Skip to main content

A Unified (P)DAE Modeling Approach for Flow Networks

  • Conference paper
  • First Online:
Progress in Differential-Algebraic Equations

Part of the book series: Differential-Algebraic Equations Forum ((DAEF))

Abstract

We present a unified modeling approach for different types of flow networks, for instance electric circuits, water and gas supplying networks. In all cases the flow network is described by the pressures at the nodes of the network and the flows through the branches of the network. It is shown that the mass balance equations at each node are independent of the type of flow medium and can be described by the use of incidence matrices reflecting the network topology. Additionally, various types of net element models are presented. Finally, all network describing equations are summarized for some prototype networks which differ by the various net element models. They yield in pure linear/nonlinear equation systems, differential-algebraic systems or partial differential equation systems. All of them may have serious rank changes in the model functions if switching elements belong to the network. The model descriptions presented here keep all the network structure information and can be exploited for the analysis, numerical simulation and optimization of such networks.

Mathematics Subject Classification (2010) 93A30 ⋅ 34A09 ⋅ 35M20 ⋅ 94C05 ⋅ 34B45 ⋅ 76N15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, M., Cho, K., Cho, T.W.: Memristance and memcapacitance modeling of thin film devices showing memristive behavior. In: 2012 13th International Workshop on Cellular Nanoscale Networks and Their Applications (CNNA), Turin, pp. 1–5 (2012). doi:10.1109/CNNA.2012.6331436

  2. Bales, P., Kolb, O., Lang, J.: Hierarchical modelling and model adaptivity for gas flow on networks. In: Allen, G., Nabrzyski, J., Seidel, E., Albada, G.D., Dongarra, J., Sloot, P.M. (eds.) Computational Science – ICCS 2009. 9th International Conference Baton Rouge, LA, USA, May 25–27, 2009. Lecture Notes in Computer Science, vol. 5544, pp. 337–346. Springer, Berlin/Heidelberg (2009). doi:10.1007/978-3-642-01970-8_33

    Google Scholar 

  3. Baumanns, S.: Coupled electromagnetic field/circuit simulation: modeling and numerical analysis. Ph.D. thesis, University of Cologne (2012)

    Google Scholar 

  4. Baumanns, S., Jansen, L., Selva Soto, M., Tischendorf, C.: Analysis of semi-discretized differential algebraic equation from coupled circuit device simulation. Computational and Applied Mathematics, Springer Basel, pp. 1–23, (2014). doi:10.1007/s40314-014-0157-4

    Google Scholar 

  5. Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul. 9(2), 601–623 (2011). doi:10.1137/100813580

    Article  MATH  MathSciNet  Google Scholar 

  6. BSIM Group: Providing the world with transistor models for IC design. (2014). http://www-device.eecs.berkeley.edu/bsim/

  7. Burgschweiger, J., Gnädig, B., Steinbach, M.: Optimization models for operative planning in drinking water networks. Optim. Eng. 10(1), 43–73 (2009). doi:10.1007/s11081-008-9040-8

    Article  MATH  MathSciNet  Google Scholar 

  8. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A: Mater. Sci. Process. 102(4), 765–783 (2011)

    Article  Google Scholar 

  9. Chua, L., Desoer, C., Kuh, E.: Linear and Nonlinear Circuits. McGraw-Hill Book, Singapore (1987)

    MATH  Google Scholar 

  10. Clemens, M., Weiland, T.: Discrete electromagnetism with the finite integration technique. Prog. Electromagn. Res. (PIER) 32, 65–87 (2001)

    Google Scholar 

  11. Danielsen, M., Ottesen, J.T.: 6. A cardiovascular model, chap. 6. In: Ottesen, J.T., Olufsen, M.S., Larsen, J. (eds.) Applied Mathematical Models in Human Physiology, pp. 137–155. Society for Industrial and Applied Mathematics, Philadelphia (2004). doi:10.1137/1.9780898718287.ch6

    Chapter  Google Scholar 

  12. Desoer, C., Kuh, E.: Basic Circuit Theory. International student edition. McGraw-Hill, Auckland/Singapore (1984)

    Google Scholar 

  13. Deuerlein, J.: Decomposition model of a general water supply network graph. J. Hydraul. Eng. 134(6), 822–832 (2008). doi:10.1061/(ASCE)0733-9429(2008)134:6(822)

    Article  Google Scholar 

  14. Di Ventra, M., Pershin, Y., Chua, L.: Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009). doi:10.1109/JPROC.2009.2021077

    Article  Google Scholar 

  15. EPANET: Software that models the hydraulic and water quality behavior of water distribution piping systems. (2014). http://www.epa.gov/nrmrl/wswrd/dw/epanet.html

  16. Estévez Schwarz, D., Tischendorf, C.: Structural analysis of electric circuits and consequences for MNA. Int. J. Circuit Theory Appl. 28(2), 131–162 (2000)

    Article  MATH  Google Scholar 

  17. Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113, 12–35 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gugat, M., Leugering, G., Schittkowski, K., Schmidt, E.: Modelling, stabilization, and control of flow in networks of open channels. In: Grötschel, M., Krumke, S., Rambau, J. (eds.) Online Optimization of Large Scale Systems, pp. 251–270. Springer, Berlin/Heidelberg (2001). doi:10.1007/978-3-662-04331-8_16

  19. Herty, M., Mohring, J., Sachers, V.: A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33(7), 845–855 (2010). doi:10.1002/mma.1197. http://dx.doi.org/10.1002/mma.1197

  20. Jansen, L., Matthes, M., Tischendorf, C.: Global unique solvability for memristive circuit DAEs of index 1. Int. J. Circuit Theory Appl., (2013). doi:10.1002/cta.1927

    Google Scholar 

  21. Jansen, L., Pade, J.: Global unique solvability for a quasi-stationary water network model. Preprint 2013–11, Dept. of Math., Humboldt-Universität zu Berlin, (2013)

    Google Scholar 

  22. Liu, W.: MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4. Wiley-IEEE, New York (2001)

    Google Scholar 

  23. Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Wien (1990)

    Book  MATH  Google Scholar 

  24. Quarteroni, A., Ragni, S., Veneziani, A.: Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci. 4(2), 111–124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Riaza, R.: Dynamical properties of electrical circuits with fully nonlinear memristors. Nonlinear Anal.: Real World Appl. 12(6), 3674–3686 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Riaza, R.: Manifolds of equilibria and bifurcations without parameters in memristive circuits. SIAM J. Appl. Math. 72(3), 877–896 (2012). doi:10.1137/100816559

    Article  MATH  MathSciNet  Google Scholar 

  27. Riaza, R.: First order mem-circuits: modeling, nonlinear oscillations and bifurcations. IEEE Trans. Circuits Systems I: Regul. Pap. 60(6), 1570–1583 (2013). doi:10.1109/TCSI.2012.2221174

    Article  MathSciNet  Google Scholar 

  28. Riaza, R., Tischendorf, C.: Semistate models of electrical circuits including memristors. Int. J. Circuit Theory Appl. 39(6), 607–627 (2011)

    Article  MATH  Google Scholar 

  29. Selva Soto, M., Tischendorf, C.: Numerical analysis of DAEs from coupled circuit and semiconductor simulation. Appl. Numer. Math. 53(2–), 471–488 (2005)

    Google Scholar 

  30. SIMONE: SIMONE Research Group S.R.O. (2014). www.simone.eu

  31. Simpson, A.R.: Comparing the Q-equations and Todini-Pilati formulation for solving the water distribution system equations, chap. 5. In: Lansey, K.E., Choi, C.Y., Ostfeld, A., Pepper, I.L. (eds.) Proceedings of the 12th Annual Conference on Water Distribution Systems Analysis 2010, Tucson, pp. 37–54 (2010). doi:10.1061/41203(425)6

  32. Tischendorf, C.: Modeling circuit systems coupled with distributed semiconductor equations. In: Antreich, K., Bulirsch, R., Gilg, A., Rentrop, P. (eds.) Mathematical Modeling, Simulation and Optimization of Integrated Electrical Circuits. No. 146 in International Series of Numerical Mathematics, pp. 229–247. Birkhäuser, Basel (2003)

    Chapter  Google Scholar 

  33. Tischendorf, C.: Coupled systems of differential-algebraic and partial differential equations in circuit and device simulation. Modeling and numerical analysis (2004). Habilitation thesis at Humboldt University of Berlin

    Google Scholar 

  34. Todini, E., Pilati, S.: A gradient algorithm for the analysis of pipe networks. In: Coulbeck, B., Orr, C.-H. (eds.) Computer Applications in Water Supply: Vol. 1—Systems Analysis and Simulation, pp. 1–20. Research Studies Press, Taunton, (1988)

    Google Scholar 

  35. Weiland, T.: A discretization model for the solution of Maxwell’s equations for six-component fields. Arch. Elektron. Übertrag. 31(3), 116–120 (1977)

    Google Scholar 

  36. Weiland, T.: Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. Model.: Electron. Netw. Devices Fields 9(4), 295–319 (1996)

    Google Scholar 

  37. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caren Tischendorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jansen, L., Tischendorf, C. (2014). A Unified (P)DAE Modeling Approach for Flow Networks. In: Schöps, S., Bartel, A., Günther, M., ter Maten, E., Müller, P. (eds) Progress in Differential-Algebraic Equations. Differential-Algebraic Equations Forum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44926-4_7

Download citation

Publish with us

Policies and ethics