Skip to main content

Real Root Isolation of Polynomial Equations Based on Hybrid Computation

  • Conference paper
  • First Online:
Computer Mathematics

Abstract

A new algorithm for real root isolation of zero-dimensional nonsingular square polynomial systems based on hybrid computation is presented in this paper. First, approximate the (complex) roots of the given polynomial equations via homotopy continuation method. Then, for each approximate root, an initial box relying on the Kantorovich theorem is constructed, which contains the corresponding accurate root. Finally, the Krawczyk interval iteration with interval arithmetic is applied to the initial boxes so as to check whether or not the corresponding approximate roots are real and to obtain the real root isolation boxes. Moreover, an empirical construction of initial box is provided for speeding-up the computation in practice. Our experiments on many benchmarks show that the new hybrid method is very efficient. The method can find all real roots of any given zero-dimensional nonsingular square polynomial systems provided that the homotopy continuation method can find all complex roots of the equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See reference [26], Sect. 11, Automatic differentiation.

  2. 2.

    In Matlab2008b that we do the experiments, the zero threshold is 2.2204e\(-\)016.

  3. 3.

    As mentioned before, the zero threshold in Matlab2008b is 2.2204e\(-\)016, which is almost the same order of magnitude of those radiuses.

References

  1. Beltran, C.: A continuation method to solve polynomial systems, and its complexity. Numerische Mathematik. Online rst. doi:10.1007/s00211- 010-0334-3

  2. Beltran, C., Leykin, A.: Certified numerical homotopy tracking. Exp. Math. 21(1), 69–83 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beltran, C., Leykin, A.: Robust certified numerical homotopy tracking. Found. Comput. Math. 13(2), 253–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benchmarks: http://hom4ps.math.msu.edu/HOM4PS_soft_files/equations.zip

  5. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1997)

    MATH  Google Scholar 

  6. Boulier, F., Chen, C., Lemaire, F., Moreno Maza, M.: Real root isolation of regular chains. In: Proceedings of ASCM’2009, pp. 15–29 (2009)

    Google Scholar 

  7. Cheng, J.-S., Gao, X.-S., Guo, L.-L.: Root isolation of zero-dimensional polynomial systems with linear univariate representation. J. Symbolic Comput. 47(7), 843–858 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, J.-S., Gao, X.-S., Li, J.: Root isolation for bivariate polynomial systems with local generic position method. In: Procedings of ISSAC’2009, pp. 103–110

    Google Scholar 

  9. Cheng, J.-S., Gao, X.-S., Yap, C.-K.: Complete numerical isolation of real zeros in zero-dimensional triangular systems. In: Proceedings of ISSAC’2007, pp. 92–99 (2007)

    Google Scholar 

  10. Collins, G.E., Akritas, A.G.: Polynomial real root isolation using Descartes’ rule of signs. In: Proceedings of SYMSAC, pp. 272–275 (1976)

    Google Scholar 

  11. Collins, G.E., Loos, R.: Real zeros of polynomials. In: Buchberger, B., Collins, G.E., Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computation, pp. 83–94. Springer, New York (1982)

    Chapter  Google Scholar 

  12. Dayton, B., Li, T.Y., Zeng, Z.G.: Multiple zeros of nonlinear systems. Math. Comp. 80, 2143–2168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Emiris, I.Z., Mourrain, B., Tsigaridas, E.P.: The DMM bound: multivariate (aggregate) separation bounds. In: Proceedings of ISSAC’2010, pp. 243–250

    Google Scholar 

  14. Gragg, G.W., Tapia, R.A.: Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal. 11(1), 10–13 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hauenstein, J.D., Sottile, F.: Algorithm 921: alphaCertified: certifying solutions to polynomial systems. ACM Trans. Math. Softw.(TOMS) 38(4), 28 (2012)

    Article  MathSciNet  Google Scholar 

  16. Leykin, A., Verschelde, J., Zhao, A.L.: Newton’s method with deflation for isolated singularities of polynomial systems. Theoret. Comput. Sci. 359, 111–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leykin, A., Verschelde, J., Zhao, A.L.: Higher-order deflation for polynomial systems with isolated singular solutions. In: Dickenstein, A., Schreyer, F., Sommese, A. (eds.) Algorithms in Algeraic Geometry, pp. 79–97. Springer, New York (2008)

    Chapter  Google Scholar 

  18. Li, T.Y.: Numerical solution of multivariate polynomial systems by homotopy continuation methods. Acta Numerica 6, 399–436 (1997)

    Article  Google Scholar 

  19. Li, T. Y.: HOM4PS-2.0. http://hom4ps.math.msu.edu/HOM4PS_soft.htm (2008)

  20. Li, T.Y., Wang, X.S.: Solving real polynomial systems with real homotopies. Math. Comput. 60(202), 669–680 (1993)

    Article  MATH  Google Scholar 

  21. Mantzaflaris, A., Mourrain, B., Tsigaridas, E.P.: On continued fraction expansion of real roots of polynomial systems, complexity and condition numbers. Theor. Comput. Sci. (TCS) 412(22), 2312–2330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  23. Mujica, J.: Complex Analysis in Banach Spaces. North-Holland Mathematics Studies. Elsevier, Amsterdam (1986)

    Google Scholar 

  24. Rouillier, F.: Solving zero-dimensional systems through the rational univariate representation. Appl. Algebra Eng. Commun. Comput. 9, 433–461 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rump, S.M.: INTLAB—INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers. http://www.ti3.tu-harburg.de/rump/ (1999)

  26. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numerica 19, 287–449 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shen, F.: The real roots isolation of polynomial system based on hybrid computation. Master degree thesis, Peking University (April 2012)

    Google Scholar 

  28. Sommese, A., Wampler, C.: The Numerical Solution of Systems of Polynomials: Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  Google Scholar 

  29. Strzebonski, A.W., Tsigaridas, E.P.: Univariate real root isolation in multiple extension fields. In: Proceedings of ISSAC’2012, pp. 343–350

    Google Scholar 

  30. Verschelde, J.: PHCpack. http://homepages.math.uic.edu/jan/PHCpack/phcpack.html (1999)

  31. Wampler, C.: HomLab. http://nd.edu/cwample1/HomLab/main.html

  32. Wu, X., Zhi, L.: Computing the multiplicity structure from geometric involutive form. In: Proceedings of ISSAC’2008, pp. 325–332 (2008)

    Google Scholar 

  33. Xia, B.: DISCOVERER: a tool for solving semi-algebraic systems. ACM Commun. Comput. Algebra 41(3), 102–103 (2007)

    Article  Google Scholar 

  34. Xia, B., Zhang, T.: Real solution isolation using interval arithmetic. Comput. Math. Appl. 52, 853–860 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, L., Xia, B.: An algorithm for isolating the real solutions of semi-algebraic systems. J. Symbolic Comput. 34, 461–477 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, Z., Zhi, L., Zhu, Y.: Verified error bounds for real solutions of positive-dimensional polynomial systems. In: Proceedings of ISSAC’2013 (2013)

    Google Scholar 

  37. Zhang, T.: Isolating real roots of nonlinear polynomial. Master degree thesis, Peking University (2004)

    Google Scholar 

  38. Zhang, T., Xiao, R., Xia, B.: Real solution isolation based on interval Krawczyk operator. In: Sung-il, P., Park, H. (eds.) Proceedings of ASCM’2005, pp. 235–237 (2005)

    Google Scholar 

Download references

Acknowledgments

The work is partly supported by the ANR-NSFC project EXACTA (ANR-09-BLAN-0371-01/60911130369), NSFC-11001040, NSFC-11271034 and the project SYSKF1207 from ISCAS. The authors especially thank professor Dongming Wang for the early discussion on this topic in 2010 and also thank professor T.Y. Li for his helpful suggestions and his team’s work on Hom4ps2-Matlab interface. Thanks also go to Ting Gan who computed the 15 systems in Table 3 and provided us suggestion on possible improvements on our program. Thank Zhenyi Ji who shared with us his insights on our hybrid method. Thank the referees for their valuable constructive comments which help improve the presentation greatly.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Shen , Wenyuan Wu or Bican Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, F., Wu, W., Xia, B. (2014). Real Root Isolation of Polynomial Equations Based on Hybrid Computation. In: Feng, R., Lee, Ws., Sato, Y. (eds) Computer Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43799-5_26

Download citation

Publish with us

Policies and ethics