Skip to main content

Abstract

Multi-Directional G-Protection in Space Vehicles. It is known that maximum human tolerance to G-loads is obtained if the accelerations are acting at right angles to the long axis of the body.

The author describes a device, termed “Anti-G-Capsule”, which is pivoted about the lateral axis of the craft and assumes automatically a position such that the resultant of all acting accelerations is perpendicular to the heart-head line of the operator.

This G-protection seems especially important during the reentry phase where the operator would be subjected to severe accelerations whose directions and intensity vary.

The ejection- and stabilization mechanism of this device would also afford an analogous G-protection during and after escape from a disabled space vehicle within the lower layers of the atmosphere.

Zusammenfassung

Schutzvorrichtung gegen mehrseitige Beschleunigung in Raumfahrzeugen. Es ist bekannt, daß Beschleunigungen wesentlich besser vertragen werden, wenn sie senkrecht zur Längsachse des Körpers einwirken.

Der Autor beschreibt eine um eine Querachse drehbare „Anti-G-Kapsel“, die automatisch den Insassen so lagert, daß die Resultierende aller wirkenden Beschleunigungen senkrecht zur Herz-Kopf-Linie einwirkt.

Dieser Beschleunigungsschutz scheint besonders wesentlich beim Wiedereintritt eines Raumfahrzeuges in dichtere Luftschichten, wobei besonders hohe und in Beziehung auf Intensität und Einwirkungsrichtung ständig wechselnde Beschleunigungen zu erwarten sind.

Außerdem würde der Ausstoß- und Stabilisierungsmechanismus in Notfällen ein „Aussteigen“ aus dem Raumfahrzeug in erdnahen Schichten ermöglichen.

Résumé

Protection anti-G multidirectionnelle dans les engins spatiaux. On sait que la tolérance physiologique aux accélérations est la plus grande quand celles-ci sont dirigées perpendiculairement à l’axe longitudinal du corps humain.

L’auteur décrit un dispositif, appelé “capsule anti-G”, pivotant autour d’un axe transversal à l’engin et prenant automatiquement une position telle que la résultante des accélérations soit perpendiculaire à l’axe cœur-tête du sujet.

Cette protection semble spécialement importante pour la phase de repénétration pendant laquelle le sujet serait soumis à des accélérations importantes de direction et d’intensité variables.

Les mécanismes d’éjection et de stabilisation du dispositif offrent une protection analogue pendant et après l’abandon d’un véhicule désemparé dans les couches basses de l’atmosphère.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. G. Armstrong and J. W. Heim, The Effect of Acceleration on the Living Organism. J. Aviat. Med. 9, 209 (1938).

    Google Scholar 

  2. E. R. Ballinger and C. A. Dempsey, The Effects of Prolonged Acceleration on the Human Body in the Prone and Supine Positions. WADC 52-250, July, 1952.

    Google Scholar 

  3. E. L. Beckman, T. D. Duane, J. E. Ziegler and H. N. Hunter, Human Tolerance to High Positive G Applied at a Rate of 5 to 10 G per second. J. Aviat. Med. 25, 50 (1954).

    Google Scholar 

  4. L. Buehrlen, Versuche über die Bedeutung der Richtung beim Einwirken von Fliehkräften auf den menschlichen Körper. Luftfahrtmedizin 1, 308 (1937).

    Google Scholar 

  5. L. Buehrlen, Spitzenbeschleunigungen in zwei verschiedenen Lagen. Luftfahrtmedizin 2, 287 (1938).

    Google Scholar 

  6. W. G. Clark, J. P. Henry, P. O. Greeley and D. P. Drury, Studies on Flying in the Prone Position. Nat. Research Council Aviat. Med. Rep. 466, 1945.

    Google Scholar 

  7. P. J. Dorman and R. W. Lawton, Effect on G Tolerance of Partial Supination Combined with the Anti-G Suit. J. Aviat. Med. 27, 490 (1956).

    Google Scholar 

  8. M. D. Duane, E. L. Beckman, J. E. Ziegler and H. N. Hunter, Human Studies of 15 Transverse G. J. Aviat. Med. 26, 298 (1955).

    Google Scholar 

  9. R. A. Frost, Engineering Problems in Escape from High Performance Aircraft. J. Aviat. Med. 28, 74 (1957).

    Google Scholar 

  10. O. Gauer, The Physiological Effects of Prolonged Acceleration. German Aviat. Med. WWII, p. 554.

    Google Scholar 

  11. C.F. Gell, Modification of F7F, Installation of Supine Seat and Related Components, Inflight Evaluation of the Seat. NADC-MAL 5104 and L 5208 (1952).

    Google Scholar 

  12. C. F. Gell and N. H. Hunter, Physiological Investigation of Increasing Resistance to Black Out by Progressive Backward Tilting to the Supine Position. J. Aviat. Med. 25, 568 (1954).

    Google Scholar 

  13. J. W. Goodrich, Escape from High Performance Aircraft. WADC Techn. Note 56-7.

    Google Scholar 

  14. J. F. Hegenwald and B. A. Blockley, Survivable Supersonic Ejection, 27th Annual Meeting, Aero Medical Association, Chicago, 1956.

    Google Scholar 

  15. J. P. Henry, Studies of the Physiology of Negative Acceleration. WADC 5953, Oct. 1950.

    Google Scholar 

  16. C. F. Lombard, Can Change of Position Effect Ejection Tolerance? 28th Annual Meeting, Aero Medical Association, Denver, May 1957.

    Google Scholar 

  17. E. E. Martin and J. P. Henry, The Supine Position as a Means of Increasing Tolerance to Accelerations. WADC No. 6025, August 1950.

    Google Scholar 

  18. H. F. Mohrlock, Aircraft Performance Systems Related to Escape Systems. J. Aviat. Med. 28, 59 (1957).

    Google Scholar 

  19. H. Preston-Thomas, R. Edelberg, J. P. Henry, J. Miller, W. Salzman and G. Zuidema, Human Tolerance to Multistage Rocket Acceleration Curves. J. Aviat. Med. 26, 390 (1955).

    Google Scholar 

  20. S. Ruff, Brief Acceleration: Less than One Second. German Aviat. Med. WWII, p. 584.

    Google Scholar 

  21. S. Ruff and H. Strughold, Compendium of Aviation Medicine. Leipzig: J. A. Barth, 1939.

    Google Scholar 

  22. F. R. Stauffer, The Effect of High Acceleration Forces upon Certain Physiological Functions of Human Subjects Placed in a Modified Supine Position, U.S. Naval School of Aviation Medicine, NM 001 059 02 01, Oct. 1949.

    Google Scholar 

  23. F. R. Stauffer, Certain Physiological Responses in Man Changing from the Sitting Position to Supine Position during Radial Acceleration. U.S. Naval School of Aviation Medicine, NM 001 059 02 02, Feb. 1950.

    Google Scholar 

  24. J. P. Stapp and D. C. Hughes, Supersonic Deceleration and Windblast. J. Aviat. Med. 27, 407 (1956).

    Google Scholar 

  25. J. P. Stapp and W. C. Blount, A Compressed Air Catapult for High Impact Forces. J. Aviat. Med. 28, 281 (1957).

    Google Scholar 

  26. D. G. Simons and J. P. Henry, Electroencephalographic Changes Occurring during Negative Accelerations. Air Force Techn. Rep. No. 5966, May 1950.

    Google Scholar 

  27. F. D. Van Wart and J. T. Barter, A Method for Calculating the Center of Gravity of the Human Body for the Development of Stabilized Escape Systems. 28th Annual Meeting, Aero Med. Association, Denver, May 1957.

    Google Scholar 

  28. H. J. von Beckh, Fisiologia del Vuelo (Spanish), p. 114. Buenos Aires: Ed. Alfa, 1955.

    Google Scholar 

  29. H. J. von Beckh, Experiments with Animals and Human Subjects under Sub and Zero Gravity Conditions during the Dive and Parabolic Flight. J. Aviat. Med. 25, 235 (1954).

    Google Scholar 

  30. H. von Diringshofen, “Long Chair” Position for Fighter Pilots. J. Aviat. Med. 26, 467 (1955).

    Google Scholar 

  31. H. von Diringshofen, “Medical Guide for Flying Units” (English Translation). Toronto Press, 1941.

    Google Scholar 

  32. H. S. Weiss, R. Edelberg, P. V. Charland and J. I. Rosenbaum, Animal and Human Reaction to Rapid Tumbling. J. Aviat. Med. 25, 5 (1954).

    Google Scholar 

  33. H. Wiesehoefer, Über Flugversuche zur Frage der Erträglichkeit hoher Beschleunigungen bei liegender Unterbringung der Flugzeuginsassen. Luftfahrtmedizin 4, 145 (1940).

    Google Scholar 

  34. H. J. von Beckh, Multi-directional G-Protection in Flight and During Escape. Second European Congress of Aviation Medicine, Stockholm, Sept. 16-19, 1957.

    Google Scholar 

  35. H. J. von Beckh and G. J. D. Schock, Centrifuge Experiments on High-G-Loads in Mice and Their Possible Alleviation by Multi-directional Anti-G-Devices. 29th Annual Meeting of the Aero Medical Association, Washington, March 24–26, 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Hecht

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag Wien

About this chapter

Cite this chapter

von Beckh, H.J. (1958). Multi-Directional G-Protection in Space Vehicles. In: Hecht, F. (eds) VIIIth International Astronautical Congress Barcelona 1957 / VIII. Internationaler Astronautischer Kongress / VIIIe Congrès International D’Astronautique. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-39990-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-39990-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-39020-7

  • Online ISBN: 978-3-662-39990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics