Skip to main content

Task Allocation in Ant Colonies

  • Conference paper
Distributed Computing (DISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8784))

Included in the following conference series:

Abstract

In this paper we propose a mathematical model for studying the phenomenon of division of labor in ant colonies. Inside this model we investigate how simple task allocation mechanisms can be used to achieve an optimal division of labor.

We believe the proposed model captures the essential biological features of division of labor in ant colonies and is general enough to study a variety of different task allocation mechanisms. Within this model we propose a distributed randomized algorithm for task allocation that imposes only minimal requirements on the ants; it uses a constant amount of memory and relies solely on a primitive binary feedback function to sense the current labor allocation. We show that with high probability the proposed algorithm converges to a near-optimal division of labor in time which is proportional to the logarithm of the colony size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Camazine, S.: Self-organization in biological systems. Princeton University Press (2003)

    Google Scholar 

  2. Seeley, T.D.: The wisdom of the hive: the social physiology of honey bee colonies. Harvard University Press (2009)

    Google Scholar 

  3. Dornhaus, A.: Specialization does not predict individual efficiency in an ant. PLoS Biology 6(11), e285 (2008)

    Google Scholar 

  4. Dornhaus, A., et al.: Why do not all workers work? Colony size and workload during emigrations in the ant Temnothorax albipennis. Behavioral Ecology and Sociobiology 63(1), 43–51 (2008)

    Article  Google Scholar 

  5. Pinter-Wollman, N., et al.: How is activity distributed among and within tasks in Temnothorax ants? Behavioral Ecology and Sociobiology 66(10), 1407–1420 (2012)

    Article  Google Scholar 

  6. Beekman, M., Sumpter, D.J.T., Ratnieks, F.L.W.: Phase transition between disordered and ordered foraging in Pharaoh’s ants. Proceedings of the National Academy of Sciences 98(17), 9703–9706 (2001)

    Article  Google Scholar 

  7. Sumpter, D., Pratt, S.: A modelling framework for understanding social insect foraging. Behavioral Ecology and Sociobiology 53(3), 131–144 (2003)

    Google Scholar 

  8. Myerscough, M.R., Oldroyd, B.P.: Simulation models of the role of genetic variability in social insect task allocation. Insectes Sociaux 51(2), 146–152 (2004)

    Article  Google Scholar 

  9. Lanan, M.C., et al.: The trail less traveled: individual decision-making and its effect on group behavior. PloS One 7(10), e47976 (2012)

    Google Scholar 

  10. Robinson, G.E.: Regulation of division of labor in insect societies. Annual Review of Entomology 37(1), 637–665 (1992)

    Article  Google Scholar 

  11. Seid, M.A., Traniello, J.F.: Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): a new perspective on temporal polyethism and behavioral plasticity in ants. Behavioral Ecology and Sociobiology 60(5), 631–644 (2006)

    Article  Google Scholar 

  12. Wilson, E.O.: Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta). Behavioral Ecology and Sociobiology 7(2), 157–165 (1980)

    Article  Google Scholar 

  13. Jandt, J.M., Dornhaus, A.: Spatial organization and division of labour in the bumblebee Bombus impatiens. Animal Behaviour 77(3), 641–651 (2009)

    Article  Google Scholar 

  14. Robinson, G.E., Grozinger, C.M., Whitfield, C.W.: Sociogenomics: social life in molecular terms. Nature Reviews Genetics 6(4), 257–270 (2005)

    Article  Google Scholar 

  15. Sendova-Franks, A.B., Franks, N.R.: Spatial relationships within nests of the ant Leptothorax unifasciatus and their implications for the division of labour. Animal Behaviour 50(1), 121–136 (1995)

    Article  Google Scholar 

  16. Tofts, C., Franks, N.R.: Doing the right thing: ants, honeybees and naked mole-rats. Trends in Ecology & Evolution 7(10), 346–349 (1992)

    Article  Google Scholar 

  17. Toth, A.L., Robinson, G.E.: Worker nutrition and division of labour in honeybees. Animal Behaviour 69(2), 427–435 (2005)

    Article  Google Scholar 

  18. Gordon, D.M.: The organization of work in social insect colonies. Complexity 8(1), 43–46 (2002)

    Article  Google Scholar 

  19. Weidenmüller, A.: The control of nest climate in bumblebee (Bombus terrestris) colonies: interindividual variability and self reinforcement in fanning response. Behavioral Ecology 15(1), 120–128 (2004)

    Article  Google Scholar 

  20. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L.: Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proceedings of the Royal Society of London. Series B: Biological Sciences 263(1376), 1565–1569 (1996)

    Article  Google Scholar 

  21. Ravary, F., et al.: Individual experience alone can generate lasting division of labor in ants. Current Biology 17(15) (2007)

    Google Scholar 

  22. Feinerman, O., et al.: Collaborative search on the plane without communication. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing, pp. 77–86. ACM (2012)

    Google Scholar 

  23. Feinerman, O., Korman, A.: Memory lower bounds for randomized collaborative search and implications for biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 61–75. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Korman, A.: Theoretical distributed computing meets biology. In: Proceedings of the 4th International Workshop on Theoretical Aspects of Dynamic Distributed Systems, p. 7. ACM (2012)

    Google Scholar 

  25. Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between Selection Complexity and Performance when Searching the Plane without Communication. In: Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing. Springer (2014)

    Google Scholar 

  26. Afek, Y., et al.: A biological solution to a fundamental distributed computing problem. Science 331(6014), 183–185 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM (JACM) 20(1), 46–61 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dertouzos, M.L., Mok, A.K.: Multiprocessor online scheduling of hard-real-time tasks. IEEE Transactions on Software Engineering 15(12), 1497–1506 (1989)

    Article  Google Scholar 

  29. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor systems. ACM Computing Surveys (CSUR) 43(4), 35 (2011)

    Article  Google Scholar 

  30. Fiat, A., Rabani, Y., Ravid, Y.: Competitive k-server algorithms. In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science, pp. 454–463. IEEE (1990)

    Google Scholar 

  31. Bartal, Y., Rosen, A.: The distributed k-server problem-a competitive distributed translator for k-server algorithms. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pp. 344–353. IEEE (1992)

    Google Scholar 

  32. Georgiou, C., Shvartsman, A.A.: Cooperative Task-Oriented Computing: Algorithms and Complexity. Synthesis Lectures on Distributed Computing Theory 2(2), 1–167 (2011)

    Article  Google Scholar 

  33. Garey Michael, R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-completeness. WH Freeman & Co., San Francisco (1979)

    MATH  Google Scholar 

  34. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assignment problem. Mathematical Programming 62(1-3), 461–474 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Deneubourg, J.-L., et al.: Self-organization mechanisms in ant societies (II): learning in foraging and division of labor. In: From Individual to Collective Behavior in Social Insects, p. 177 (1987)

    Google Scholar 

  36. Merkle, D., Middendorf, M.: Dynamic polyethism and competition for tasks in threshold reinforcement models of social insects. Adaptive Behavior 12(3-4), 251–262 (2004)

    Article  Google Scholar 

  37. Plowright, R.C., Plowright, C.M.S.: Elitism in social insects: a positive feedback model. In: Interindividal Behavioral Variability in Social Insects, pp. 419–431 (1988)

    Google Scholar 

  38. Theraulaz, G., Bonabeau, E., Denuebourg, J.N.: Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society of London. Series B: Biological Sciences 265(1393), 327–332 (1998)

    Article  Google Scholar 

  39. Tripet, F., Nonacs, P.: Foraging for Work and Age-Based Polyethism: The Roles of Age and Previous Experience on Task Choice in Ants. Ethology 110(11), 863–877 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cornejo, A., Dornhaus, A., Lynch, N., Nagpal, R. (2014). Task Allocation in Ant Colonies. In: Kuhn, F. (eds) Distributed Computing. DISC 2014. Lecture Notes in Computer Science, vol 8784. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45174-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45174-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45173-1

  • Online ISBN: 978-3-662-45174-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics