Skip to main content

Cold-Active Yeast Lipases: Recent Issues and Future Prospects

  • Chapter
  • First Online:
Cold-adapted Yeasts

Abstract

Microbial lipases are, besides proteases, enzymes of the highest biotechnological potential, catalyzing not only hydrolytic reactions but also – in media of low water activity – synthesis reactions. These enzymes are used in pharmaceutical, food, and household chemicals industries and for the treatment of environmental pollution. Production of lipases is constantly increasing and now accounts for more than one-fifth of the global enzyme market. This review is dedicated to cold-active lipases of yeasts, of which lipases A and B of Pseudozyma (formerly Candida) antarctica have been the most thoroughly investigated. This chapter covers distinctive structural features and specificity of these enzymes in comparison with selected mesophilic lipases as well as modifications (together with diverse immobilization techniques on various supports) directed to improving catalytic properties and stability of these proteins. The application potential of cold-active yeast lipases is discussed; the most important applications include enantio- and regioselective biotransformations, production of biofuels, detergents, food additives, structured triacylglycerols, etc. Some lipases from mesophilic yeasts (e.g., non-conventional yeast Yarrowia lipolytica) show characteristic features of cold-active enzymes, and examples of their use are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alford JA, Pierce DA (1961) Lipolytic activity of microorganisms at low and intermediate temperatures. Activity of microbial lipases at temperatures below 0°C. J Food Sci 26:518–524

    CAS  Google Scholar 

  • Andrade LH, Barcellos T (2009) Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols. Org Lett 11:3052–3055

    PubMed  CAS  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea region in Antarctica. Soil Biol Biochem 38:3057–3064

    CAS  Google Scholar 

  • Barbosa O, Ruiz M, Ortiz C, Fernandez M, Torres R, Fernandez-Lafuente R (2012) Modulation of the properties of immobilized CALB by chemical modification with 2,3,4-trinitrobenzenesulfonate or ethylendiamine. Advantages of using adsorbed lipases on hydrophobic supports. Process Biochem 47:867–876

    CAS  Google Scholar 

  • Bencze LC, Paizs C, Tosa MI, Trif M, Irimie FD (2010) Cal-B a highly selective biocatalyst for the kinetic resolution of furylbenzthiazole-2-yl-ethanols and acetates. Tetrahedron: Asymmetry 21:1999–2004

    Google Scholar 

  • Berrera-Rivera K, Flores-Carreon A, Martinez-Richa A (2008) Enzymatic ring opening polymerization of ε-caprolactone by a new lipase from Yarrowia lipolytica. J Appl Pol Sci 109:708–719

    Google Scholar 

  • Blank K, Morfill J, Gumpp H, Gaub HE (2006) Functional expression of Candida antarctica lipase B in Escherichia coli. J Biotechnol 125:474–483

    PubMed  CAS  Google Scholar 

  • Boekhout T, Fell JW (1998) Pseudozyma. In: Kurtzman CP, Fell JW (eds) The yeasts: a taxonomic study. Elsevier Science, Amsterdam, pp 790–797

    Google Scholar 

  • Bordes F, Barbe F, Escalier P, Mourey L, Andre I, Marty A, Tranier S (2010) Exploring the conformational states and rearrangements of Yarrowia lipolytica lipase. Biophys J 99:2225–2234

    PubMed  CAS  Google Scholar 

  • Borgdorf R, Warwel S (1999) Substrate selectivity of various lipases in the esterification of cis- and trans-9-octadecenoic acid. Appl Microbiol Biotechnol 51:480–485

    PubMed  CAS  Google Scholar 

  • Bornscheuer UT, Kazlauskas RJ (2006) Hydrolases in organic synthesis. regio- and stereoselective biotransformations. Chapter 5, 2nd ed. Wiley-VCH, Weinheim, pp 61–184

    Google Scholar 

  • Brandăo LR, Libkind D, Vaz AB, Espirito Santo LC, Moline M, de Garcia V, van Broock M, Rosa CA (2011) Yeasts from oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 76:1–13

    PubMed  Google Scholar 

  • Brem J, Bencze LC, Liljeblad A, Turcu MC, Paizs C, Irimie FD, Kanerva LT (2012) Chemoenzymatic preparation of 1-heteroaryl-ethanamines of low solubility. Eur J Org Chem 2012:3288–3294

    CAS  Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Stürmer R, Zielinski T (2004) Industrial methods for the production of optically active intermediates. Angew Chem Int Ed 43:788–824

    CAS  Google Scholar 

  • Brundiek HB, Evitt AS, Kourist R, Bornscheuer UT (2012) Creation of a lipase highly selective for trans fatty acid by protein engineering. Angew Chem Int Ed 51:412–414

    CAS  Google Scholar 

  • Busto E, Gotor-Fernandez V, Gotor V (2012) Asymmetric chemoenzymatic synthesis of ramatroban using lipases and oxidoreductases. J Org Chem 77:4842–4848

    PubMed  CAS  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    PubMed  CAS  Google Scholar 

  • Carrasco M, Rozas JM, Barahona S, Alcaino J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeast isolated from King George Island, the subantarctic region. BMC Microbiol 12:251–259

    PubMed  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar MO, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    PubMed  CAS  Google Scholar 

  • Chang HM, Liao HF, Lee CC, Shieh CJ (2005) Optimized synthesis of lipase-catalyzed biodiesel by Novozym 435. J Chem Technol Biotechnol 80:307–312

    CAS  Google Scholar 

  • Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA (2008) Candida antarctica lipase B chemically immobilized on epoxy-activated micro- and nanobeads: catalysts for polyester synthesis. Biomacromolecules 9:463–471

    PubMed  CAS  Google Scholar 

  • Cuhna AG, Fernandez-Lorente G, Bevilaqua JV, Destain J, Paiva LM, Freire DM, Fernández-Lafuente R, Guisán JM (2008) Immobilization of Yarrowia lipolytica lipase—a comparison of stability of physical adsorption and covalent attachment techniques. Appl Biochem Biotechnol 146:49–56

    Google Scholar 

  • da Silva JMR, Nascimento MG (2012) Chemoenzymatic epoxidation of citronellol catalyzed by lipases. Process Biochem 47:517–522

    Google Scholar 

  • De Maria L (2009) Lipolytic enzyme variants. EU Patent EP 2099908

    Google Scholar 

  • Deasy RE, Brossat M, Moody TS, Maguire AR (2011) Lipase catalysed kinetic resolutions of 3- arylalkanoic acids. Tetrahedron: Asymmetry 22:47–61

    Google Scholar 

  • Dlugy C, Wolfson A (2007) Lipase catalyse glycerolysis for kinetic resolution of racemates. Bioprocess Biosyst Eng 30:327–330

    PubMed  CAS  Google Scholar 

  • Dominguez de Maria P, Carboni-Oerlemans C, Tuin B, Bergeman G, Meer A, Gemert R (2005) Biotechnological applications of Candida antarctica lipase A: state-of-the-art. J Mol Catal B 37:36–46

    CAS  Google Scholar 

  • Elend C, Schmeisser C, Hoebenreich H, Steele HL, Strejt WR (2007) Isolation and characterization of a metagenome-derived and cold-active lipase with high stereoselectivity for (R)-ibuprofen esters. J Biotechnol 130:370–377

    PubMed  CAS  Google Scholar 

  • Emond S, Montanier C, Nicaud JM, Marty A, Monsan P, Andre I, Remaud-Simeon M (2010) New efficient recombinant expression system to engineer Candida antarctica lipase B. Appl Environ Microbiol 76:2684–2687

    PubMed  CAS  Google Scholar 

  • Engström K, Vallin M, Hult K, Bäckvall J-E (2012) Kinetic resolution of diarylmethanols using a mutated variant of lipase CALB. Tetrahedron 68:7613–7618

    Google Scholar 

  • Ericsson DJ, Kasrayan A, Johansson P, Berqfors T, Sandstrom AG, Bäckvall JE, Mowbray SL (2008) X-ray structure of Candida antarctica lipase B shows a novel lid structure and a likely mode of interfacial activation. J Mol Biol 376:109–119

    PubMed  CAS  Google Scholar 

  • Fedosov SN, Brask J, Pedersen AK, Nordblad M, Woodley J, Xu X (2013) Kinetic model of biodiesel production using immobilized lipase Candida antarctica lipase B. J Mol Cat B 85–86:156–168

    Google Scholar 

  • Fickers P, Marty A, Nicaud JM (2011) The lipases from Yarrowia lipolytica: genetics, biochemical characterization and biotechnological applications. Biotechnol Adv 29:632–644

