, Brickman UA (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 112:31–63

    Google Scholar 

  • Derylo M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin secreting fluorescent Pseudomonas. Plant Sci 154:211–217

    CAS  Google Scholar 

  • Deshwal V, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as biological control agents against soil borne plant pathogens. Indian J Exp Biol 41:1160–1164

    PubMed  CAS  Google Scholar 

  • Doura CE, Xenoulis AC, Paradellis T (1984) Salinity tolerance of a Rhizobium meliloti strain isolated from salt affected soils. Folia Microbiol Prague 29:316–324

    Google Scholar 

  • Dowling DN, Broughton WJ (1986) Competition for nodulation of legumes. Annu Rev Microbiol 40:131–157

    PubMed  CAS  Google Scholar 

  • Fisher DJ, Hayes AL, Jones CA (1978) Effects of some surfactant fungicides on Rhizobium trifolii and its symbiotic relationship with white clover. Ann Appl Biol 90:73–84

    CAS  Google Scholar 

  • Fuhrmann J, Davey CB, Wollum AG (1986) Desiccation tolerance in clover rhizobia in sterile soils. Soil Sci Soc Am J 50:639–644

    Google Scholar 

  • Gerosa-Ramos ML, Parsons R, Sprent JI, James EK (2003) Effect of water stress on nitrogen fixation and nodule structure of common bean. Pesq Agropec Bras 38:339–347

    Google Scholar 

  • Georgiev GI, Atkins CA (1993) Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea nodules. Symbiosis 15:239–255

    Google Scholar 

  • Gibson AH (1969) Physical environment and symbiotic nitrogen fixation. Nitrogen retention within the nodules of Trifolium subterraneum L. Aust J Biol Sci 22:829–838

    Google Scholar 

  • Gillberg B (1971) On the effects of some pesticides on Rhizobium and isolation of pesticide-resistant mutants. Arch Microbiol 75:203–208

    CAS  Google Scholar 

  • Golebiowska J, Kaszubiak H, Pajewska M (1967) Adaptation of Rhizobium to thiram. Acta Microbiol Pol 16:153–158

    PubMed  CAS  Google Scholar 

  • Graham PH (1992) Stress tolerance in Rhizobium and Bradyrhizobium and nodulation under adverse soil conditions. Can J Microbiol 38:475–484

    CAS  Google Scholar 

  • Graham PH, Ocampo G, Ruiz LD, Duque A (1980) Survival of Rhizobium phaseoli in contact with chemical seed protectans. Agron J 72:625–627

    CAS  Google Scholar 

  • Guene NFD, Diouf A, Gueye M (2003) Nodulation and nitrogen fixation of field grown common bean (Phaseolus vulgaris) as influenced by fungicide seed treatment. Afr J Biotechnol 2:198–201

    CAS  Google Scholar 

  • Hafeez FY, Shah NH, Malik KA (2000) Field evaluation of lentil cultivars inoculated with R. leguminosarum bv. viciae strains for nitrogen fixation using nitrogen-15 isotope dilution. Biol Fertil Soils 31:65–69

    CAS  Google Scholar 

  • Hagedorn C, Caldwell BA (1981) Characterization of diverse Rhizobium trifolii isolates. Soil Sci Soc Am J 45:1513–1516

    Google Scholar 

  • Hamdi Y (1970) Soil water tension and the movement of rhizobia. Soil Biol Biochem 3:121–126

    Google Scholar 

  • Hernández-Jiménez MJ, Lucas MM, de Felipe MR (2002) Antioxidant defense and damage in senescing lupin nodules. Plant Physiol Biochem 40:645–657

    Google Scholar 

  • Howieson JG, Robson AD, Abbott LK (1992) Acid-tolerant species of Medicago produce root exudates at low pH wich induce the expression of nodulation genes in Rhizobium meliloti. Aust J Plant Physiol 19:287–296

    CAS  Google Scholar 

  • Huang CY, Boyer JS, Vanderhoef LN (1975) Limitation of acetylene reduction (nitrogen fixation) by photosynthesis in soybean having low water potentials. Plant Physiol 56:228–232

    PubMed  CAS  Google Scholar 

  • Hungria M, Vargas MA (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65:151–164

    Google Scholar 

  • Hungria MA, Joseph CM, Phillips DA (1991) Rhizobium nod-gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiol 97:759–764

    PubMed  CAS  Google Scholar 

  • Irigoyen JJ, Emerich DW, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84:55–60

