Skip to main content

Secretion of Mammalian Proteins that Lack a Signal Sequence

  • Chapter
Unusual Secretory Pathways: From Bacteria to Man

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Cells are surrounded by an impermeable membrane whose integrity is essential to maintain the differences (in ionic concentration, redox potential etc.) between the cytoplasm and the extracellular space. Yet, cells avoid isolation and communicate by sending each other macromolecular messages in the form of secretory proteins. These molecules, interacting with specific receptors that span the cell membrane, activate tightly regulated systems which transduce the signal to the nucleus and elicit the appropriate responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci USA 1980; 77: 1496–1500.

    PubMed  CAS  Google Scholar 

  2. Lingappa VR. Intracellular traffic of newly synthesized proteins. J Clin Invest 1989; 83: 739–751.

    PubMed  CAS  Google Scholar 

  3. Schatz G, Dobberstein B. Common principles of protein translocation across membranes. Science 1996; 271: 1519–1526.

    PubMed  CAS  Google Scholar 

  4. Bretscher MS, Munro S. Cholesterol and the Golgi apparatus. Science 1993; 261: 1280–81.

    PubMed  CAS  Google Scholar 

  5. Auron PE, Webb AC, Rosenwasser LJ et al. Nucleotide sequence of human monocyte interleukin-1 precursor cDNA. Proc Natl Acad Sci USA 1984; 81: 7907–7911.

    PubMed  CAS  Google Scholar 

  6. Abraham JA, Whang JL, Tumolo A et al. Human fibrolast growth factor: nucleotide sequence and genomic organization. EMBO J 1986; 5: 2523–2528.

    PubMed  CAS  Google Scholar 

  7. Muesch A, Hartmann E, Rohde K et al. A novel pathway for secretory proteins? Trends Biochem Sci 1990; 15: 86–88.

    PubMed  CAS  Google Scholar 

  8. Rubartelli A, Cozzolino F, Talio M, Sitia R. A novel secretory pathway for interleukin-113, a protein lacking a signal sequence. EMBO J 1990; 9: 1503–1510.

    PubMed  CAS  Google Scholar 

  9. Cozzolino F, Rubartelli A, Aldinucci D et al. Interleukin-1 as an autocrine growth factor for acute myeloid leukemia cells. Proc Natl Acad USA 1989; 86: 2369–2373.

    CAS  Google Scholar 

  10. Kuchler K. Unusual routes of protein secretion: the easy way out. Trends Cell Biol 1993; 3: 421–426

    PubMed  CAS  Google Scholar 

  11. Dinarello CA. Interleukin-la and Interleukin-113 antagonism. Blood 1991; 127: 119–127

    Google Scholar 

  12. Hazuda DJ, Lee JC, Young PR. The kinetics of interleukin-1 secretion from activated monocytes. Difference between interleukin-la and interleukin-113.J Biol Chem 1989; 17: 8473–8479.

    Google Scholar 

  13. Hogquist KA, Nett MA, Unanue ER et al. Interleukin-1 is processed and released during apoptosis. Proc Natl Acad Sci USA 1991; 88: 8485–8489.

    PubMed  CAS  Google Scholar 

  14. Rubartelli A, Bajetto A, Allavena G et al. Post-translational regulation of interleukin-1ß secretion. Cytokine 1993; 5: 117–124.

    PubMed  CAS  Google Scholar 

  15. Perregaux D, Gabel CA. Interleukin—Iß maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 1994; 269: 15195–15203.

    PubMed  CAS  Google Scholar 

  16. Siders WA, Mizel SB. Interleukin-1 secretion. A multiple process that is regulated in a cell type-specific manner. J Biol Chem1995; 268: 22170–22174

    Google Scholar 

  17. Thornberry NA, Bull HG, Calaycay JR. A novel heterodimeric cysteine protease is required for interleukin-lß processing in monocytes. Nature 1992; 356: 768–774.

    PubMed  CAS  Google Scholar 

  18. Cerretti DP, Kozlosky CJ, Mosley B. Molecular cloning of the interleukin113 converting enzyme. Science 1992; 256: 97–100.

    PubMed  CAS  Google Scholar 

  19. Miura M, Zhu H, Rotello R et al. Induction of apoptosis in fibroblasts by IL-113-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 1993; 75: 653–660.

    PubMed  CAS  Google Scholar 

  20. Ayala JM, Yamin TT, Egger LA et al. IL-iß-converting is present in monocytic cells as inactive precursor. J Immunol. 1994; 153: 2592–2599

    PubMed  CAS  Google Scholar 

  21. Singer II, Scott S, Chin J et al. The interleukin-1ß converting enzyme (ICE) is localized on the external cell surface membrane and in the cytoplasmic ground substance of human monocytes by immuno-electron microscopy. J Exp Med 1995; 182: 1447–1459.

    PubMed  CAS  Google Scholar 

  22. Walev I, Reske K, Palmer M et al. Potassium-inhibited processing of IL-Iß in human monocytes. EMBO J 1995; 14: 1607–1614.

    PubMed  CAS  Google Scholar 

  23. Haskill S, Martin G, Van Le L et al. cDNA cloning of an intracellular form of the human interleukin-1 receptor antagonist associated with epithelium. Proc Natl Acad Sci USA 1991; 88: 3681–3685.

    PubMed  CAS  Google Scholar 

  24. Corradi A, Franzi AT, Rubartelli A. Synthesis and secretion of interleukin-la and interleukin-1 receptor antagonist during differentiation of cultured keratinocytes. Exp Cell Res 1995; 217: 355–362.

    PubMed  CAS  Google Scholar 

  25. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Ann Rev Biochem 1989; 58: 575–560.

    PubMed  CAS  Google Scholar 

  26. Basilico C, Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res 1992; 59: 115–165.

    PubMed  CAS  Google Scholar 

  27. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993; 60: 1–41.

    PubMed  CAS  Google Scholar 

  28. Jaye M, Howk R, Burgess W et al. Human endothelial cell growth factor: cloning, nucleotide sequence and chromosome localization. Science 1986; 233: 543–545.

    Google Scholar 

  29. Miyamoto M, Naruo KI, Seko C et al. Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Mol Cell Biol 1993; 13: 451–459.

    Google Scholar 

  30. Mignatti P, Morimoto T, Rifkin DB. Basic fibroblast growth factor realased by single, isolated cells stimulates their migration in an autocrine manner. Proc Natl Acad Sci USA 1991; 88: 11007–11011.

    PubMed  CAS  Google Scholar 

  31. Mignatti P, Morimoto T, Rifkin DB. Basic fibroblast growth factor, a protein devoid of secretory signal sequence, is released by cells via a pathway independent of the endoplasmic reticulum-Golgi complex. J Cell Physiol 1992; 151: 81–93.

    PubMed  CAS  Google Scholar 

  32. Jackson A, Tarantini F, Gamble S et al. The release of fibroblast growth factor-1 from NIH 3T3 cells in response to temperature involves the function of cysteine residues. J Biol Chem 1995; 270: 33–36.

    PubMed  CAS  Google Scholar 

  33. Tarantini F, Gamble S, Friedman S et al. The cysteine residue responsible for the release of fibroblast growth factor-1 resides in a domain independent of the domain for phosphatidylserine binding. J Biol Chem 1995; 270: 29039–29042.

    PubMed  CAS  Google Scholar 

  34. Imamura T, Tokita Y, Mitsui YJ. Identification of a heparin-binding growth factor-1 translocation sequence by deletion mutation analysis. J Biol Chem 1992; 267: 5676–5679.

    PubMed  CAS  Google Scholar 

  35. Quarto N, Finger FP, Rifkin DB. The NH2-terminal extension of high molecular weight bFGF is a nuclear targeting signal. J Cell Physiol 1991; 147: 311–318.

    PubMed  CAS  Google Scholar 

  36. Bouche G, Gas N, Prats M. Basic fibroblast growth factor enters the nucleolus and stimulates the transcription of ribosomal genes in ABAE cells undergoing GO/G1 transition. Proc Natl Acad Sci USA 1987; 84: 6770–6774.

    PubMed  CAS  Google Scholar 

  37. Wiedlocha A, Faines PO, Madshus IH et al. Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell 1994; 76: 1039–1051.