    PubMed  CAS  Google Scholar 

  • Fickers P, Ongena M, Destain J, Weekers F, Thonart P (2006) Production and down-stream processing of an extracellular lipase from the yeast Yarrowia lipolytica. Enzyme Microb Technol 38:756–759

    CAS  Google Scholar 

  • Forde J, Vakurov A, Gibson TD, Millner P, Whelehan M, Marisin IW, Ó’Fágáin C (2010) Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates. J Mol Cat B 66:203–209

    CAS  Google Scholar 

  • Fujita Y, Awaji H, Shimoto H, Sharyou M, Heldt-Hansen HP (1992) Lipase-catalyzed ester hydrolysis. Patent WO/92/18638

    Google Scholar 

  • Gai SA, Wittrup KD (2007) Yeast surface display for protein engineering and characterization. Curr Opion Struct Biol 17:467–473

    CAS  Google Scholar 

  • Gastaldi S, Escoubet S, Vanthuyne N, Gil G, Bertrand MP (2007) Dynamic kinetic resolution of amines involving biocatalysis and in situ free radical mediated racemization. Org Lett 9:837–839

    PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Google Scholar 

  • Gawlitza K, Wu Ch, Georgieva R, Wang D, Ansorge-Schumacher MB, von Klitzing R (2012) Immobilization of lipase B within micron-sized poly-N-isopropylacrylamide hydrogel particles by solvent exchange. Phys Chem Chem Phys 14:9594–9600

    PubMed  CAS  Google Scholar 

  • Ghanem A (2007) Trends in lipase catalyzed asymmetric access to enantiomerically pure/enriched compounds. Tetrahedron 63:1721–1754

    CAS  Google Scholar 

  • Gill I, Patel R (2006) Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5- dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor saxagliptin. Bioorg Med Chem Lett 16:705–709

    PubMed  CAS  Google Scholar 

  • Goli SAH, Sari MM, Kadivar M (2008) Enzymatic interesterification of structured lipids containing conjugated linoleic acid with palm stearin for possible margarine production. Eur J Lipid Sci Technol 110:1102–1108

    CAS  Google Scholar 

  • Goncalves C, Lopes M, Ferreira JP, Belo I (2009) Biological treatment of olive mill wastewater by non-conventional yeast. Biores Technol 100:3759–3763

    CAS  Google Scholar 

  • Gotor-Fernandez V, Busto E, Gotor V (2006) Candida antarctica lipase B: an ideal biocatalyst for the preparation of nitrogenated organic compounds. Adv Synth Catal 348:797–812

    CAS  Google Scholar 

  • Grillitsch K, Daum G (2011) Triacylglycerols lipases of the yeast. Front Biol 6:219–230

    CAS  Google Scholar 

  • Gruber CC, Pleiss J (2012) Lipase B from Candida antarctica binds to hydrophobic substrate–water interfaces via hydrophobic anchors surrounding the active site entrance. J Mol Catal B 84:48–54

    CAS  Google Scholar 

  • Guieysse D, Sandoval G, Faure L, Nicaud JM, Monsan P, Marty A (2004) New efficient lipase from Yarrowia lipolytica for the resolution of 2-bromo-arylacetic acid esters. Tetrahedron: Asymmetry 15:3539–3543

    Google Scholar 

  • Gupta S, Pandey MK, Levon K, Haag R, Watterson AC, Parmar VS, Sharma SK (2010) Biocatalytic approach for the synthesis of glycerol-based macroamphiphiles and their self-assembly to micellar nanotransporters. Macromol Chem Phys 211:239–244

    CAS  Google Scholar 

  • Gutarra MLE, Romero O, Abian O, Torres FAG, Freire DMG, Castro AM, Guisan JM, Palomo JM (2011) Enzyme surface glycosylation in the solid phase: improved activity and selectivity of Candida antarctica lipase B. Chem Cat Chem 3:1902–1910

    CAS  Google Scholar 

  • Habeych DI, Juhl PB, Pleiss J, Venegas D, Eggink G, Boeriu CG (2011) Biocatalytic synthesis of polyesters from sugar- based building blocks using immobilized Candida antarctica lipase B. J Mol Catal B 71:1–9

    CAS  Google Scholar 

  • Hama S, Tamalampudi S, Yoshida A, Tamadani N, Kuratani N, Noda H, Fukuda H, Kondo A (2011) Enzymatic packed-bed reactor integrated with glycerol-separating system for solvent-free production of biodiesel fuel. Biochem Eng J 55:66–71

    CAS  Google Scholar 

  • Hasan F, Shah AA, Javed S, Hameed H (2010) Enzymes used in detergents: lipases. African J Biotechnol 9:4836–4844

    CAS  Google Scholar 

  • Hauer B (2012) An enzymatically catalyzed method of preparing mono-acylated polyols. EU Patent EP 2478094

    Google Scholar 

  • Hauer B, Roberts SM (2004) Biocatalysis and biotransformation: Probing the potential usefulness and the mechanisms of action of some novel biocatalysts. Curr Opin Chem Biol 8:103–105

    CAS  Google Scholar 

  • Henke E, Pleiss J, Bornscheuer UT (2002) Activity of lipases and esterases towards tertiary alcohols: insights into structure-function relationships. Angew Chem Int Ed Engl 41:3211–3213

    PubMed  CAS  Google Scholar 

  • Hernandez-Martin E, Otero C (2008) Different enzyme requirements for the synthesis of biodiesel: Novozym (R) 435 and Lipozyme (R) TL IM. Biores Technol 99:277–286

    CAS  Google Scholar 

  • Hilterhaus L, Minow B, Muller J, Berheide M, Quitmann H, Katzer M, Thum O, Antranikian G, Zeng AP, Liese A (2008) Practical application of different enzymes immobilized on sepabeads. Bioprocess Biosyst Eng 31:163–171

    PubMed  CAS  Google Scholar 

  • Hogberg HE (2008) Exploiting enantioselectivity of hydrolases in organic solvents. In: Carrea G, Riva S (eds) Organic synthesis with enzymes in non-aqueous media. Wiley-VCH, Weinheim, pp 73–112

    Google Scholar 

  • Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications an overview. Appl Biochem Biotechnol 118:155–170

    PubMed  CAS  Google Scholar 

  • Hughes SR, Moser BR, Robinson S, Cox EJ, Harmsen AJ, Friesen JA, Bischoff KM, Jones MA, Pinkelman R, Bang SS, Tasaki K, Doll KM, Qureshi N, Liu S, Saha BC, Jackson JS, Cotta MA, Rich JO, Caimi P (2012) Synthetic resin-bound truncated Candida antarctica lipase B for production of fatty acid alkyl esters by transesterification of corn and soybean oils with ethanol or butanol. J Biotechnol 159:69–77

    PubMed  CAS  Google Scholar 

  • Jayawardena MB (2009) Stability and activity of self-cleaning lipase based paints. Dissertation. The University of New South Wales, Sydney

    Google Scholar 

  • Jiang Z-B, Song H-T, Gupta N, Ma LX, Wu ZB (2007) Cell surface display of functionally active lipases from Yarrowia lipolytica in Pichia pastoris. Protein Expr Purif 56:35–39

    PubMed  CAS  Google Scholar 

  • Jin Z, Ntwali J, Han SY, Zheng SP, Lin Y (2012) Production of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cells in a batch reactor. J Biotechnol 159:108–114

    PubMed  CAS  Google Scholar 

  • Juhl PB, Doderer K, Hollmann F, Thum O, Pleiss J (2010) Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters. J Biotechnol 150:474–480

    PubMed  CAS  Google Scholar 

  • Kahveci D, Xu X (2012) Bioimprinted immobilization of Candida antarctica lipase A for concentration of omega-3 polyunsaturated fatty acids. J Am Oil Chem Soc 89:1839–1845

    CAS  Google Scholar 

  • Karabulut I, Durmaz G, Hayaloglu AA (2010) C18 Unsaturated fatty acid selectivity of lipases during the acidolysis reaction between tripalmitin and oleic, linoleic, and linolenic acids. J Am Oil Chem Soc 87:1301–1307

    CAS  Google Scholar 

  • Kim HR, Kim IH, Hou CT, Kwon KI, Shin BS (2010) Production of novel cold-active lipase from Pichia lynferdii Y-7723. J Agric Food Chem 58:1322–1326

    PubMed  CAS  Google Scholar 

  • Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6:446–451

    CAS  Google Scholar 

  • Kobayashi T, Ehara T, Mizuoka T (2010) Efficient synthesis of 6-O-palmitoyl-1,2-O-isopropylidene-D-glucofuranose in an organic solvent system by lipase-catalyzed esterification. Biotechnol Lett 32:1679–1684

    PubMed  CAS  Google Scholar 

  • Kondo A (2008) Highly active arming yeast having highly active lipase B in cell surface layer, method for producing the same and highly active lipase B. JP 2008092849

    Google Scholar 

  • Koops BC, Papadimou E, Verheij HM, Slotboom AJ, Egmond MR (1999) Activity and stability of chemically modified Candida antarctica lipase B adsorbed on solid supports. Appl Microbiol Biotechnol 52:791–796

    PubMed  CAS  Google Scholar 

  • Krishna H, Persson MM, Bornscheuer UT (2002) Enantioselective transesterification of a tertiary alcohol by lipase A from Candida antarctica. Tetrahedron Asymmetry 13:2693–2696

    Google Scholar 

  • Lang DM, Jang N, Wang WK, Shen YF, Yang B, Wang YH (2011) A novel cold-active lipase from Candida albicans: cloning expressions, characterization of recombinant enzyme. Int J Mol Sci 12:3950–3965

    Google Scholar 

  • Lee DE, Park KM, Choi SJ, Chang PS (2012) Optimal production and structural characterization of erythorbyl laurate obtained through lipase-catalyzed esterification. Food Sci Biotechnol 21:1209–1215

    CAS  Google Scholar 

  • Lopez-Serrano P, Cao L, van Rantwijk F, Sheldon RA (2002) Crosslinked enzyme aggregates with enhanced activity: application to lipases. Biotechnol Lett 24:1379–1383

    CAS  Google Scholar 

  • Lund H, Nilsson T, Pickard T (1997), Treatment of fabrics. Patent WO/97/04160

    Google Scholar 

  • Lutz S (2004) Engineering lipase B from Candida antarctica. Tetrahedron: Asymmetry 15:2743–2748

    Google Scholar 

  • Magnusson A, Hult K, Holmquist M (2001) Creation of an enantioselective hydrolase by engineered substrate assisted catalysis. J Am Chem Soc 123:4354–4355

    PubMed  CAS  Google Scholar 

  • Martinelle M, Holmquist M, Hult K (1995) On the interfacial activation of Candida antarctica lipase A as compared with Humicola lanuginosa lipase. Biochim Biophys Acta 125:272–276

    Google Scholar 

  • Martinelle M, Hult K (1995) Kinetics and acyl transfer reaction in organic media catalyzed by Candida antarctica lipase B. Biochim Biophys Acta 1251:191–197

    PubMed  Google Scholar 

  • Matsukura M, Fujita Y, Abo M, Itami R (1992) Methods of avoiding pitch troubles by use of thermostable lipase. Patent WO/92/13130

    Google Scholar 

  • Matsumoto T, Ito M, Fukuda H, Kondo A (2004) Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst. Appl Microbiol Biotechnol 64:481–485

    PubMed  CAS  Google Scholar 

  • Miletić N, Loos K (2009) Over-stabilization of chemically modified and cross-linked Candida antarctica lipase B using various epoxides and diepoxides. Australian J Chem 62:799–805

    Google Scholar 

  • Miletic N, Rohandi R, Vukovic Z, Nastasovic A, Loos K (2009) Surface modification of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins for improved Candida antarctica lipase B immobilization. React Funct Polym 69:68–75

    CAS  Google Scholar 

  • Miletic N, Abetz V, Ebert K, Loos K (2010) Immobilization of Candida antarctica lipase B on polystyrene nanoparticles. Macromol Rapid Commun 31:71–74

    PubMed  CAS  Google Scholar 

  • Naik S, Basu A, Saikia R, Madan B, Paul P, Chaterjee R, Brask J, Svendsen A (2010) Lipases for use in industrial biocatalysis: specificity of selected structural groups of lipases. J Mol Cat B 65:18–23

    CAS  Google Scholar 

  • Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung MH, Fukuda H, Kondo A (2006) Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 70:564–572

    PubMed  CAS  Google Scholar 

  • Ni Z, Lin X (2013) Insight into substituent effects in Cal-B catalyzed transesterification by combining experimental and theoretical approaches. J Mol Model 19:349–358

    PubMed  CAS  Google Scholar 

  • Omar H, Nisho N, Nagai S (1987) Production of a thermostable lipase by Humicola lanuginosa grown on sorbitol-corn steep liquor medium. Agr Biol Chem 51:2145–2151

    CAS  Google Scholar 

  • Paal T (2011) A process for the preparation of rosuvastatin intermediate. Patent WO/2011/106546

    Google Scholar 

  • Palomo JM, Fernandez-Lorente G, Guisan JM, Fernández-Lafuente R (2007) Modulation of immobilized lipase enantioselectivity via chemical amination. Adv Synth Catal 349:1119–1127

    CAS  Google Scholar 

  • Pande G, Akoh C (2012) Enzymatic synthesis of trans-free structured margarine fat analogues using stearidonic acid soybean and high stearate soybean oils. J Am Oil Chem Soc 89:1473–1484

    CAS  Google Scholar 

  • Park CG, Kwon MA, Song JK, Kim DM (2011) Cell-free synthesis and multifold screening of Candida antarctica lipase B (CalB) variants after combinatorial mutagenesis of hot spots. Biotech Prog 27:47–53

    CAS  Google Scholar 

  • Patel RN (2008) Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord Chem Rev 252:659–701

    CAS  Google Scholar 

  • Patkar SA, Björkling F, Zundel M, Schulein M, Svendsen A, Heldt-Hansen HP, Gormsen E (1993) Purification of two lipases from Candida antarctica and their inhibition by various inhibitors. Ind J Chem Sect B 32:76–80

    Google Scholar 

  • Patkar SA, Svendsen A, Kirk O, Clausen IG, Borch K (1997) Effect of mutations in non-consensus Thr-X-Ser- X-Gly in Candida antarctica lipase B on lipase specificity, specific activity and thermostability. J Mol Catal B 3:51–54

    CAS  Google Scholar 

  • Pfeffer J (2008) The lipases from Candida antarctica: cloning, expression and their application in the synthesis of structured lipids. Dissertation, University of Stuttgart

    Google Scholar 

  • Pfeffer J, Richter S, Nieveler J, Hansen CE, Rhlid RB, Schmid RD, Rusnak M (2006) High yield expression of lipase A from Candida antarctica in the methylotrophic yeast Pichia pastoris and its purification and characterisation. Appl Microbiol Biotechnol 72:931–938

    PubMed  CAS  Google Scholar 

  • Pfeffer J, Rusnak M, Hansen CE, Rhlid RB, Schmid RD, Maurer SC (2007) Functional expression of lipase A from Candida antarctica in Escherichia coli—a prerequisite for highthroughput screening and directed evolution. J Mol Cat B 45:62–67

    CAS  Google Scholar 

  • Pierre SJ, Thies JC, Dureault A, Cameron NR, van Hest JCM, Carette N, Michon T, Waberskirch R (2006) Covalent enzyme immobilization onto photopolymerized highly porous monoliths. Adv Mat 18:1822–1826

    CAS  Google Scholar 

  • Pleiss J, Fischer M, Schmidt RD (1998) Anatomy of lipases binding sites: the sessile fatty acids binding site. Chem Phys Lipids 93:67–80

    PubMed  CAS  Google Scholar 

  • Qian X, Wu Q, Xu F, Lin X (2011) Amphiphilic mPEG-block-poly(profen amide-co-esters)copolymers: one pot biocatalytic synthesis, self assembly in water and drug release. Polymer 52:5479–5485

    CAS  Google Scholar 

  • Rashid FAA, Rahim RA, Ibrahim D (2010) Identification of lipase—producing psychrophilic yeast, Leucosporidium sp. Internet J Microbiol 9(1), doi: 10.5580/1215

  • Risso M, Mazzini M, Kroger S, Saenz-Mendez P, Seoane G, Gamenara D (2012) Microwave-assisted solvent-free lipase catalyzed transesterification of β-ketoesters. Green Chem Lett Rev 5:539–543

    CAS  Google Scholar 

  • Rodriguez-Mata M, Gotor-Fernandez V, Gonzalez-Sabin J, Rebolledo F, Gotor V (2011) Straightforward preparation of biologically active 1-aryl and 1-heteroaryl-propan-2-amines in enantioenriched form. Org Biomol Chem 9:2274–2278

    PubMed  CAS  Google Scholar 

  • Ruiz M, Galvis M, Barbosa O, Ortiz C, Torres R, Fernandez-Lafuente R (2013) Solid-phase modification with succinic polyethyleneglycol of aminated lipase B from Candida antarctica: Effect of the immobilization protocol on enzyme catalytic properties. J Mol Cat B 87:75–82

    CAS  Google Scholar 

  • Sandström AG, Wikmark Y, Engström K, Nyhlén J, Bäckvall JE (2012) Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proc Natl Acad Sci USA 109:78–83

    PubMed  Google Scholar 

  • Schilke KF, Kelly C (2008) Activation of immobilized lipase in non-aqueous system by hydrophobic poly-DL-tryptophan tethers. Biotechnol Bioeng 101:9–18

    PubMed  CAS  Google Scholar 

  • Schmidt M, Barbayianni E, Fotakopoulou I (2005) Enzymatic removal of carboxyl protecting groups. 1. Cleavage of the tertbutyl moiety. J Org Chem 70:3737–3740

    PubMed  CAS  Google Scholar 

  • Sebrao D, Sa MM, Nascimento MG (2011) Regioselective acylation of D-ribono-1,4-lactone catalyzed by lipases. Process Biochem 46:551–556

    CAS  Google Scholar 

  • Seo H-S, Kim S-E, Han K-Y, Park JS, Kim YH, Sim SJ, Lee J (2009) Functional fusion mutant of Candida antarctica lipase B (CalB) expressed in Escherichia coli. Biochim Biophys Acta 1794:519–525

    PubMed  CAS  Google Scholar 

  • Séverac E, Galya O, Turond F, Pantel CA, Condoret JS, Monsan P, Marty A (2011) Selection of CalB immobilization method to be used in continuous oil transesterification: analysis of the economical impact. Enzyme Microb Technol 48:61–70

    PubMed  Google Scholar 

  • Sharma UK, Sharma N, Kumar R, Kumar R, Shinha AK (2009) Biocatalytic promiscuity of lipase in chemoselective oxidation of aryl alcohols/acetates: a unique synergism of CAL-B and [hmim]Br for metal-free H2O2 activation. Org Lett 11:4846–4848

    PubMed  CAS  Google Scholar 

  • Siddiqui KS, Cavicchioli R (2005) Improved thermal stability of the cold-adapted lipase B from Candida antarctica following chemical modification with oxidized polysaccharides. Extremophiles 9:471–476

    PubMed  CAS  Google Scholar 

  • Skjøt M, De Maria L, Chatterjee R, Svendsen A, Patkar SA, Ostergaard PR, Brask J (2009) Understanding the plasticity of the α/β hydrolase fold: lid swapping on the Candida antarctica lipase B results in chimeras with interesting biocatalytic properties. Chem Bio Chem 10:520–527

    PubMed  Google Scholar 

  • Song JK (2012) Candida antarctica-derived novel lipase variant with enhanced enzyme activity. KR 1020120013462 (Korea Research Institute of Chemical Technology)

    Google Scholar 

  • Sotoft LF, Rong BG, Christensen KV, Norddahl B (2010) Process simulation and economical evaluation of enzymatic biodiesel production plant. Biores Technol 101:5266–5274

    CAS  Google Scholar 

  • Su G, Zhang X, Lin Y (2010) Surface display of active lipase in Pichia pastoris using Sed1 as an anchor protein. Biotechnol Lett 32:1131–1136

    PubMed  CAS  Google Scholar 

  • Sutton PW, Adams JP, Archer I, Auriol D, Avi M, Branneby C, Collis AJ, Dumas B, Eckrich T, Fotheringham I, ter Halle R, Hanlon S, Hansen M, Holt-Tiffin KE, Howard RM, Huisman GW, Iding H, Kiewel K, Kittelmann M, Kupfer E, Laumen K, Lefèvre F, Luetz S, Mangan DP, Martin VA, Meyer H-P, Moody TS, Osorio-Lozada A, Robins K, Snajdrova R, Truppo MD, Wells A, Wirz B, Wong JW (2012) Biocatalysis in the fine chemical and pharmaceutical industries. In: Whittall J, Sutton PW (eds) Practical methods for biocatalysis and biotransformations 2. Wiley, New York, pp 2–60

    Google Scholar 

  • Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543:223–238

    PubMed  CAS  Google Scholar 

  • Tan T, Lu J, Nie K, Den L, Wang F (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634

    PubMed  CAS  Google Scholar 

  • Tan H, Feng W, Ji P (2012) Lipase immobilized on magnetic multi-walled carbon nanotubes. Biores Technol 115:172–176

    CAS  Google Scholar 

  • Torre O, Busto B, Gotor-Fernandez V, Gotor V (2007) Enzymatic preparation of novel aminoalkylpyridines using lipases in organic solvents. Adv Synth Catal 349:1481–1488

    CAS  Google Scholar 

  • Truppo M (2012) Process for immobilization of Candida antarctica lipase B. Patent WO/2012/036973

    Google Scholar 

  • Turchetti B, Thomas Hall SR, Connell LB, Branda E, Buzzini P, Theelen B, Müller WH, Boekhout T (2011) Psychrophilic yeasts from antarctica and European glaciers: description of Glaciozyma gen. nov, Glaciozyma martini sp. nov. and Glaciozyma watsonii sp. nov. Extremophiles 15:573–586

    PubMed  CAS  Google Scholar 

  • Turkan A, Yılmaz F, Kücük AÇ, Őzdemir Y (2011) One-pot two-step lipase-catalyzed synthesis of αω-thiophene-capped poly(ε-caprolactone) macromonomers and their use in electropolymerization. Polym Bull 67:1483–1498

    Google Scholar 

  • Tzialla AA, Pavlidis IV, Felicissimo MP, Rudolf P, Gournis D, Stamatis H (2010) Lipase immobilization on smectite nanoclays. Characterization and application to the epoxidation of α-pinene. Biores Technol 101:1587–1594

    CAS  Google Scholar 

  • Ursoiu A, Paul C, Kurtán T, Péter F (2012) Sol-gel entrapped Candida antarctica lipase B—a biocatalyst with excellent stability for kinetic resolution of secondary alcohols. Molecules 17:13045–13061

    PubMed  CAS  Google Scholar 

  • Van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    PubMed  Google Scholar 

  • Verger R (1997) Interfacial activation of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    CAS  Google Scholar 

  • Wang ZY, Zong MH (2009) Recognition of acyl donor by lipase CAL-B in the acylation of 6- azauridine. Biotechnol Prog 25:784–791

    PubMed  Google Scholar 

  • Wang HY, Zhang WW, Wang N, Li C, Li K, Yu XQ (2010) Biocatalytic synthesis and in vitro release of biodegradable linear polyesters with pendant ketoprofen. Biomacromolecules 11:3290–3293

    PubMed  CAS  Google Scholar 

  • Wei P, Bai L, Song W, Hao G (2009) Characterization of two soil metagenome-derived lipases with high specificity for p-nitrophenyl palmitate. Arch Microbiol 191:233–240

    PubMed  CAS  Google Scholar 

  • Wu L, Ge G, Wan J (2009) Biodegradation of oil wastewater by free and immobilized Yarrowia lipolytica W29. J Environ Sci (China) 21:237–242

    CAS  Google Scholar 

  • Yadav KNS, Adsul MG, Bastawde KB, Jadhav DD, Thulasiram HV, Gokhale DV (2011) Differential induction, purification and characterization of cold-active lipase from Yarrowia lipolytica NCIM 3639 Biores Technol 102:10663–10670

    Google Scholar 

  • Yan Y, Zhang X, Chen D (2013) Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids. Biores Technol 131:179–187

    CAS  Google Scholar 

  • Yu M, Lange S, Richter S, Tan T, Schmid RD (2007) High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization. Protein Expression Purif 53:255–263

    CAS  Google Scholar 

  • Zaliha RN, Salleh AB, Basri M, Mohamad Ali MSB (2012) Cold active enzyme and method thereof. US Patent 2012/0058514 A1

    Google Scholar 

  • Zhao H, Song Z (2010) Migration of reactive trace compounds from Novozym®435 into organic solvents and ionic liquids. Biochem Eng J 49:113–118

    CAS  Google Scholar 

  • Zhao H, Zheng L, Wang X, Liu Y, Xu L, Yan Y (2011) Cloning, expression and characterization of a new lipase from Yarrowia lipolytica. Biotechnol Lett 33:2445–2452

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Turkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szczęsna-Antczak, M., Kamińska, J., Florczak, T., Turkiewicz, M. (2014). Cold-Active Yeast Lipases: Recent Issues and Future Prospects. In: Buzzini, P., Margesin, R. (eds) Cold-adapted Yeasts. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39681-6_16

Download citation

Publish with us

Policies and ethics