Skip to main content

Part of the book series: Springer Reference Medizin ((SRM))

Zusammenfassung

Das Neuroblastom ist der häufigste solide Tumor des Kindesalters und geht von unreifen Vorläuferzellen des sympathischen Nervensystems aus. Es ist vor allem im Nebennierenmark und entlang des zervikalen, thorakalen und abdominalen Grenzstranges sowie in den Paraganglien anzutreffen. Fast die Hälfte der Patienten weist bei der Diagnose bereits Metastasen auf. Die 15-Jahres-Gesamtüberlebensrate liegt bei 74 %, ist aber für die bekannten Risikogruppen sehr unterschiedlich. Dieses Kapitel stellt den aktuellen Stand des Wissens zu Entstehung, Diagnostik und Therapie des Neuroblastoms dar und verknüpft biologische und genetische Erkenntnisse mit zukünftigen Behandlungsmöglichkeiten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Ackermann S, Goeser F, Schulte JH et al. (2011) Polo-like kinase 1 is a therapeutic target in high-risk neuroblastoma. Clin Cancer Res 17(4): 731–741

    Google Scholar 

  • Adkins ES, Sawin R, Gerbing RB et al. (2004) Efficacy of complete resection for high-risk neuroblastoma: a Children’s Cancer Group study. J Pediatr Surg 39(6): 931–936

    Google Scholar 

  • Althoff K, Beckers A, Bell E et al. (2015) A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies. Oncogene 34(26): 3357–3368, PMID: 25174395

    Google Scholar 

  • Bagatell R, Beck-Popovic M, LondonWB et al. (2009) Significance of MYCN amplification in international neuroblastoma staging system stage 1 and 2 neuroblastoma: a report from the International Neuroblastoma Risk Group database. J Clin Oncol 27(3): 365–370

    Google Scholar 

  • Beckwith JB, Perrin EV (1963) In situ neuroblastomas: a contribution to the natural history of neural crest tumors. Am J Pathol 43(6): 1089–1104

    Google Scholar 

  • Beiske K, Burchill SA, Cheung IY et al. (2009) International neuroblastoma Risk Group Task Force. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br J Cancer 100(10): 1627–1637

    Google Scholar 

  • Benz-Bohm G, Hero B, Gossmann A et al. (2010) Focal nodular hyperplasia of the liver in longterm survivors of neuroblastoma How much diagnostic imaging is necessary? Eur J Radiol 74(3). e 1–5, PMID 19369017

    Google Scholar 

  • Berthold F, Boos J, Burdach S et al. (2005) Myeloablative megatherapy with autologous stem-cell rescue versus oral maintenance chemotherapy as consolidation treatment in patients with high-risk neuroblastoma: a randomised controlled trial. Lancet Oncol 6(9): 649–658

    Google Scholar 

  • Brodeur GM, Pritchard J, Berthold F et al. (1993) Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 11(8): 1466–1477

    Google Scholar 

  • Carpenter E, YP Mossé (2012) Targeting ALK in neuroblastoma--preclinical and clinical advancements. Nat Rev Clin Oncol 9(7): 391–399

    Google Scholar 

  • Cheung NK, Heller G (1991) Chemotherapy dose intensity correlates strongly with response, median survival, and median progression-free survival in metastatic neuroblastoma. J Clin Oncol 9: 1050–1058

    Google Scholar 

  • Cheung NK, Dyer MA (2013) Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 13(6): 397–411

    Google Scholar 

  • Cohn SL, Pearson AD, London WB et al. (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27(2): 289–297

    Google Scholar 

  • De Preter K, Vermeulen J, Brors B et al. (2010) Accurate outcome prediction in neuroblastoma across independent data sets using a multigene signature. Clin Cancer Res 16: 1532–1541

    Google Scholar 

  • De Preter K, Mestdagh P, Vermeulen J et al. (2011) miRNA expression profiling enables risk stratification in archived and fresh neuroblastoma tumor samples. Clin Cancer Res 17: 7684–7692

    Google Scholar 

  • Eleveld TF, Oldridge DA, Bernard V et al. (2015) Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet 47(8): 864–871

    Google Scholar 

  • Garaventa A, Luksch R, Biasotti S et al. (2003) A phase II study of topotecan with vincristine and doxorubicin in children with recurrent/refractory neuroblastoma. Cancer 98: 2488–2494

    Google Scholar 

  • Gonzalez S, Naranjo A, Serrano LM et al. (2004) Genetic engineering of cytolytic T lymphocytes for adoptive T-cell therapy of neuroblastoma. J Gene Med 6: 704–711

    Google Scholar 

  • Grupp SA, Stern JW, Bunin N et al. (2000) Tandem high-dose therapy in rapid sequence for children with high-risk neuroblastoma. J Clin Oncol 18: 2567–2575