    PubMed  CAS  Google Scholar 

  38. Rubartelli A, Sitia R. Entry of exogenous polypeptides into the nucleus of living cell: facts and speculations. Trends Cell Biol 1995; 5: 409–412.

    PubMed  CAS  Google Scholar 

  39. Tabe L, Krieg P, Strachan R et al. Efficient expression of cloned complementary DNAs for secretory proteins after injection into Xenopus oocytes. J Mol Biol 1984; 180: 615–643.

    PubMed  Google Scholar 

  40. Wiedmann B, Sakai H, Davis TA and Wiedmann M. A protein complex required for signal-sequence specific sorting and translocation. Nature 1994; 370: 434–440.

    PubMed  CAS  Google Scholar 

  41. Li JJ, Huang YQ, Moscatelli D. Expression of fibroblast growth factors and their receptors in acquired immunodeficiency syndrome-associated Kaposi sarcoma tissue and derived cells. Cancer 1993; 72: 2253–2259.

    PubMed  CAS  Google Scholar 

  42. Rogelj S, Weinberg RA, Fanning P, Klagsbrun M. b-FGF fused to a signal peptide transforms cells. Nature 1988; 331: 173–175.

    PubMed  CAS  Google Scholar 

  43. Holmgren A. Thioredoxin. Ann Rev Biochem 1985; 54: 237–271.

    PubMed  CAS  Google Scholar 

  44. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 1989; 264: 13963–13966.

    PubMed  CAS  Google Scholar 

  45. Wollman EE, D’Auriol L, Rimsky L et al. Cloning and expression of a cDNA for human thioredoxin. J Biol Chem 1988; 263: 15506–15512.

    PubMed  CAS  Google Scholar 

  46. Tagaya Y, Maeda Y, Mitsui A et al. ATL-derived factor (ADF), an IL-2 receptor/Tac-inducer homologous to thioredoxin: possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J 1989; 8: 757–764.

    PubMed  CAS  Google Scholar 

  47. Wakasugi N, Tagaya Y, Wakasugi H et al. ADF/thioredoxin produced by both HTLV-1 and EBV transformed lymphocytes acts as an autocrine growth factor and synergizes with IL-1 and IL-2. Proc Natl Acad Sci USA 1990; 87: 8282–8286.

    PubMed  CAS  Google Scholar 

  48. Silverstein DS, Ali MH, Baker SL et al. Human eosinophil cytotoxicityenhancing factor purification, physical characteristics, and partial aminoacid sequence of an active polypeptide. J Immunol 1989; 143: 979–983.

    Google Scholar 

  49. Carlsson M, Totterman TH, Rosen A et al. Interleukin 2 and a cell hybridoma (MP6) derived factor act synergistically to induce proliferation and differentiation of human B-chronic lymphocytic leukemia cells. Leukemia 1989; 3: 593–601.

    PubMed  CAS  Google Scholar 

  50. Rubartelli A, Bajetto A, Allavena G et al. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem1992; 267: 24161–24164.

    Google Scholar 

  51. Ericson ML, Honing J, Wendel HV et al. Secretion of thiredoxin after in vitro activation of human B cells. Lymphokine-Cytokine Res 1992; 11: 201–207.

    PubMed  CAS  Google Scholar 

  52. Rubartelli A, Bonifaci N, Sitia R. High rates of thioredoxin secretion correlate with growth arrest in hepatoma cells. Cancer Res 1995; 55: 675–680.

    PubMed  CAS  Google Scholar 

  53. Martin H, Dean M. Identification of a thioredoxin related protein associated with plasma membrane. Biochem Biophys Res Commun 1991; 175: 123–128.

    PubMed  CAS  Google Scholar 

  54. Barondes SH. Soluble lectins: a new class of extracellular proteins. Science 1984; 223: 1259–1264.

    PubMed  CAS  Google Scholar 

  55. Cherayil BJ, Chaitovitz S, Wong C et al. Molecular cloning of a human macrophage lectin specific for galactose. Proc Natl Acad Sci USA 1990; 87: 7324–7328.

    PubMed  CAS  Google Scholar 

  56. Rosenberg IM, Lyer R, Cherayil BJ et al. Structure of the murine Mac2 gene. J Biol Chem 1993; 268: 12393–12400.

    PubMed  CAS  Google Scholar 

  57. Raz A, Meromsky L, Zvibel I et al. Transformation-related changes in the expression of endogenous cell lectins. Int J Cancer 1987; 388: 353–360.

    Google Scholar 

  58. Wells V, Mallucci L. Identification of an autocrine negative growth factor: mouse ß-galactoside-binding protein is a cytostatic factor and cell growth regulator. Cell 1991; 64: 91–97.

    PubMed  CAS  Google Scholar 

  59. Barondes SH, Haywood-Reid PL. Externalization of an endogenous chicken muscle lectin with in vivo development. J Cell Biol 1981; 91: 568–572.

    PubMed  CAS  Google Scholar 

  60. Cooper DN, Barondes SH. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J Cell Biol 1990; 110: 1681–1691.

    PubMed  CAS  Google Scholar 

  61. Johnstone RM, Adam M, Hammond JR et al. Vesicle formation during reticulocyte maturation: association of plasmamembrane activities with released vesicles (exosomes). J Biol Chem 1987; 262: 9412–9420.

    PubMed  CAS  Google Scholar 

  62. Hale JE, Wuthier RE. The mechanism of matrix vesicles formation. J Biol Chem 1987; 262: 1916–1925.

    PubMed  CAS  Google Scholar 

  63. Lindstedt R, Apodaca G, Barondes SH et al. Apical secretion of a cytosolic protein by Madin-Darby canine kidney cells. Evidence for polarized release of an endogenous lectin by a nonclassical secretory pathway. J Biol Chem 1993; 268: 11750–11757.

    PubMed  CAS  Google Scholar 

  64. Sato S, Burdett I, Hughes RC. Secretion of the baby hamster kidney 30 kDa galactose binding lectin from polarized and nonpolarized cells: a pathway independent of the endoplasmic reticulum-Golgi complex. Exp Cell Res 1993; 207: 8–18

    PubMed  CAS  Google Scholar 

  65. Jones KA. Tat and HIV-1 promoter. Curr Opin Cell Biol 1993; 5: 461–468.

    PubMed  CAS  Google Scholar 

  66. Westerndorp MO, Li-Weber M, Frank RW et al. Human immunodeficiency virus type 1 Tat upregulates interleukin-2 secretion in activated T cells. J Virol 1994; 68: 4177–4185.

    Google Scholar 

  67. Ensoli B, Barillari G, Salahuddin SZ et al. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi’s sarcoma lesions of AIDS patients. Nature 1990; 345: 84–86.

    PubMed  CAS  Google Scholar 

  68. Westendorp MO, Frank R, Ochsenbauer C et al. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 1995; 375: 497–500.

    PubMed  CAS  Google Scholar 

  69. Albini A, Benelli R, Presta M et al. HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene 1996; 12: 289–297.

    PubMed  CAS  Google Scholar 

  70. Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55: 1189–1193.

    PubMed  CAS  Google Scholar 

  71. Mann DA, Frankel AD. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 1991; 10: 1733–1739.

    PubMed  CAS  Google Scholar 

  72. Dice JF. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem Sci 1990; 15: 305–309.

    PubMed  CAS  Google Scholar 

  73. Terlecky SR, Dice JF. Polypeptide import and degradation by isolated lysosomes. J Biol Chem 1993; 268: 23490–23495.

    PubMed  CAS  Google Scholar 

  74. Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 1996; 273: 501–503.

    PubMed  CAS  Google Scholar 

  75. Hendrick J, Hartl FU. Molecular chaperone function of heat shock proteins. Ann Rev Biochem 1993; 62: 349–384.

    PubMed  CAS  Google Scholar 

  76. Randall L, Hardy S. Correlation of competence for export with lack of tertiary structure in the mature species: a study in vivo of maltose binding protein in E. coli. Cell 1986; 46: 921–928.

    PubMed  CAS  Google Scholar 

  77. Eilers M, Schatz G. Binding of a specific ligand inhibits import of a purified precursor protein into mitochondria. Nature 1986; 322: 228–232.

    PubMed  CAS  Google Scholar 

  78. Deshaies RJ, Koch BD, Werner-Washburne M et al. A family of stress proteins facilitates translocation of secretory and mitochondrial precursor proteins. Nature 1988; 322: 800–810.

    Google Scholar 

  79. McNew JA, Goodman JM. An oligomeric protein is imported into peroximoses in vivo. J Cell Biol 1994; 127: 1245–1257.

    PubMed  CAS  Google Scholar 

  80. America T, Hageman J, Guère A et al. Methotrexate does not block import of a DHFR fusion protein into chloroplasts. Plant Mol Biol 1994; 24: 283–294.

    PubMed  CAS  Google Scholar 

  81. Hazuda DJ, Strickler J, Simon P, Young PR. Structure-function mapping of interleukin-1 precursors. Cleavage leads to a conformational change in the mature protein. J Biol Chem 1991; 266: 7081–7086.

    PubMed  CAS  Google Scholar 

  82. Flower RJ, Rothwell NJ. Lipocortin 1: cellular mechanisms and clinical relevance. Trends Pharmacol Sci 1994; 15: 71–76.

    PubMed  CAS  Google Scholar 

  83. Silver PA. How proteins enter the nucleus. Cell 1991; 64: 489–497.

    PubMed  CAS  Google Scholar 

  84. Ho KC, Quarmby VE, French FS, Wilson EM. Molecular cloning of rat prostate transglutaminase cDNA: the major androgen-regulated protein DP1 of rat dorsal prostate and coagulating gland. J Biol Chem 1992; 267: 12660–12667.

    PubMed  CAS  Google Scholar 

  85. Seitz J, Keppler C, Rausch U, Aumuller G. Immunohistochemistry of secretory transglutaminase from rodent prostate. Histochemistry 1990; 93: 525–530.

    PubMed  CAS  Google Scholar 

  86. Kandel J, Bossy-Wetzel E, Radvanyi F et al. Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991; 66: 1095–1104.

    PubMed  CAS  Google Scholar 

  87. Bohmer FD, Kraft R, Otto A et al. Identification of a polypeptide growth inhibitor from bovine mammary gland. J Biol Chem 1987; 262: 1537–1543.

    Google Scholar 

  88. Cozzolino F, Torcia M, Aldinucci D et al. Interleukin-1 as an autocrine regulator of human endothelial cell growth. Proc Natl Acad Sci USA 1990; 87: 6487–6491.

    PubMed  CAS  Google Scholar 

  89. Deiss LP, Kimchi A. A genetic tool used to identify thioredoxin as a mediator of a growth inhibitory signal. Science 1991; 252: 117–120.

    PubMed  CAS  Google Scholar 

  90. Hwang C, Sinskey AJ and Lo dish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 1992; 257: 1496–1502.

    PubMed  CAS  Google Scholar 

  91. Lin L-F H, Mismer D, Lilie JD et al. Purification, cloning and expression of ciliary neurotrophic factor (CNTF). Nature 1989; 246: 1023–1025.

    CAS  Google Scholar 

  92. Ishikawa F, Miyazono K, Hellman U et al. Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 1989; 388: 557–562.

    Google Scholar 

  93. Usuki K, Heldin NE, Miyazono K et al. Production of platelet-derived endothelial cell growth factor by normal and transformed human cells in culture. Proc Natl Acad Sci USA 1989; 86: 7427–7431.

    PubMed  CAS  Google Scholar 

  94. Kao J, Houck K, Fan Y et al. Characterization of a novel tumor-derived cytokine. J Biol Chem 1994; 269: 25106–25119.

    PubMed  CAS  Google Scholar 

  95. Christmas P, Callaway J, Fallon J et al. Selective secretion of annexin 1, a protein without a signal sequence, by the human prostate gland. J Biol Chem 1991; 266: 2499–2507.

    PubMed  CAS  Google Scholar 

  96. Solito E, Raugei G, Melli M et al. Dexamethasone induces the expression of the mRNA of lipocortin 1 and 2 and the release of lipocortin 1 and 5 in differentiated but not in undifferentiated U-937 cells. FEBS Lett 1991; 291: 238–244.

    PubMed  CAS  Google Scholar 

  97. Goodall GJ, Dominguez F, Horecker BL. Molecular cloning of cDNA for human prothymosin a. Proc Natl Acad Sci USA 1986; 83: 8926–8928.

    PubMed  CAS  Google Scholar 

  98. Clinton M, Frangou-Lazaridis M, Pannerselvam C et al. The sequence of human parathymosin deduced from a cloned human kidney cDNA. Biochem Biophys Res Commun 1989; 158: 855–862.

    PubMed  CAS  Google Scholar 

  99. Grundmann U, Amann E, Zettlmeissl G et al. Characterization of cDNA coding for human factor XIIIa. Proc Natl Acad Sci USA 1986; 83: 8024–8028.

    PubMed  CAS  Google Scholar 

  100. Gentile V, Saydak M, Chiocca EA et al. Isolation and characterization of cDNA clones to mouse macrophage and human endothelial cell tissue transglutaminases. J Biol Chem 1991; 266: 478–483.

    PubMed  CAS  Google Scholar 

  101. Aeschlimann D, Paulsson M. Transglutaminases: protein cross-linking enzymes in tissue and body fluids. Thromb Haemos 1994; 71: 402–415.

    CAS  Google Scholar 

  102. Melloni E, Sparatore B, Patrone M, Pessino A, Passalacqua M, Pontremoli S. Extracellular release of the “differentiation enhancing factor”, a HMG1 protein type, is an early step in murine erythroleukemia cell differentiation. FEBS Lett 1995; 368: 466–470.

    PubMed  CAS  Google Scholar 

  103. Sloan IS, Horowitz PM, Chirgwin JM. Rapid secretion by a non classical pathway of overexpressed mammalian mitochondrial rhodanese. J Biol Chem 1994; 269: 27625–27630.

    PubMed  CAS  Google Scholar 

  104. Biocca S, Cattaneo A. Intracellular immunization: antibody targeting to subcellular compartments. Trends Cell Biol 1995; 5: 248–252.

    PubMed  CAS  Google Scholar 

  105. Simon SM, Blobel G. Signal peptides open protein-conducting channels in E. coli. Cell 1992; 69: 677–684.

    PubMed  CAS  Google Scholar 

  106. Ooi CH, Weiss J. Bidirectional movement of a nascent polypeptide across microsomal membranes reveals requirements for vectorial translocation of proteins. Cell 1992; 71: 87–96.

    PubMed  CAS  Google Scholar 

  107. Danpure CJ. How can the product of a single gene be localized to more than one intracellular compartment. Trends Cell Biol 1995; 5: 230–238.

    PubMed  CAS  Google Scholar 

  108. Dunbar CE, Browder TM, Abrams JS, Nienhuis AW. COOH-terminal modified interleukin 3 is retained intracellularly and stimulates autocrine growth. Science 1989; 245: 1493–1496.

    PubMed  CAS  Google Scholar 

  109. Bejcek BE, Li DJ, Deuel TF. Transformation by v-sis occurs by an internal autoactivation mechanism. Science 1989; 245: 1496–1499.

    PubMed  CAS  Google Scholar 

  110. Montero M, Brini M, Marsault R et al. Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 1995; 14: 5467–5475.

    PubMed  CAS  Google Scholar 

  111. Sitia R, Neuberger MS, Alberini C et al. Developmental regulation of IgM secretion: the role of the carboxy-terminal cysteine. Cell 1990; 60; 781–790.

    PubMed  CAS  Google Scholar 

  112. Reddy P, Sparvoli A, Fagioli C et al. Formation of reversible disulfide bonds with the protein matrix of the endoplasmic reticulum correlates with the retention of unassembled Ig-light chains. EMBO J 1996; 15: 2077–2085.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rubartelli, A., Sitia, R. (1997). Secretion of Mammalian Proteins that Lack a Signal Sequence. In: Unusual Secretory Pathways: From Bacteria to Man. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22581-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22581-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22583-7

  • Online ISBN: 978-3-662-22581-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics