Skip to main content

The Molecular Biology of Peste des Petits Ruminants Virus

  • Chapter
  • First Online:
Peste des Petits Ruminants Virus

Abstract

Peste des petits ruminants virus (PPRV) is a negative-strand RNA virus with a monosegmented genome of length 15,948 and containing 6 genes. This chapter reviews our current knowledge of the structure and function of the genome and the six structural and three non-structural proteins produced by the virus. Although PPRV has itself been relatively little studied, the similarities between morbilliviruses allow us to deduce much about the life cycle of the virus at the molecular level. At the same time, it has become clear that there is a lot about the interaction of the virus with the host cell, and particularly the factors that restrict the host range in which the virus can cause disease, that remain to be worked-out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adombi CM, Lelenta M, Lamien CE, Shamaki D, Koffi YM, Traore A, Silber R, Couacy-Hymann E, Bodjo SC, Djaman JA, Luckins AG, Diallo A (2011) Monkey CV1 cell line expressing the sheep-goat SLAM protein: a highly sensitive cell line for the isolation of peste des petits ruminants virus from pathological specimens. J Virol Methods 173:306–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alkhatib G, Roder J, Richardson C, Briedis D, Weinberg R, Smith D, Taylor J, Paoletti E, Shen SH (1994a) Characterization of a cleavage mutant of the measles virus fusion protein defective in syncytium formation. J Virol 68:6770–6774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alkhatib G, Shen SH, Briedis D, Richardson C, Massie B, Weinberg R, Smith D, Taylor J, Paoletti E, Roder J (1994b) Functional analysis of N-linked glycosylation mutants of the measles virus fusion protein synthesized by recombinant vaccinia virus vectors. J Virol 68:1522–1531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson DE, von Messling V (2008) Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J Virol 82:10510–10518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn S, Randall RE (2004) The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci USA 101:17264–17269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bailey D, Banyard A, Dash P, Ozkul A, Barrett T (2005) Full genome sequence of peste des petits ruminants virus, a member of the Morbillivirus genus. Virus Res 110:119–124

    Article  CAS  PubMed  Google Scholar 

  • Bailey D, Chard LS, Dash P, Barrett T, Banyard AC (2007) Reverse genetics for peste-des-petits-ruminants virus (PPRV): promoter and protein specificities. Virus Res 126:250–255

    Article  CAS  PubMed  Google Scholar 

  • Bankamp B, Horikami SM, Thompson PD, Huber M, Billeter M, Moyer SA (1996) Domains of the measles virus N protein required for binding to P protein and self-assembly. Virology 216:272–277

    Article  CAS  PubMed  Google Scholar 

  • Bankamp B, Wilson J, Bellini WJ, Rota PA (2005) Identification of naturally occurring amino acid variations that affect the ability of the measles virus C protein to regulate genome replication and transcription. Virology 336:120–129

    Article  CAS  PubMed  Google Scholar 

  • Baron MD (2011) Rinderpest and peste des petits ruminants viruses. In: Samal SK (ed) The biology of paramyxoviruses. Caister Academic Press, Norfolk, pp 293–339

    Google Scholar 

  • Baron MD, Barrett T (1995) Sequencing and analysis of the nucleocapsid (N) and polymerase (L) genes and the terminal extragenic domains of the vaccine strain of rinderpest virus. J Gen Virol 76:593–602

    Article  CAS  PubMed  Google Scholar 

  • Baron MD, Barrett T (1997) Rescue of rinderpest virus from cloned cDNA. J Virol 71:1265–1271

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baron MD, Barrett T (2000) Rinderpest viruses lacking the C and V proteins show specific defects in growth and transcription of viral RNAs. J Virol 74:2603–2611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baron MD, Shaila MS, Barrett T (1993) Cloning and sequence analysis of the phosphoprotein gene of rinderpest virus. J Gen Virol 74:299–304

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Underwood B (1985) Comparison of messenger RNAs induced in cells infected with each member of the morbillivirus group. Virology 145:195–199

    Article  CAS  PubMed  Google Scholar 

  • Bellini WJ, Englund G, Rozenblatt S, Arnheiter H, Richardson CD (1985) Measles virus P gene codes for two proteins. J Virol 53:908–919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhella D, Ralph A, Yeo RP (2004) Conformational flexibility in recombinant measles virus nucleocapsids visualised by cryo-negative stain electron microscopy and real-space helical reconstruction. J Mol Biol 340:319–331

    Article  CAS  PubMed  Google Scholar 

  • Birch J, Juleff N, Heaton MP, Kalbfleisch T, Kijas J, Bailey D (2013) Characterization of ovine Nectin-4, a novel peste des petits ruminants virus (PPRV) receptor. J Virol 87:4756–4761

    Google Scholar 

  • Blixenkrone-Möller M, Sharma B, Varsanyi TM, Hu A, Norrby E, Kovamees J (1992) Sequence analysis of the genes encoding the nucleocapsid protein and phosphoprotein (P) of phocid distemper virus, and editing of the P gene transcript. J Gen Virol 73(Pt 4):885–893