    Google Scholar 

  • Hero B, Simon T, Spitz R et al. (2008) Localized infant neuroblastomas often show spontaneous regression: results of the prospective trials NB95-S and NB97. J Clin Oncol 26(9): 1504–1510

    Google Scholar 

  • Hertwig F, Peifer M, Fischer M (2015) Telomere maintenance is pivotal for high-risk neuroblastoma. Cell Cycle 10: 1–2 Epub ahead of print, PMID: 26653081

    Google Scholar 

  • Heukamp LC, Thor T, Schramm A et al. (2012) Targeted expression of mutated ALK induces neuroblastoma in transgenic mice. Sci Transl Med 4(141): 141ra91

    Google Scholar 

  • Janoueix-Lerosey I, Schleiermacher G, Michels E et al. (2009) Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol 27: 1026–1033

    Google Scholar 

  • Kaatsch P, Spix C (2012) German Childhood Cancer Registry – Annual Report 2011. Mainz, Institute of Medical Biostatistics, Epidemiology, and Informatics IMBEI) at the Universtiy Center of the Johannes Gutenberg University

    Google Scholar 

  • Kushner BH, Wolden S, LaQuaglia MP et al. (2001) Hyperfractionated low-dose radiotherapy for high-risk neuroblastoma after intensive chemotherapy and surgery. J Clin Oncol 19(11): 2821–2828

    Google Scholar 

  • Ladenstein R, Ambros IM, Pötschger U et al.(2001) Prognostic significance of DNA di-tetraploidy in neuroblastoma. Med Pediatr Oncol 36: 83–92

    Google Scholar 

  • Ladenstein R, Potschger U, Hartman O et al. (2008) 28 years of high-dose therapy and SCT for neuroblastoma in Europe: lessons from more than 4000 procedures. Bone Marrow Transplant 41(suppl 2): S118–S127

    Google Scholar 

  • Lassmann M, Treves ST and E. S. P. D. H. W. Group (2014) Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur J Nucl Med Mol Imaging 41(5): 1036–1041

    Google Scholar 

  • Maris JM (2010) Recent advances in neuroblastoma. N Engl J Med 362(23): 2202–2211

    Google Scholar 

  • Matthay KK, Villablanca JG, Seeger RC et al. (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy autologous bone marrow transplantation and 13-cis retinoic acid. Children’s Cancer Group. N Engl J Med 341:1165–1173

    Google Scholar 

  • Matthay KK, Yanik G, Messina J et al. (2007) Phase II study on the effect of disease sites, age and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol 25: 1054–1060

    Google Scholar 

  • Matthay KK, Reynolds CP, Seeger RC et al. (2009) Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by13-cis-retinoic acid: a children’s oncology group study. J Clin Oncol 27: 1007–1013

    Google Scholar 

  • Michels E, Vandesompele J, De Preter K et al. (2007) ArrayCGH-based classification of neuroblastoma into genomic subgroups. Genes Chromosomes Cancer 46: 1098–1108

    Google Scholar 

  • Molenaar JJ,Koster J, Zwijnenburg DA et al. (2012) Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature 483(7391): 589–593

    Google Scholar 

  • Oberthuer A et al. (2006) Customized oligonucleotide micro-array gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol 24(31): 5070–5078

    Google Scholar 

  • Oberthuer A, Juraeva D, Hero B et al. (2015) Revised risk estimation and treatment stratification of low- and intermediate-risk neuroblastoma patients by integrating clinical and molecular prognostic markers. Clin Cancer Res 21: 1904–1915

    Google Scholar 

  • Osenga KL, Hank JA, Albertini MR et al. (2006) A phase I clinical trial of the hu14.18-IL2 (EMD 273063) as a treatment for children with refractory or recurrent neuroblastoma and melanoma: a study of the Children’s Oncology Group. Clin Cancer Res 12: 1750–1759

    Google Scholar 

  • Pajtler KW, Mahlow E, Odersky A et al. (2014) Neuroblastoma in dialog with its stroma: NTRK1 is a regulator of cellular cross-talk with Schwann cells. Oncotarget 5 (22): 11180–11192

    Google Scholar 

  • Parsons SK, Neault MW, Lehmann LE et al. (1998) Severe ototoxicity following carboplatin-containing conditioning regimen for autologous marrow transplantation for neuroblastoma. Bone Marrow Transplant 22: 669–674

    Google Scholar 

  • Pearson AD, Pinkerton CR, Lewis IJ et al. (2008) High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomized trial. Lancet Oncol 9: 247–256

    Google Scholar 

  • Peifer M, Hertwig F, Roels F et al. (2015) Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 29, 526(7575): 700–704

    Google Scholar 

  • Plantaz D, Rubie H, Michon J et al. (1996) The treatment of neuroblastoma with intraspinal extension with chemotherapy followed by surgical removal of residual disease. A prospective study of 42 patients – results of the NBL90 Study of the French Society of Pediatric Oncology. Cancer 78: 311–319

    Google Scholar 

  • Pugh TJ, Morozova O, Attiyeh EF et al. (2013) The genetic landscape of high-risk neuroblastoma. Nature Genetics 45: 279–284

    Google Scholar 

  • Reynolds CP, Seeger RC, Vo DD et al. (1986) Model system for removing neuroblastoma cells from bone marrow using monoclonal antibodies and magnetic immunobeads. Cancer Res 46: 5882–5886

    Google Scholar 

  • Schilling FH, Spix C, Berthold F et al. (2002) Neuroblastoma screening at one year of age. N Engl J Med 346(14):1047–1053

    Google Scholar 

  • Schleiermacher G, Janoueix-Lerosey I, Delattre O (2014) Recent insights into the biology of neuroblastoma. Int J Cancer 135 (10): 2249–2261

    Google Scholar 

  • Schramm A., Schulte JH, Astrahantseff K et al. (2005a) Biological effects of TrkA and TrkB receptor signaling in neuroblastoma. Cancer Lett 228:143–153

    Google Scholar 

  • Schramm A, Schulte JH, Klein-Hitpass L et al. (2005b) Prediction of clinical outcome and biological subclassification of neuroblastoma by expression profiling. Oncogene 24: 7902–7912

    Google Scholar 

  • Schramm A, Köster J, Assenov Y et al (2015) Mutational dynamics between primary and relapse neuroblastomas. Nat Genet 47(8): 872–877

    Google Scholar 

  • Schulte JH et al. (2011) High ALK receptor tyrosine kinase expression supersedes ALK mutation as a determining factor of an unfavorable phenotype in primary neuroblastoma. Clin Cancer Res 17: 5082–5092

    Google Scholar 

  • Schwab M, Alitalo K, Klempnauer KH (1983) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305: 245–248

    Google Scholar 

  • Shimada H, Chatten J, Newton WAJ et al. (1984) Histopathologic prognostic factors in neuroblastic tumors: definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst 73: 405–416

    Google Scholar 

  • Shimada H, Ambros I, Dehner L et al. (1999) The International Neuroblastoma Pathology Classification (the Shimada System). Cancer 86: 364–372

    Google Scholar 

  • Simon T, Spitz R, Faldum A et al. (2004) New definition of low-risk neuroblastoma using stage, age, and 1p and MYCN status. J Pediatr Hematol Oncol 26(12): 791–796

    Google Scholar 

  • Simon T, Hero B, Bongartz R et al. (2006) Intensified external-beam radiation therapy improves the outcome of stage 4 neuroblastoma in children > 1 year with residual local disease. Strahlenther Onkol 182(7): 389–394

    Google Scholar 

  • Simon T, Langler A, Harnischmacher U et al. (2007) Topotecan, cyclophosphamide, and etoposide (TCE) in the treatment of high-risk neuroblastoma. Results of a phase-II trial. J Cancer Res Clin Oncol 133(9): 653–661

    Google Scholar 

  • Simon T, Niemann CA, Hero B et al. (2012) Short- and long-term outcome of patients with symptoms of spinal cord compression by neuroblastoma. Dev Med Child Neurol 54(4): 347–352

    Google Scholar 

  • Valentijn LJ, Koster J, Zwijnenburg DA et al. (2015) TERT rearrangements are frequent in neuroblastoma and identify aggressive tumors. Nat Genet 47): 1411–1414

    Google Scholar 

  • Vassal G, Doz F, Frappaz D et al. (2003) A phase I study of irinotecan as a 3-week schedule inchildren with refractory or recurrent solid tumors. J Clin Oncol 21: 3844–3852

    Google Scholar 

  • Wagner LM, Crews KR, Iacono LC et al. (2004) Phase I trial of temozolomide and protracted irinotecan in pediatric patients with refractory solid tumors. Clin Cancer Res 10: a40–848

    Google Scholar 

  • Weiss WA, Aldape K, Mohapatra G et al. (1997) Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J 16: 2985–2995

    Google Scholar 

  • Yu AL, Gilman AL, Ozkaynak MF et al., Children’s Oncology Group (2010) Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 363(14): 1324–1334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Eggert , H. Lode or F. Berthold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Eggert, A. et al. (2018). Neuroblastom. In: Niemeyer, C., Eggert, A. (eds) Pädiatrische Hämatologie und Onkologie. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43686-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43686-8_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43685-1

  • Online ISBN: 978-3-662-43686-8

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics