Skip to main content

Mars

  • Reference work entry
  • First Online:
Encyclopedia of Astrobiology

Definition

Mars is the fourth Planet from the Sun and one of the terrestrial planets. It is named after the Roman god of war.

Overview

Mars accreted rapidly in a couple of million years (Brasser 2013) and differentiated within a few tens of millions years after the formation of the Solar System into a core, mantle, and crust, as indicated by isotope geochemistry (Lee and Halliday 1997; Mezger et al. 2013). It is commonly thought that the bulk composition of Mars is “chondritic” (Dreibus and Wänke 1985), i.e., similar to the composition of Carbonaceous Chondrites, the most primitive materials in the Solar System. The Fe-Ni-FeS core is dense and metal rich (Fig. 1) and its radius is about 50 % of the surface radius, the exact value depending on its content of lighter elements like sulfur. The remnant magnetization of parts of the Martian crust indicates that core convection induced by energy from core cooling and/or inner core growth might have produced a core magnetic dynamo and a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

  • Acuna MH, Connerney JEP, Ness NF et al (1999) Global distribution of crustal magnetism discovered by the Mars Global Surveyor MAG/ER Experiment. Science 284:790–793

    ADS  Google Scholar 

  • Baker VR (1982) The channels of Mars. University of Texas Press, Austin

    Google Scholar 

  • Baker VR (2001) Water and the Martian landscape. Nature 412:228–236

    ADS  Google Scholar 

  • Banerdt WB, Golombek MP, Tanaka KL (1992) Stress and tectonics on Mars. In: Jakosky BM, Snyder CW, Matthews MS, Kieffer HH (eds) Mars. University of Arizona Press, Tucson, pp 249–297

    Google Scholar 

  • Barlow NG (2010) What we know about Mars from its impact craters. Geol Soc Am Bull 122:644–657

    Google Scholar 

  • Bell JF (2008) The Martian surface. Cambridge University Press, Cambridge

    Google Scholar 

  • Bibring J-P et al (2004) Perennial water ice identified in the south polar cap of Mars. Nature 428:627–630

    ADS  Google Scholar 

  • Bibring J-P et al (2005) Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307:1576–1581

    ADS  Google Scholar 

  • Bibring J-P, Langevin Y, Mustard JF, Poulet F, Arvidson R, Gendrin A, Gondet B, Mangold N, Pinet P, Forget F (2006) Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data. Science 312:400–404

    ADS  Google Scholar 

  • Brasser R (2013) The formation of Mars: building blocks and accretaion time scales. Space Sci Rev 174:11–25

    ADS  Google Scholar 

  • Breuer D, Moore WB (2007) Dynamics and thermal history of the Terrestrial Planets, the Moon, and Io. In: Spohn T (ed) Planets and Moons: treatise on geophysics, vol 10. Elsevier, Amsterdam, pp 299–348

    Google Scholar 

  • Byrne S et al (2009) Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325:1674–1676

    ADS  Google Scholar 

  • Carr MH (1996) Water on Mars. Oxford University Press, Oxford

    Google Scholar 

  • Carr MH (2006) The surface of Mars. Cambridge University Press, Cambridge

    Google Scholar 

  • Christensen PR et al (2001) Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results. J Geophys Res 106:23,823–23,872

    ADS  Google Scholar 

  • Clifford SM, Parker TJ (2001) The evolution of the Martian hydrosphere: implications for the fate of a Primordial Ocean and the current state of the Northern Plains. Icarus 154:40–79

    ADS  Google Scholar 

  • Clifford SM et al (2000) The state and future of Mars polar science and exploration. Icarus 144:210–242

    ADS  Google Scholar 

  • Connerney JEP, Acuna MH, Ness NF et al (2004) Mars crustal magnetism. Space Sci Rev 111(1–2):1–32

    ADS  Google Scholar 

  • Dreibus G, Wänke H (1985) Mars: a volatile-rich planet. Meteoritics 20:367–382

    ADS  Google Scholar 

  • Fairén AG, Davila AF, Gago-Duport L, Amils R, McKay CP (2009) Stability against freezing of aqueous solutions on early Mars. Nature 459:401–404

    ADS  Google Scholar 

  • Forget F, Pierrehumbert RT (1997) Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278:1273–1276

    ADS  Google Scholar 

  • Forget F, Haberle RM, Montmessin F, Levrard B, Head JW (2006) Formation of glaciers on Mars by atmospheric precipitation at High obliquity. Science 311:368–371

    ADS  Google Scholar 

  • Frey HV, Roark JH, Shockey KM, Frey EL, Sakimoto SHE (2002) Ancient lowlands on Mars. Geophys Res Lett 29:22–1. doi:10.1029/2001GL013832, CiteID 1384

    Article  Google Scholar 

  • Golombek MP, Phillips RJ (2010) Mars tectonics. In: Watters TA, Schultz RA (eds) Planetary tectonics. Cambridge University Press, Cambridge, pp 183–232

    Google Scholar 

  • Greeley R, Iverson JD (1985) Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge University Press, Cambridge

    Google Scholar 

  • Greeley R, Spudis PD (1981) Volcanism on Mars. Rev Geophys Space Phys 19:13–41

    ADS  Google Scholar 

  • Grott M, Breuer D (2010) On the spatial variability of the Martian elastic lithosphere thickness: evidence for mantle plumes? J Geophys Res 115, E3. doi:10.1029/2009JE003456, CiteID E03005

    Article  Google Scholar 

  • Grott M, Baratoux D, Hauber E, Sautter V, Mustard J, Gasnault O, Ruff SW, Karato S-I, Debaille V, Knapmeyer M, Sohl F, Van Hoolst T, Breuer D, Morschhauser A, Toplis M (2013) Long-term evolution of the Martian crust-mantle system. Space Sci Rev 174:49–111

    ADS  Google Scholar 

  • Haberle RM (1998) Early Mars climate models. J Geophys Res 103:28,467–28,480

    ADS  Google Scholar 

  • Haberle RM, McKay CP, Schaeffer J, Cabrol NA, Grin EA, Zent AP, Quinn R (2001) On the possibility of liquid water on present-day Mars. J Geophys Res 106:23,317–23,326

    ADS  Google Scholar 

  • Hartmann WK, Neukum G (2001) Cratering chronology and the evolution of Mars. Space Sci Rev 96:165–194

    ADS  Google Scholar 

  • Hauber E, Brož P, Jagert F, Jodłowski P, Platz T (2011) Very recent and wide-spread basaltic volcanism on Mars. Geophys Res Lett 38:L10201. doi:10.1029/2011GL047310

    Article  ADS  Google Scholar 

  • Head JW, Mustard JF, Kreslavsky MA, Milliken RE, Marchant DR (2003) Recent ice ages on Mars. Nature 426:797–802

    ADS  Google Scholar 

  • Jakosky BM, Phillips RJ (2001) Mars’ volatile and climate history. Nature 412:237–244

    ADS  Google Scholar 

  • Jakosky BM, Westall F, Brack A (2007) Mars. In: Sullivan WT, Baross JA (eds) Planets and life. Cambridge University Press, Cambridge, pp 357–387

    Google Scholar 

  • Kieffer HH, Jakosky BM, Snyder CW (1992) The planet Mars: from antiquity to the present. In: Jakosky BM, Snyder CW, Matthews MS, Kieffer HH (eds) Mars. University of Arizona Press, Tucson, pp 1–33

    Google Scholar 

  • Klein HP, Horowitz NH, Biemann K (1992) The search for extant life on Mars. In: Jakosky BM, Snyder CW, Matthews MS, Kieffer HH (eds) Mars. University of Arizona Press, Tucson, pp 1221–1233

    Google Scholar 

  • Kleinhans MG (2010) A tale of two planets: geomorphology applied to Mars’ surface, fluvio-deltaic processes and landforms. Earth Surf Process Landf 35:102–117

    ADS  Google Scholar 

  • Knoll AH, Grotzinger J (2006) Water on Mars and the prospects for Martian life. Elements 2:171–175

    Google Scholar 

  • Lammer H et al (2013) Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci Rev 174:113–154

    ADS  Google Scholar 

  • Laskar J, Correia ACM, Gastineau M, Joutel F, Levrard B, Robutel P (2004) Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170:343–364

    ADS  Google Scholar 

  • Lasue J, Mangold N, Hauber E, Clifford S, Feldman W, Gasnault O, Grima C, Maurice S, Mousis O (2013) Quantitative assessments of the Martian hydrosphere. Space Sci Rev 174:155–212

    ADS  Google Scholar 

  • Lee D-C, Halliday AN (1997) Core formation on Mars and differentiated asteroids. Nature 388:854–857

    ADS  Google Scholar 

  • Longhi J, Knittle E, Holloway JR, Wänke H (1992) The bulk composition, mineralogy and internal structure of Mars. In: Jakosky BM, Snyder CW, Matthews MS, Kieffer HH (eds) Mars. University of Arizona Press, Tucson, pp 184–208

    Google Scholar 

  • Malin MC, Edgett KS (2000a) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335

    ADS  Google Scholar 

  • Malin MC, Edgett KS (2000b) Sedimentary rocks of early Mars. Science 290:1927–1937

    ADS  Google Scholar 

  • Malin MC, Edgett KS (2003) Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302:1931–1934

    ADS  Google Scholar 

  • McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC (2011) Seasonal flows on warm Martian slopes. Science 333:740–743

    ADS  Google Scholar 

  • McSween HY, Taylor GJ, Wyatt MB (2009) Elemental composition of the Martian crust. Science 324:736–739

    ADS  Google Scholar 

  • Mezger K, Debaille V, Kleine T (2013) Core formation and mantle differentiation on Mars. Space Sci Rev 174:27–48

    ADS  Google Scholar 

  • Neumann GA, Zuber MT, Wieczorek MA, McGovern PJ, Lemoine FG, Smith DE (2004) Crustal structure of Mars from gravity and topography. J Geophys Res 109:E08002. doi:10.1029/2004JE002262

    Article  ADS  Google Scholar 

  • Nimmo F, Tanaka K (2005) Early crustal evolution of Mars. Annu Rev Earth Planet Sci 33:133–161

    ADS  Google Scholar 

  • Plaut JJ et al (2007) Subsurface radar sounding of the South Polar Layered deposits of Mars. Science 316:92–96

    ADS  Google Scholar 

  • Poulet F et al (2005) Phyllosilicates on Mars and implications for early martian climate. Nature 438:623–627

    ADS  Google Scholar 

  • Read PL, Lewis SR (2004) The Martian climate revisited: atmosphere and environment of a desert planet. Springer, Berlin

    Google Scholar 

  • Schubert G, Russell CT, Moore WB (2000) Geophysics – timing of the Martian dynamo. Nature 408(6813):666–667

    ADS  Google Scholar 

  • Schumacher S, Breuer D (2007) An alternative mechanism for recent volcanism on Mars. Geophys Res Lett 34, L14202. doi:10.1029/2007GL030083

    Article  ADS  Google Scholar 

  • Sheehan W (1996) The planet Mars: a history of observation and discovery. University of Arizona Press, Tucson

    Google Scholar 

  • Smith DE et al (2001) Mars Orbiter Laser Altimeter: experiment summary after the first year of global mapping of Mars. J Geophys Res 106:23,689–23,722

    ADS  Google Scholar 

  • Sohl F, Schubert G (2007) Interior structure, composition, and mineralogy of the Terrestrial planets. In: Spohn T (ed) Planets and Moons: treatise on geophysics, vol 10. Elsevier, Amsterdam, pp 27–68

    Google Scholar 

  • Solomon SC, Aharonson O, Aurnou JM, Banerdt WB, Carr MH, Dombard AJ, Frey HV, Golombek MP, Hauck SA, Head JW, Jakosky BM, Johnson CL, McGovern PJ, Neumann GA, Phillips RJ, Smith DE, Zuber MT (2005) New perspectives on ancient Mars. Science 307:1214–1220

    ADS  Google Scholar 

  • Squyres SW, Clifford SM, Kuz’min RO, Zimbelman JR, Costard FM (1992) Ice in the Martian regolith. In: Jakosky BM, Snyder CW, Matthews MS, Kieffer HH (eds) Mars. University of Arizona Press, Tucson, pp 523–554

    Google Scholar 

  • Squyres SW et al (2004) The opportunity Rover’s athena science investigation at Meridiani Planum, Mars. Science 306:1698–1703

    ADS  Google Scholar 

  • Stevenson DJ (2001) Mars’ core and magnetism. Nature 412:214–219

    ADS  Google Scholar 

  • Tanaka KL, Hartmann WK (2008) Planetary time scale. In: Ogg JG, Ogg G, Gradstein FM (eds) The concise geologic time scale. Cambridge University Press, New York, pp 13–22

    Google Scholar 

  • Toon OB, Segura S, Zahnle K (2010) The formation of Martian River valleys by impacts. Annu Rev Earth Planet Sci 38:303–322

    ADS  Google Scholar 

  • Tosca NJ, Knoll AH (2009) Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth Planet Sci Lett 286:379–386

    ADS  Google Scholar 

  • Wänke H, Dreibus G (1994) Chemistry and accretion history of Mars. Philos Trans R Soc Lond A349:285–293

    ADS  Google Scholar 

  • Watters TR, McGovern PJ, Irwin RP (2007) Hemispheres apart: the crustal dichotomy on Mars. Annu Rev Earth Planet Sci 35:621–652

    ADS  Google Scholar 

  • Wilson L, Head JW (1994) Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys 32:221–263

    ADS  Google Scholar 

  • Zuber MT, Solomon SC, Phillips RJ et al (2000) Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287:1788–1793

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Forget .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Forget, F., Hauber, E. (2015). Mars. In: Gargaud, M., et al. Encyclopedia of Astrobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44185-5_938

Download citation

Publish with us

Policies and ethics