    Article  PubMed  Google Scholar 

  • Blumberg BM, Chan J, Udem S (1991) Function of Paramyxovirus 3′ and 5′ end sequences in theory and practice. In: Kinsbury DW (ed) The Paramyxoviruses. Plenum Press, New York, pp 235–247

    Chapter  Google Scholar 

  • Blumberg BM, Crowley JC, Silverman JI, Mennona J, Cook SD, Dowling PC (1988) Measles virus L protein evidences elements of ancestral RNA polymerase. Virology 164:487–497

    Article  CAS  PubMed  Google Scholar 

  • Bolt G, Pedersen IR, Blixenkrone-Moller M (1999) Processing of N-linked oligosaccharides on the measles virus glycoproteins: importance for antigenicity and for production of infectious virus particles. Virus Res 61:43–51

    Article  CAS  PubMed  Google Scholar 

  • Bourhis JM, Receveur-Brechot V, Oglesbee M, Zhang X, Buccellato M, Darbon H, Canard B, Finet S, Longhi S (2005) The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded. Protein Sci 14:1975–1992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boxer EL, Nanda SK, Baron MD (2009) The rinderpest virus non-structural C protein blocks the induction of type 1 interferon. Virology 385:134–142

    Article  CAS  PubMed  Google Scholar 

  • Brown DD, Collins FM, Duprex WP, Baron MD, Barrett T, Rima BK (2005a) “Rescue” of mini-genomic constructs and viruses by combinations of morbillivirus N, P and L proteins. J Gen Virol 86:1077–1081

    Article  CAS  PubMed  Google Scholar 

  • Brown DD, Rima BK, Allen IV, Baron MD, Banyard AC, Barrett T, Duprex WP (2005b) Rational attenuation of a morbillivirus by modulating the activity of the RNA-dependent RNA polymerase. J Virol 79:14330–14338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buckland R, Gerald C, Barker R, Wild TF (1987) Fusion glycoprotein of measles virus: nucleotide sequence of the gene and comparison with other paramyxoviruses. J Gen Virol 68(Pt 6):1695–1703

    Article  CAS  PubMed  Google Scholar 

  • Buckland R, Malvoisin E, Beauverger P, Wild F (1992) A leucine zipper structure present in the measles virus fusion protein is not required for its tetramerization but is essential for fusion. J Gen Virol 73:1703–1707

    Article  CAS  PubMed  Google Scholar 

  • Caballero M, Carabana J, Ortego J, Fernandez-Munoz R, Celma ML (1998) Measles virus fusion protein is palmitoylated on transmembrane-intracytoplasmic cysteine residues which participate in cell fusion. J Virol 72:8198–8204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caignard G, Guerbois M, Labernardiere JL, Jacob Y, Jones LM, Wild F, Tangy F, Vidalain PO (2007) Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-alpha/beta signaling. Virology 368:351–362

    Article  CAS  PubMed  Google Scholar 

  • Calain P, Roux L (1993) The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67:4822–4830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cathomen T, Mrkic B, Spehener D, Drillien R, Naef R, Pavlovic J, Aguzzi A, Billeter MA, Cattaneo R (1998a) A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO J 17:3899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cathomen T, Naim HY, Cattaneo R (1998b) Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. J Virol 72:1224–1234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cattaneo R, Kaelin K, Baczko K, Billeter MA (1989) Measles virus editing provides an additional cysteine-rich protein. Cell 56:759–764

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo R, Rebmann G, Baczko K, ter Meulen V, Billiter MA (1987) Altered ratios of measles virus transcripts in diseased human brains. Virology 160:523–526

    Article  CAS  PubMed  Google Scholar 

  • Cevik B, Holmes DE, Vrotsos E, Feller JA, Smallwood S, Moyer SA (2004) The phosphoprotein (P) and L binding sites reside in the N-terminus of the L subunit of the measles virus RNA polymerase. Virology 327:297–306

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, Shaila MS (2004) Rinderpest virus RNA polymerase subunits: mapping of mutual interacting domains on the large protein L and phosphoprotein p. Virus Genes 28:169–178

    Article  CAS  PubMed  Google Scholar 

  • Childs K, Stock N, Ross C, Andrejeva J, Hilton L, Skinner M, Randall R, Goodbourn S (2007) mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359:190–200

    Article  CAS  PubMed  Google Scholar 

  • Chinnakannan SK, Nanda SK, Baron MD (2013) Morbillivirus v proteins exhibit multiple mechanisms to block type 1 and type 2 interferon signalling pathways. PLoS ONE 8:e57063

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chulakasian S, Chang TJ, Tsai CH, Wong ML, Hsu WL (2013) Translational enhancing activity in 5′ UTR of peste des petits ruminants virus fusion gene. FEBS J 280:1237–1248

    Article  CAS  PubMed  Google Scholar 

  • Colf LA, Juo ZS, Garcia KC (2007) Structure of the measles virus hemagglutinin. Nat Struct Mol Biol 14:1227–1228

    Article  CAS  PubMed  Google Scholar 

  • Corey EA, Iorio RM (2007) Mutations in the stalk of the measles virus hemagglutinin protein decrease fusion but do not interfere with virus-specific interaction with the homologous fusion protein. J Virol 81:9900–9910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curran J, Marq JB, Kolakofsky D (1995) An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication. J Virol 69:849–855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Das SC, Baron MD, Barrett T (2000) Recovery and characterization of a chimeric rinderpest virus with the glycoproteins of peste-des-petits-ruminants virus: homologous F and H proteins are required for virus viability. J Virol 74:9039–9047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Devaux P, Cattaneo R (2004) Measles virus phosphoprotein gene products: conformational flexibility of the P/V protein amino-terminal domain and C protein infectivity factor function. J Virol 78:11632–11640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Devaux P, Hodge G, McChesney MB, Cattaneo R (2008) Attenuation of V- or C-defective measles viruses: infection control by the inflammatory and interferon responses of rhesus monkeys. J Virol 82:5359–5367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diallo A, Barrett T, Lefevre PC, Taylor WP (1987) Comparison of proteins induced in cells infected with rinderpest and peste des petits ruminants viruses. J Gen Virol 68:2033–2038

    Article  CAS  PubMed  Google Scholar 

  • Duprex WP, Collins FM, Rima BK (2002) Modulating the function of the measles virus RNA-dependent RNA polymerase by insertion of green fluorescent protein into the open reading frame. J Virol 76:7322–7328

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Escoffier C, Manié S, Vincent S, Muller CP, Billeter MA, Gerlier D (1999) Nonstructural C protein is required for efficient measles virus replication in human peripheral blood cells. J Virol 73:1695–1698

    CAS  PubMed Central  PubMed  Google Scholar 

  • Evans SA, Baron MD, Chamberlain RW, Goatley L, Barrett T (1994) Nucleotide sequence comparisons of the fusion protein gene from virulent and attenuated strains of rinderpest virus. J Gen Virol 75:3611–3617

    Article  CAS  PubMed  Google Scholar 

  • Evans SA, Belsham GJ, Barrett T (1990) The role of the 5’ nontranslated regions of the fusion protein mRNAs of canine distemper virus and rinderpest virus. Virology 177:317–323

    Article  CAS  PubMed  Google Scholar 

  • Fearns R, Peeples ME, Collins PL (1997) Increased expression of the N protein of respiratory syncytial virus stimulates minigenome replication but does not alter the balance between the synthesis of mRNA antigenome. Virology 236:188–201

    Article  CAS  PubMed  Google Scholar 

  • Ferron F, Longhi S, Henrissat B, Canard B (2002) Viral RNA-polymerases—a predicted 2′-O-ribose methyltransferase domain shared by all mononegavirales. Trends Biochem Sci 27:222–224

    Article  CAS  PubMed  Google Scholar 

  • Fontana JM, Bankamp B, Rota PA (2008) Inhibition of interferon induction and signaling by paramyxoviruses. Immunol Rev 225:46–67

    Article  CAS  PubMed  Google Scholar 

  • Furuse Y, Suzuki A, Oshitani H (2010) Origin of measles virus: divergence from rinderpest virus between the 11th and 12th centuries. Virol J 7:52

    Article  PubMed Central  PubMed  Google Scholar 

  • Ghosh A, Nayak R, Shaila MS (1996) Synthesis of leader RNA and editing of P mRNA during transcription by rinderpest virus. Virus Res 41:69–76

    Article  CAS  PubMed  Google Scholar 

  • Gibbs EP, Taylor WP, Lawman MJ, Bryant J (1979) Classification of peste des petits ruminants virus as the fourth member of the genus morbillivirus. Intervirology 11:268–274

    Article  CAS  PubMed  Google Scholar 

  • Goodbourn S, Randall RE (2009) The regulation of type I interferon production by paramyxoviruses. J Interferon Cytokine Res 29:539–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haas L, Baron MD, Liess B, Barrett T (1995) Editing of morbillivirus P gene transcripts in infected animals. Vet Microbiol 44:299–306

    Article  CAS  PubMed  Google Scholar 

  • Harty RN, Palese P (1995) Measles virus phosphoprotein (P) requires the NH2- and COOH-terminal domains for interactions with the nucleoprotein (N) but only the COOH terminus for interactions with itself. J Gen Virol 76(Pt 11):2863–2867

    Article  CAS  PubMed  Google Scholar 

  • Hasel KW, Day S, Millward S, Richardson CD, Bellini WJ, Greer PA (1987) Characterization of cloned measles virus mRNAs by in vitro transcription, translation, and immunoprecipitation. Intervirology 28:26–39

    Article  CAS  PubMed  Google Scholar 

  • Hausmann S, Garcin D, Delenda C, Kolakofsky D (1999) The versatility of paramyxovirus RNA polymerase stuttering. J Virol 73:5568–5576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hausmann S, Marq JB, Tapparel C, Kolakofsky D, Garcin D (2008) RIG-I and dsRNA-induced IFNbeta activation. PLoS ONE 3:e3965

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • He B, Lamb RA (1999) Effect of inserting paramyxovirus simian virus 5 gene junctions at the HN/L gene junction: analysis of accumulation of mRNAs transcribed from rescued viable viruses. J Virol 73:6228–6234

    CAS  PubMed Central  PubMed  Google Scholar 

  • He B, Paterson RG, Stock N, Durbin JE, Durbin RK, Goodbourn S, Randall RE, Lamb RA (2002) Recovery of paramyxovirus simian virus 5 with a V protein lacking the conserved cysteine-rich domain: the multifunctional V protein blocks both interferon-beta induction and interferon signaling. Virology 303:15–32

    Article  CAS  PubMed  Google Scholar 

  • Heminway BR, Yu Y, Galinski MS (1994) Paramyxovirus mediated cell fusion requires coexpression of both the fusion and hemagglutinin-neuraminidase glycoproteins. Virus Res 31:1–16

    Article  CAS  PubMed  Google Scholar 

  • Hirayama N, Senda M, Yamamoto H, Yoshikawa Y, Yamanouchi K (1985) Isolation and characterization of canine distemper virus-specific RNA. Microbiol Immunol 29:47–54

    Article  CAS  PubMed  Google Scholar 

  • Hoffman MA, Banerjee AK (2000) Precise mapping of the replication and transcription promoters of human parainfluenza virus type 3. Virology 269:201–211

    Article  CAS  PubMed  Google Scholar 

  • Horikami SM, Moyer SA (1991) Synthesis of leader RNA and editing of the P messenger-RNA during transcription by purified measles virus. J Virol 65:5342–5347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horikami SM, Smallwood S, Bankamp B, Moyer SA (1994) An amino-proximal domain of the L protein binds to the P protein in the measles virus RNA polymerase complex. Virology 205:540–545

    Article  CAS  PubMed  Google Scholar 

  • Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    Article  PubMed  Google Scholar 

  • Hu AZ, Cathomen T, Cattaneo R, Norrby E (1995) Influence of N-linked oligosaccharide chains on the processing, cell surface expression and function of the measles virus fusion protein. J Gen Virol 76:705–710

    Article  CAS  PubMed  Google Scholar 

  • Hu AZ, Kovamees J, Norrby E (1994) Intracellular processing and antigenic maturation of measles virus hemagglutinin protein. Arch Virol 136:239–253

    Article  CAS  PubMed  Google Scholar 

  • Huber M, Cattaneo R, Spielhofer P, Örvell C, Norrby E, Messerli M, Perriard J-C, Billeter MA (1991) Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm. Virology 185:299–308

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki M, Takeda M, Shirogane Y, Nakatsu Y, Nakamura T, Yanagi Y (2009) The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein. J Virol 83:10374–10383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson K, Bourhis JM, Campanacci V, Cambillau C, Canard B, Longhi S (2003) Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein. J Biol Chem 278:44567–44573

    Article  CAS  PubMed  Google Scholar 

  • Jordan IK, Sutter BA IV, McClure MA (2000) Molecular evolution of the paramyxoviridae and rhabdoviridae multiple-protein-encoding P gene. Mol Biol Evol 17:75–86

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Kiyotani K, Hasan MK, Shioda T, Sakai Y, Yoshida T, Nagai Y (1999) Sendai virus gene start signals are not equivalent in reinitiation capacity: moderation at the fusion protein gene. J Virol 73:9237–9246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105

    Article  CAS  PubMed  Google Scholar 

  • Kaushik R, Shaila MS (2004) Cellular casein kinase II-mediated phosphorylation of rinderpest virus P protein is a prerequisite for its role in replication/transcription of the genome. J Gen Virol 85:687–691

    Article  CAS  PubMed  Google Scholar 

  • Kingsbury DW (1974) The molecular biology of paramyxoviruses. Med Microbiol Immunol 160:73–83

    Article  CAS  PubMed  Google Scholar 

  • Kingston RL, Baase WA, Gay LS (2004a) Characterization of nucleocapsid binding by the measles virus and mumps virus phosphoproteins. J Virol 78:8630–8640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kingston RL, Hamel DJ, Gay LS, Dahlquist FW, Matthews BW (2004b) Structural basis for the attachment of a paramyxoviral polymerase to its template. Proc Natl Acad Sci USA 101:8301–8306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb RA, Kolakofsky D (1996) Paramyxoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM et al (eds) Field’s virology, 3rd edn. Raven Press, Philadelphia, pp 1177–1204

    Google Scholar 

  • Langedijk JP, Daus FJ, van Oirschot JT (1997) Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J Virol 71:6155–6167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Latorre P, Kolakofsky D, Curran J (1998) Sendai virus Y proteins are initiated by a ribosomal shunt. Mol Cell Biol 18:5021–5031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liston P, Briedis DJ (1994) Measles virus V protein binds zinc. Virology 198:399–404

    Article  CAS  PubMed  Google Scholar 

  • Loney C, Mottet-Osman G, Roux L, Bhella D (2009) Paramyxovirus ultrastructure and genome packaging: cryo-electron tomography of Sendai virus. J Virol 83:8191–8197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Longhi S, Receveur-Brechot V, Karlin D, Johansson K, Darbon H, Bhella D, Yeo R, Finet S, Canard B (2003) The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278:18638–18648

    Article  CAS  PubMed  Google Scholar 

  • Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, Garcia-Sastre A, Katze MG, Gale M Jr (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82:335–345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahapatra M, Parida S, Baron MD, Barrett T (2006) Matrix protein and glycoproteins F and H of Peste-des-petits-ruminants virus function better as a homologous complex. J Gen Virol 87:2021–2029

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra M, Parida S, Egziabher BG, Diallo A, Barrett T (2003) Sequence analysis of the phosphoprotein gene of peste des petits ruminants (PPR) virus: editing of the gene transcript. Virus Res 96:85–98

    Article  CAS  PubMed  Google Scholar 

  • Malvoisin E, Wild TF (1993) Measles virus glycoproteins: studies on the structure and interaction of the haemagglutinin and fusion proteins. J Gen Virol 74(Pt 11):2365–2372

    Article  CAS  PubMed  Google Scholar 

  • Manie SN, de Breyne S, Vincent S, Gerlier D (2000) Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol 74:305–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuoka Y, Curran J, Pelet T, Kolakofsky D, Ray R, Compans RW (1991) The P gene of human parainfluenza virus type 1 encodes P and C proteins but not a cysteine-rich V protein. J Virol 65:3406–3410

    CAS  PubMed Central  PubMed  Google Scholar 

  • McAllister CS, Toth AM, Zhang P, Devaux P, Cattaneo R, Samuel CE (2010) Mechanisms of protein kinase PKR-mediated amplification of beta interferon induction by C protein-deficient measles virus. J Virol 84:380–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McIlhatton MA, Curran MD, Rima BK (1997) Nucleotide sequence analysis of the large (L) genes of phocine distemper virus and canine distemper virus (corrected sequence). J Gen Virol 78:571–576

    CAS  PubMed  Google Scholar 

  • Meyer G, Diallo A (1995) The nucleotide sequence of the fusion protein gene of the peste des petits ruminants virus—the long untranslated region in the 5′-end of the F-protein gene of morbilliviruses seems to be specific to each virus. Virus Res 37:23–35

    Article  CAS  PubMed  Google Scholar 

  • Mioulet V, Barrett T, Baron MD (2001) Scanning mutagenesis identifies critical residues in the rinderpest virus genome promoter. J Gen Virol 82:2905–2911

    CAS  PubMed  Google Scholar 

  • Moll M, Klenk HD, Maisner A (2002) Importance of the cytoplasmic tails of the measles virus glycoproteins for fusogenic activity and the generation of recombinant measles viruses. J Virol 76:7174–7186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moyer SA, Baker SC, Horikami SM (1990) Host cell proteins required for measles virus reproduction. J Gen Virol 71:775–783

    Article  CAS  PubMed  Google Scholar 

  • Muhlebach MD, Mateo M, Sinn PL, Prufer S, Uhlig KM, Leonard VH, Navaratnarajah CK, Frenzke M, Wong XX, Sawatsky B, Ramachandran S, McCray PB Jr, Cichutek K, von Messling V, Lopez M, Cattaneo R (2011) Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480:530–533

    PubMed Central  PubMed  Google Scholar 

  • Murphy SK, Parks GD (1999) RNA replication for the paramyxovirus simian virus 5 requires an internal repeated (CGNNNN) sequence motif. J Virol 73:805–809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muthuchelvan D, Sanyal A, Singh RP, Hemadri D, Sen A, Sreenivasa BP, Singh RK, Bandyopadhyay SK (2005) Comparative sequence analysis of the large polymerase protein (L) gene of peste-des-petits ruminants (PPR) vaccine virus of Indian origin. Arch Virol 150:2467–2481

    Article  CAS  PubMed  Google Scholar 

  • Naim HY, Ehler E, Billeter MA (2000) Measles virus matrix protein specifies apical virus release and glycoprotein sorting in epithelial cells. EMBO J 19:3576–3585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatsu Y, Takeda M, Ohno S, Koga R, Yanagi Y (2006) Translational inhibition and increased interferon induction in cells infected with C protein-deficient measles virus. J Virol 80:11861–11867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakatsu Y, Takeda M, Ohno S, Shirogane Y, Iwasaki M, Yanagi Y (2008) Measles virus circumvents the host interferon response by different actions of the C and V proteins. J Virol 82:8296–8306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nanda SK, Baron MD (2006) Rinderpest virus blocks type I and type II interferon action: role of structural and nonstructural proteins. J Virol 80:7555–7568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishie T, Nagata K, Takeuchi K (2007) The C protein of wild-type measles virus has the ability to shuttle between the nucleus and the cytoplasm. Microbes Infect/Institut Pasteur 9:344–354

    Article  CAS  Google Scholar 

  • Noyce RS, Bondre DG, Ha MN, Lin LT, Sisson G, Tsao MS, Richardson CD (2011) Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog 7:e1002240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oglesbee MJ, Kenney H, Kenney T, Krakowka S (1993) Enhanced production of morbillivirus gene-specific RNAs following induction of the cellular stress response in stable persistent infection. Virology 192:556–567

    Article  CAS  PubMed  Google Scholar 

  • Oglesbee MJ, Liu Z, Kenney H, Brooks CL (1996) The highly inducible member of the 70 kDa family of heat shock proteins increases canine distemper virus polymerase activity. J Gen Virol 77:2125–2135

    Article  CAS  PubMed  Google Scholar 

  • Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y (2001) Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parida S, Mahapatra M, Kumar S, Das SC, Baron MD, Anderson J, Barrett T (2007) Rescue of a chimeric rinderpest virus with the nucleocapsid protein derived from peste-des-petits-ruminants virus: use as a marker vaccine. J Gen Virol 88:2019–2027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parks CL, Lerch RA, Walpita P, Sidhu MS, Udem SA (1999) Enhanced measles virus cDNA rescue and gene expression after heat shock. J Virol 73:3560–3566

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parks CL, Witko SE, Kotash C, Lin SL, Sidhu MS, Udem SA (2006) Role of V protein RNA binding in inhibition of measles virus minigenome replication. Virology 348:96–106

    Article  CAS  PubMed  Google Scholar 

  • Patterson JB, Thomas D, Lewicki H, Billeter MA, Oldstone MB (2000) V and C proteins of measles virus function as virulence factors in vivo. Virology 267:80–89

    Article  CAS  PubMed  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001

    Article  CAS  PubMed  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Rehwinkel J, Kato H, Takeuchi O, Akira S, Way M, Schiavo G, Reis e Sousa C (2009) Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol 83:10761–10769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plemper RK, Hammond AL, Cattaneo R (2000) Characterization of a region of the measles virus hemagglutinin sufficient for its dimerization. J Virol 74:6485–6493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plemper RK, Hammond AL, Cattaneo R (2001) Measles virus envelope glycoproteins hetero-oligomerize in the endoplasmic reticulum. J Biol Chem 276:44239–44246

    Article  CAS  PubMed  Google Scholar 

  • Plemper RK, Hammond AL, Gerlier D, Fielding AK, Cattaneo R (2002) Strength of envelope protein interaction modulates cytopathicity of measles virus. J Virol 76:5051–5061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plowright W, Cruickshank JG, Waterson AP (1962) The morphology of rinderpest virus. Virology 17:118–122

    Article  CAS  PubMed  Google Scholar 

  • Plumet S, Herschke F, Bourhis JM, Valentin H, Longhi S, Gerlier D (2007) Cytosolic 5′-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response. PLoS ONE 2:e279

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Poch O, Blumberg BM, Bougueleret L, Tordo N (1990) Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 71:1153–1162

    Article  CAS  PubMed  Google Scholar 

  • Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pohl C, Duprex WP, Krohne G, Rima BK, Schneider-Schaulies S (2007) Measles virus M and F proteins associate with detergent-resistant membrane fractions and promote formation of virus-like particles. J Gen Virol 88:1243–1250

    Article  CAS  PubMed  Google Scholar 

  • Poole E, He B, Lamb RA, Randall RE, Goodbourn S (2002) The V proteins of simian virus 5 and other paramyxoviruses inhibit induction of interferon-beta. Virology 303:33–46

    Article  CAS  PubMed  Google Scholar 

  • Rager M, Vongpunsawad S, Duprex WP, Cattaneo R (2002) Polyploid measles virus with hexameric genome length. EMBO J 21:2364–2372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raha T, Chattopadhyay A, Shaila MS (2004a) Development of a reconstitution system for Rinderpest virus RNA synthesis in vitro. Virus Res 99:131–138

    Article  CAS  PubMed  Google Scholar 

  • Raha T, Kaushik R, Shaila MS (2004b) Phosphoprotein P of rinderpest virus binds to plus sense leader RNA: regulation by phosphorylation. Virus Res 104:191–200

    Article  CAS  PubMed  Google Scholar 

  • Rahaman A, Srinivasan N, Shamala N, Shaila MS (2003) The fusion core complex of the peste des petits ruminants virus is a six-helix bundle assembly. Biochemistry (Mosc) 42:922–931

    Article  CAS  Google Scholar 

  • Rahaman A, Srinivasan N, Shamala N, Shaila MS (2004) Phosphoprotein of the rinderpest virus forms a tetramer through a coiled coil region important for biological function. A structural insight. J Biol Chem 279:23606–23614

    Article  CAS  PubMed  Google Scholar 

  • Rassa JC, Parks GD (1998) Molecular basis for naturally occurring elevated readthrough transcription across the M-F junction of the paramyxovirus SV5. Virology 247:274–286

    Article  CAS  PubMed  Google Scholar 

  • Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, Bier K, Robb N, Vreede F, Barclay W, Fodor E, Reis e Sousa C (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140:397–408

    Article  CAS  PubMed  Google Scholar 

  • Rennick LJ, Duprex WP, Rima BK (2007) Measles virus minigenomes encoding two autofluorescent proteins reveal cell-to-cell variation in reporter expression dependent on viral sequences between the transcription units. J Gen Virol 88:2710–2718

    Article  CAS  PubMed  Google Scholar 

  • Reuter T, Weissbrich B, Schneider-Schaulies S, Schneider-Schaulies J (2006) RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription. J Virol 80:5951–5957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riedl P, Moll M, Klenk HD, Maisner A (2002) Measles virus matrix protein is not cotransported with the viral glycoproteins but requires virus infection for efficient surface targeting. Virus Res 83:1–12

    Article  CAS  PubMed  Google Scholar 

  • Robbins SJ, Bussell RH (1979) Structural phosphoproteins associated with purified measles virions and cytoplasmic nucleocapsids. Intervirology 12:96–102

    Article  CAS  PubMed  Google Scholar 

  • Runkler N, Pohl C, Schneider-Schaulies S, Klenk HD, Maisner A (2007) Measles virus nucleocapsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. Cell Microbiol 9:1203–1214

    Article  CAS  PubMed  Google Scholar 

  • Saikia P, Gopinath M, Shaila MS (2008) Phosphorylation status of the phosphoprotein P of rinderpest virus modulates transcription and replication of the genome. Arch Virol 153:615–626

    Article  CAS  PubMed  Google Scholar 

  • Salditt A, Koethe S, Pohl C, Harms H, Kolesnikova L, Becker S, Schneider-Schaulies S (2010) Measles virus M protein driven particle production does not involve the ESCRT system. J Gen Virol 91:1464–1472

    Article  CAS  PubMed  Google Scholar 

  • Santiago C, Celma ML, Stehle T, Casasnovas JM (2010) Structure of the measles virus hemagglutinin bound to the CD46 receptor. Nat Struct Mol Biol 17:124–129

    Article  CAS  PubMed  Google Scholar 

  • Sato TA, Kohama T, Sugiura A (1988) Intracellular processing of measles virus fusion protein. Arch Virol 98:39–50

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Kaelin K, Billeter MA (1997) Recombinant measles viruses defective for RNA editing and V protein synthesis are viable in cultured cells. Virology 227:314–322

    Article  CAS  PubMed  Google Scholar 

  • Schneider-Schaulies S, Liebert UG, Baczko K, Cattaneo R, Billeter M, ter Meulen V (1989) Restriction of measles virus gene-expression in acute and subacute encephalitis of Lewis rats. Virology 171:525–534

    Article  CAS  PubMed  Google Scholar 

  • Seth S, Shaila MS (2001a) The fusion protein of peste des petits ruminants virus mediates biological fusion in the absence of hemagglutinin-neuraminidase protein. Virology 289:86–94

    Article  CAS  PubMed  Google Scholar 

  • Seth S, Shaila MS (2001b) The hemagglutinin-neuraminidase protein of peste des petits ruminants virus is biologically active when transiently expressed in mammalian cells. Virus Res 75:169–177

    Article  CAS  PubMed  Google Scholar 

  • Shaji D, Shaila MS (1999) Domains of rinderpest virus phosphoprotein involved in interaction with itself and the nucleocapsid protein. Virology 258:415–424

    Article  CAS  PubMed  Google Scholar 

  • Sidhu MS, Chan J, Kaelin K, Spielhofer P, Radecke F, Schneider H, Masurekar M, Dowling PC, Billeter MA, Udem SA (1995) Rescue of synthetic measles virus minireplicons—measles genomic termini direct efficient expression and propagation of a reporter gene. Virology 208:800–807

    Article  CAS  PubMed  Google Scholar 

  • Sleeman K, Baron MD (2005) The polymerase (L) protein of rinderpest virus interacts with the host cell protein striatin. Virology 332:225–234

    Article  CAS  PubMed  Google Scholar 

  • Spehner D, Drillien R, Howley PM (1997) The assembly of the measles virus nucleoprotein into nucleocapsid-like particles is modulated by the phosphoprotein. Virology 232:260–268

    Article  CAS  PubMed  Google Scholar 

  • Stallcup KC, Raine CS, Fields BN (1983) Cytochalasin B inhibits the maturation of measles virus. Virology 124:59–74

    Article  CAS  PubMed  Google Scholar 

  • Suryanarayana K, Baczko K, ter Meulen V, Wagner RR (1994) Transcription inhibition and other properties of matrix proteins expressed by M genes cloned from measles viruses and diseased human brain tissue. J Virol 68:1532–1543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sweetman DA, Miskin J, Baron MD (2001) Rinderpest virus C and V proteins interact with the major (L) component of the viral polymerase. Virology 281:193–204

    Article  CAS  PubMed  Google Scholar 

  • Tahara M, Takeda M, Yanagi Y (2005) Contributions of matrix and large protein genes of the measles virus edmonston strain to growth in cultured cells as revealed by recombinant viruses. J Virol 79:15218–15225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tahara M, Takeda M, Yanagi Y (2007) Altered interaction of the matrix protein with the cytoplasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell-cell fusion. J Virol 81:6827–6836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tajima M, Ushijima T (1971) The pathogenesis of rinderpest in the lymph nodes of cattle. Light and electron microscopic studies. Am J Pathol 62:221–235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takeda M, Ohno S, Seki F, Nakatsu Y, Tahara M, Yanagi Y (2005) Long untranslated regions of the measles virus M and F genes control virus replication and cytopathogenicity. J Virol 79:14346–14354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi K, Takeda M, Miyajima N, Ami Y, Nagata N, Suzaki Y, Shahnewaz J, Kadota S, Nagata K (2005) Stringent requirement for the C protein of wild-type measles virus for growth both in vitro and in macaques. J Virol 79:7838–7844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tapparel C, Maurice D, Roux L (1998) The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif (GNNNNN) (3) is essential for replication. J Virol 72:3117–3128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897

    Article  CAS  PubMed  Google Scholar 

  • Tober C, Seufert M, Schneider H, Billeter MA, Johnston IC, Niewiesk S, ter Meulen V, Schneider-Schaulies S (1998) Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. J Virol 72:8124–8132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tordo N, Poch O, Ermine A, Keith G, Rougeon F (1988) Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses. Virology 165:565–576

    Article  CAS  PubMed  Google Scholar 

  • Toth AM, Devaux P, Cattaneo R, Samuel CE (2009) Protein kinase PKR mediates the apoptosis induction and growth restriction phenotypes of C protein-deficient measles virus. J Virol 83:961–968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vasconcelos D, Norrby E, Oglesbee M (1998) The cellular stress response increases measles virus-induced cytopathic effect. J Gen Virol 79(Pt 7):1769–1773

    CAS  PubMed  Google Scholar 

  • Vidal S, Curran J, Kolakofsky D (1990a) Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity. J Virol 64:239–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vidal S, Curran J, Kolakofsky D (1990b) A stuttering model for paramyxovirus P mRNA editing. EMBO J 9:2017–2022

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vincent S, Gerlier D, Manie SN (2000) Measles virus assembly within membrane rafts. J Virol 74:9911–9915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • ViralZone (2010) Paramyxoviridae. http://viralzone.expasy.org/all_by_species/556.html. 2013

  • von Heijne G (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21

    Article  Google Scholar 

  • von Messling V, Zimmer G, Herrler G, Haas L, Cattaneo R (2001) The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. J Virol 75:6418–6427

    Article  Google Scholar 

  • Walpita P (2004) An internal element of the measles virus antigenome promoter modulates replication efficiency. Virus Res 100:199–211

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Hirano A, Stenglein S, Nelson J, Thomas G, Wong TC (1995) Engineered serine protease inhibitor prevents furin-catalyzed activation of the fusion glycoprotein and production of infectious measles virus. J Virol 69:3206–3210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR (2006) Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 80:5059–5064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wild TF, Malvoisin E, Buckland R (1991) Measles virus: both the haemagglutinin and fusion glycoproteins are required for fusion. J Gen Virol 72(Pt 2):439–442

    Article  CAS  PubMed  Google Scholar 

  • Witko SE, Kotash C, Sidhu MS, Udem SA, Parks CL (2006) Inhibition of measles virus minireplicon-encoded reporter gene expression by V protein. Virology 348:107–119

    Article  CAS  PubMed  Google Scholar 

  • Wong TC, Hirano A (1987) Structure and function of bicistronic RNA encoding the phosphoprotein and matrix protein of measles virus. J Virol 61:584–589

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yegambaram K, Kingston RL (2010) The feet of the measles virus polymerase bind the viral nucleocapsid protein at a single site. Protein Sci 19:893–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokota S, Saito H, Kubota T, Yokosawa N, Amano K, Fujii N (2003) Measles virus suppresses interferon-alpha signaling pathway: suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-alpha receptor complex. Virology 306:135–146

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa Y, Mizumoto K, Yamanouchi K (1986) Characterization of messenger RNAs of measles virus. J Gen Virol 67(Pt 12):2807–2812

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Bourhis JM, Longhi S, Carsillo T, Buccellato M, Morin B, Canard B, Oglesbee M (2005) Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus. Virology 337:162–174

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Glendening C, Linke H, Parks CL, Brooks C, Udem SA, Oglesbee M (2002) Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76:8737–8746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J, Zhang CW-H, Qi Y, Tien P, Gao GF (2002) The fusion protein core of measles virus forms stable coiled-coil trimer. Biochem Biophys Res Commun 299:897–902

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Baron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baron, M.D. (2015). The Molecular Biology of Peste des Petits Ruminants Virus. In: Munir, M. (eds) Peste des Petits Ruminants Virus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45165-6_2

Download citation

Publish with us

Policies and ethics