    CAS  Google Scholar 

  • Jakubisiak B, Golebiowska J (1963) Influence of fungicides on Rhizobium. Acta Microbiol Pol 12:196–202

    PubMed  CAS  Google Scholar 

  • Karanja NK, Wood M (1988) Selecting Rhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya. Tolerance of high temperature and antibiotic resistance. Plant Soil 112:15–22

    CAS  Google Scholar 

  • Khadir AH, Sinhg RC, Peterson JF (1984) Effect of white clover mosaic virus infection on various processes relevant to N2 fixation in red clover. Can J Bot 62:38–42

    Google Scholar 

  • Kekskes M, Vincent J (1969) The effect of some fungicides on Rhizobium leguminosarum. I. Laboratory Investigations. Agrokem Talajt 18:57–70

    Google Scholar 

  • Ko MP, Barker KR, Huang JS (1984) Nodulation of soybeans as affected by half root infection with Heterodera glycine. J Nematol 16:97–105

    PubMed  CAS  Google Scholar 

  • Kyes-Boahen S, Slinkard AE, Walley FL (2001) Rhizobial survival and nodulation of chickpea as influenced by fungicide seed treatment. Can J Microbiol 47:585–589

    Google Scholar 

  • Lee KD (2009) The low root zone temperature effects on nitrogen fixation, growth, and antioxidant responses of lentil inoculated whit Rhizobium leguminosarum. J Korean Soc Appl Biol Chem 52:688–693

    CAS  Google Scholar 

  • Macció D, Fabra A, Castro S (2002) Acidity and calcium interaction affect the growth of Bradyrhizobium sp. and the attachment to peanut roots. Soil Biol Biochem 34:201–208

    Google Scholar 

  • Mallik MAB, Tesfai K (1985) Pesticidad effect on soybean rhizobia symbiosis. Plant Soil 85:33–41

    CAS  Google Scholar 

  • Martensson AM (1992) Effects of agrochemicals and heavy metals on fast-growing Rhizobia and their symbiosis with small-seeded legumes. Soil Biol Biochem 24:435–445

    CAS  Google Scholar 

  • Michiels J, Verreth C, Vanderleyden J (1994) Effects of temperature stress on bean nodulating Rhizobium strains. Appl Environ Microbiol 60:1206–1212

    PubMed  CAS  Google Scholar 

  • Miransari M, Smith DL (2007) Overcoming the stressful effects of salinity and acidity on soybean [Glycine max (L.) Merr] nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30:1967–1992

    CAS  Google Scholar 

  • Miransari M, Smith DL (2009) Alleviating salt stress on soybean [Glycine max (L.) Merr] – Bradyrhizobium japonicum symbiosis using signal molecule genistein. Eur J Soil Biol 45:146–152

    CAS  Google Scholar 

  • Mohammad RM, Akhavan-Kharazian M, Campbell WF, Rumbaugh MD (1991) Identification of salt and drought tolerant Rhizobium meliloti L. strains. Plant Soil 134:271–276

    Google Scholar 

  • Munns DN, Keyser HH, Fogle VW, Hohenberg JS, Righetti TL, Lauter DL, Zaruog MG, Clarkin KL, Whitacre KW (1979) Tolerance of soil acidity in symbiosis of mung bean with rhizobia. Agron J 71:256–260

    CAS  Google Scholar 

  • Naeem F, Malik KA, Hafeez FY (2008) Pisum sativumRhizobium interactions under different environmental stresses. Pak J Bot 40:2601–2612

    Google Scholar 

  • Naya L, Ladrera R, Ramos J, González E, Arrese-Igor C, Minchin FR, Becana M (2007) The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144:1104–1114

    PubMed  CAS  Google Scholar 

  • Nuti M, Casella S, Pasti M (1984) Evaluation of rhizobia genetically engineered for pesticide resistance. In: Veeger H, Newton WE (eds) Advances in nitrogen fixation research. Nijhoff, Noordwijkerhout, p 720

    Google Scholar 

  • O’Hara GW, Goss TJ, Dilworth MJ, Glenn AR (1989) Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55:1870–1876

    PubMed  Google Scholar 

  • Orchard VA, Cook FG (1983) Relation between soil respiration and soil moisture. Soil Biol Biochem 15:447–453

    Google Scholar 

  • Parker MB, Dowler CC (1976) Effects of nitrogen with trifluralin and vernolate on soybeans. Weed Sci 24:131–133

    CAS  Google Scholar 

  • Pena-Cabrales JJ, Castellanos JZ (1993) Effect of water stress on N2 fixation and grain yield of Phaseolus vulgaris. Plant Soil 152:151–155

    Google Scholar 

  • Pimratch S, Joglay S, Vorasoot N, Toomsan B, Patanothai A, Holbroock CC (2008) Relationship between biomass production and nitrogen fixation under drought stress conditions in peanut genotypes with different levels of drought resistance. J Agron Crop Sci 194:15–25

    Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    CAS  Google Scholar 

  • Rai R (1983) The salt tolerance of Rhizobium leguminosarum strains and lentil (Lens esculenta) genotypes and the effect of salinity on aspects of symbiotic nitrogen fixation. J Agric Sci 100:81–86

    CAS  Google Scholar 

  • Ramírez C, Alexander M (1980) Evidence suggesting protozoan predation on Rhizobium associated with germinating seeds and in the rhizosphere of beans (Phaseolus vulgaris L). Appl Environ Microbiol 40:492–499

    PubMed  Google Scholar 

  • Relic B, Perret X, Estrada-García MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ (1994) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13:171–178

    PubMed  CAS  Google Scholar 

  • Rennie RJ, Dubetz S (1984) Effect of fungicides and herbicides on nodulation and N2 fixation in soybean fields lacking indigenous Rhizobium japonicum. Agron J 76:451–454

    CAS  Google Scholar 

  • Rosas SB, Carranza M (1987) The action of pesticides on microorganisms. Toxic Assess Int Quart 2:293–303

    CAS  Google Scholar 

  • Rosas SB, Palacios S, Correa NS (1996) Growth and nodulation of Cyamopsis tetragonoloba L (guar) under conditions of salinity. Int J Exp Bot 58:107–114

    CAS  Google Scholar 

  • Roughley RJ (1970) The influence of root temperature, Rhizobium strain and host selection on the structure and nitrogen fixing efficiency of the root nodules of Trifolium subterraneum. Ann Bot 34:631–646

    Google Scholar 

  • Ruiz Sáinz J, Beringer J, Gutiérrez Navarro A (1984) Effect of the fungicide captafol on the survival and symbiotic properties of Rhizobium trifolii. J Appl Bacteriol 57:361–367

    Google Scholar 

  • Ruiz Sáinz J, Bellogin R, Jiménez Díaz R, Gutiérrez Navarro A, Pérez Silva J (1986) Cysteine and toxicity of the fungicide captan and captafol on Rhizobium. Microbios 46:71–86

    Google Scholar 

  • Saraf M, Khandelwal A, Sawhney R, Maheshwari DK (1994) Effect of carbyryl and 2,4 -D on growth, nitrogenase and uptake hydrogenase activity in agar culture and root nodules formed by Bradyrhizobium japonicum. Microbiol Res 149:401–406

    CAS  Google Scholar 

  • Serraj R, Drevon JJ (1998) Effects of salinity and nitrogen source on growth and nitrogen fixation in alfalfa. J Plant Nutr 21:1805–1818

    CAS  Google Scholar 

  • Serraj R, Sinclair TR, Purcell LA (1999) Symbiotic N2 fixation response to drought. J Exp Bot 331:143–155

    Google Scholar 

  • Singh CS, Lakshmi-Kumari M, Biswas A, Subba Rao NS (1973) Effect of carbonate and bicarbonate of sodium on growth of rhizobia and nodulation in lucerne (Medicago sativa L). Indian J Microbiol 13:125–128

    CAS  Google Scholar 

  • Soria RS, Correa NS, Rosas SB (1996) Effect of water stress on the Guar-Bradyrhizobium system using PEG 6000. Phyton Int J Exp Bot 58:97–106

    Google Scholar 

  • Soussi M, Ocaña A, Lluch C (1998) Effect of salt stress on growth, photosynthesis and nitrogen fixation in chickpea (Cicer arietinum L.). J Exp Bot 325:1329–1337

    Google Scholar 

  • Stovold GE, Evans J (2006) Fungicide seed dressings: Their effects on emergence of soybean and nodulation of pea and soybean. Aust J Exp Agric 20:497–503

    Google Scholar 

  • Taylor RW, Williams ML, Sistani KR (1991) Nitrogen fixation by soybean-Bradyrhizobium combinations under acidity, low P and high Al stresses. Plant Soil 131:293–300

    CAS  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–6

    Google Scholar 

  • Truchet G, Roche P, Lerouge P, Vasse J, Caumt S, de Billy F, Promé J, Denarié J (1991) Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351:670–673

    CAS  Google Scholar 

  • Tu CM (1980) Effect of fungicides on growth of Rhizobium japonicum in vitro. Bull Environ Contam Toxicol 25:364–368

    PubMed  CAS  Google Scholar 

  • Tu JC (1978) Protection of soybean from severe Phytophthora root rot by Rhizobium. Physiol Plant Pathol 12:233–240

    Google Scholar 

  • Tu JC (1981) Effect of salinity on Rhizobium root hair interaction, nodulation and growth of soybean. Can J Plant Sci 61:231–239

    Google Scholar 

  • van Rhijn P, Vanderleyden J (1995) The Rhizobium- plant symbiosis. Microbiol Mol Biol Rev 59:124–142

    Google Scholar 

  • Vincent JM (1962) Influence of calcium and magnesium on the growth of Rhizobium. J Gen Microbiol 28:653–663

    PubMed  CAS  Google Scholar 

  • Vriezen JAC, de Bruijn FJ, Nüsslein K (2007) Responses of rhizobia to desiccation in relation to osmótica stress, oxygen and temperature. Appl Environ Microbiol 73:3451–3459

    PubMed  CAS  Google Scholar 

  • Wadisirisuk P, Danio SK, Hardarian G, Bowen GD (1989) Influence of Bradyrhizobium japonicum location and movement on nodulation and nitrogen fixation in soybean. Appl Environ Microbiol 35:1711–1716

    Google Scholar 

  • Weisz PR, Denison RF, Sinclair TR (1985) Response to drought stress of nitrogen fixation (acetylene reduction) rates by field-grown soybean. Plant Physiol 78:525–530

    PubMed  CAS  Google Scholar 

  • Wilson KG, Stinner RE (1984) A potential influence of Rhizobium activity on the availability of nitrogen to legume herbivores. Oecologia 61:337–345

    Google Scholar 

  • Wolfson JL (1987) Impact on Rhizobium nodules of Sitona hispidulus, the clover root curculio. Entomol Exp Appl 43:237–243

    Google Scholar 

  • Worrall VS, Roughley RJ (1976) The effect of moisture stress on infection of Trifolium subterraneum L. by Rhizobium trifolii. Dang J Exp Bot 27:1233–1241

    Google Scholar 

  • Wright DA, Killham K, Glover LA, Prosser JI (1993) The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum. Geoderma 56:633–640

    Google Scholar 

  • Wrobel T (1963) Influence of fungicides on symbiosis of Rhizobium with pea and lupine. Acta Microbiol Pol 12:203–207

    PubMed  CAS  Google Scholar 

  • Young JPW, Crossman LC, Johnston AWB, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson ARJ, Todd JD, Poole PS, Mauchline TH, East AK, Quail MA, Churcher CI, Arrowsmith C, Cherevach I, Chillingworth T, Clarke C, Cronin A, Davis P, Fraser A, Hance Z, Hauser H, Jagels K, Moule S, Mungall K, Norbertczak H, Rabbinowitsch E, Sanders M, Simmonds M, Whitehead S, Parkhill J (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:1–20

    Google Scholar 

  • Zablotowicz RM, Eskew DL, Focht DD (1978) Denitrification in Rhizobium. Can J Microbiol 24:757–776

    PubMed  CAS  Google Scholar 

  • Zhang F, Lynch DH, Smith DL (1995) Impact of low root temperatures in soybean (Glycine max. L. Merr.) on nodulation and nitrogen fixation. Environ Exp Bot 35:279–285

    Google Scholar 

  • Zahran HH (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    PubMed  CAS  Google Scholar 

  • Zahran HH, Sprent JI (1986) Effects of sodium chloride and polyethylene glycol on root hair infection and nodulation of Vicia faba L. plants by Rhizobium leguminosarum. Planta 167:303–309

    CAS  Google Scholar 

  • Zahran HH, Rasanen LA, Karsisto M, Lindstrom K (1994) Alterations of lipopolysaccharide and protein profiles in SDS-PAGE of rhizobia by osmotic and heat stress. World J Microbiol Biotechnol 10:100–105

    CAS  Google Scholar 

  • Zheng C, Jiang D, Liu F, Dai T, Jing Q, Cao W (2009) Effects of salt and water-logging stresses and their combination of leaf photosynthesis, chloroplast ATP synthesis and antioxidant capacity in wheat. Plant Sci 176:575–582

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier A. Andrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andrés, J.A., Rovera, M., Guiñazú, L.B., Pastor, N.A., Rosas, S.B. (2012). Interactions Between Legumes and Rhizobia Under Stress Conditions. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Stress Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23465-1_5

Download citation

Publish with us

Policies and ethics