Skip to main content

Properties of Kidney Plasma Membrane Vacuolar H+-ATPases: Proton Pumps Responsible for Bicarbonate Transport, Urinary Acidification, and Acid-Base Homeostasis

  • Chapter
Organellar Proton-ATPases

Abstract

To maintain acid-base homeostasis, the kidney must reabsorb all of the 4500 millimoles of bicarbonate filtered by the glomerulus and regenerate the approximately 70 millimoles of bicarbonate consumed by daily metabolism.1, 2 The kidney accomplishes both bicarbonate reabsorption and regeneration by using hydrogen ion secretion,1, 2 and vacuolar H+-ATPases residing on the plasma membrane have an important or essential role in these processes in several nephron segments.3, 9 The plasma membrane vacuolar H+-ATPases differ from vacuolar H+-ATPases of intracellular organelles in several ways. The plasma membrane vacuolar H+-ATPase in hydrogen ion-transporting renal epithelial cells reside at high densities,10 and they have a polarized distribution11, 12 that allows for vectorial secretion of hydrogen ion. The plasma membrane vacuolar H+-ATPases of the nephron are also subject to physiologic regulation3, 8, 13 that allows the kidney to preserve acid-base balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DuBose, T., Jr., Reclamation of filtered bicarbonate. Review. Kidney Int, 1990. 38(4): p. 584–9.

    Article  PubMed  CAS  Google Scholar 

  2. Rector, F., Jr., Renal regulation of acid-base balance. Aust N Z J Med, 1981. 11(Suppl 1): p. 1–5.

    Article  PubMed  Google Scholar 

  3. Hamm, L.L. and K.S. Hering-Smith, Acid-base transport in the collecting duct. Review. Semin Nephrol, 1993. 13(2): p. 246–55.

    PubMed  CAS  Google Scholar 

  4. Ulate, G., R. Fernandez, and G. Malnic, Effect of bafilomycin on proximal bicarbonate absorption in the rat. Braz J Med Biol Res, 1993. 26(7): p. 773–7.

    PubMed  CAS  Google Scholar 

  5. Preisig, P.A. and R.J. Alpern, Pathways for apical and basolateral membrane NH3 and NH4+ movement in rat proximal tubule. Am J Physiol, 1990. 259(4 Pt 2): p. F587–93.

    PubMed  CAS  Google Scholar 

  6. Zimolo, Z., M.H. Montrose, and H. Murer, H+ extrusion by an apical vacuolar-type H( +)-ATPase in rat renal proximal tubules. J Membr Biol, 1992. 126(1): p. 19–26.

    PubMed  CAS  Google Scholar 

  7. Hays, S.R. and R.J. Alpern, Inhibition of Na(+)-independent H+ pump by Na(+)-induced changes in cell Ca2+ J Gen Physiol, 1991. 98(4): p. 791–813.

    Article  PubMed  CAS  Google Scholar 

  8. Moe, O.W., P.A. Preisig, and R.J. Alpern, Cellular model of proximal tubule NaCl and NaHCO3 absorption.Review. Kidney Int, 1990. 38(4): p. 605–11.

    Article  PubMed  CAS  Google Scholar 

  9. Preisig, P.A., et al., Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest, 1987. 80(4): p. 970–8.

    Article  PubMed  CAS  Google Scholar 

  10. Brown, D., S. Gluck, and J. Hartwig, Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+-ATPase. J Cell Biol, 1987. 105(4): p. 1637–48.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, D., S. Hirsch, and S. Gluck, An H+-ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature, 1988. 331(6157): p. 622–4.

    Article  PubMed  CAS  Google Scholar 

  12. Brown, D., S. Hirsch, and S. Gluck, Localization of a proton-pumping ATPase in rat kidney. J Clin Invest, 1988. 82(6): p. 2114–26.

    Article  PubMed  CAS  Google Scholar 

  13. Steinmetz, P.R., Cellular organization of urinary acidification.Review. Am J Physiol, 1986. 251(2 Pt 2): p. F173–87.

    PubMed  CAS  Google Scholar 

  14. Alpern, R.J., Cell mechanisms of proximal tubule acidification.Review. Physiol Rev, 1990. 70(1): p. 79–114.

    PubMed  CAS  Google Scholar 

  15. Bank, N., H.S. Aynedjian, and B.F. Mutz, Proximal bicarbonate absorption independent of Na+-H+ exchange: effect of bicarbonate load. Am J Physiol, 1989. 256(4 Pt 2): p. F577–82.

    PubMed  CAS  Google Scholar 

  16. Good, D.W., M.A. Knepper, and M.B. Burg, Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am J Physiol, 1984. 247(1 Pt 2): p. F35–44.

    PubMed  CAS  Google Scholar 

  17. Capasso, G., R. Unwin, and G. Giebisch, Role of the loop of Henle in urinary acidification. Kidney Int Suppl, 1991. 33(5): p. S33–5.

    PubMed  CAS  Google Scholar 

  18. Capasso, G., et al., Bicarbonate transport along the loop of Henle. I. Microperfusion studies of load and inhibitor sensitivity. J Clin Invest, 1991. 88(2): p. 430–7.

    Article  PubMed  CAS  Google Scholar 

  19. Froissart, M., et al., Plasma membrane Na(+)-H+ antiporter and H(+)-ATPase in the medullary thick ascending limb of rat kidney. Am J Physiol, 1992. 262(4 Pt 1): p. C963–70.

    PubMed  CAS  Google Scholar 

  20. Good, D.W., The thick ascending limb as a site of renal bicarbonate reabsorption.Review. Semin Nephrol, 1993. 13(2): p. 225–35.

    PubMed  CAS  Google Scholar 

  21. Wang, T., et al., Renal bicarbonate reabsorption in the rat. IV. Bicarbonate transport mechanisms in the early and late distal tubule. J Clin Invest, 1993. 91(6): p. 2776–84.

    Article  PubMed  CAS  Google Scholar 

  22. Weiner, I.D., C.S. Wingo, and L.L. Hamm, Regulation of intracellular pH in two cell populations of inner stripe of rabbit outer medullary collecting duct. Am J Physiol, 1993. 265(3 Pt 2): p. F406–15.

    PubMed  CAS  Google Scholar 

  23. Schwartz, G.J., L.M. Satlin, and J.E. Bergmann, Fluorescent characterization of collecting duct cells: a second H+-secreting type. Am J Physiol, 1988. 255(5 Pt 2): p. F1003–14.

    PubMed  CAS  Google Scholar 

  24. Alper, S.L., et al., Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A, 1989. 86(14): p. 5429–33.

    Article  PubMed  CAS  Google Scholar 

  25. Emmons, C. and I. Kurtz, Functional characterization of three intercalated cell subtypes in the rabbit outer cortical collecting duct. J Clin Invest, 1994. 93(1): p. 417–23.

    Article  PubMed  CAS  Google Scholar 

  26. Stone, D.K., et al., Anion dependence of rabbit medullary collecting duct acidification. J Clin Invest, 1983. 71(5): p. 1505–8.

    Article  PubMed  CAS  Google Scholar 

  27. Jacobson, H.R., Medullary collecting duct acidification. Effects of potassium, HCO3 concentration, and pCO2. J Clin Invest, 1984. 74(6): p. 2107–14.

    Article  PubMed  CAS  Google Scholar 

  28. Wingo, C.S. and B.D. Cain, The renal H-K-ATPase: physiological significance and role in potassium homeostasis.Review. Annu Rev Physiol, 1993. 55: p. 323–47.

    Article  PubMed  CAS  Google Scholar 

  29. Schuster, V.L., Function and regulation of collecting duct intercalated cells.Review. Annu Rev Physiol, 1993. 55: p. 267–88.

    Article  PubMed  CAS  Google Scholar 

  30. Lombard, W.E., J.P. Kokko, and H.R. Jacobson, Bicarbonate transport in cortical and outer medullary collecting tubules. Am J Physiol, 1983. 244(3): p. F289–96.

    PubMed  CAS  Google Scholar 

  31. Steinmetz, P.R. and O.S. Andersen, Electrogenic proton transport in epithelial membranes.Review. J Membr Biol, 1982. 65(3): p. 155–74.

    Article  PubMed  CAS  Google Scholar 

  32. Steinmetz, P.R., Cellular mechanisms of urinary acidification.Review. Physiol Rev, 1974. 54(4): p. 890–956.

    PubMed  CAS  Google Scholar 

  33. Gluck, S., S. Kelly, and Q. Al-Awqati, The proton translocating ATPase responsible for urinary acidification. J Biol Chem, 1982. 257(16): p. 9230–3.

    PubMed  CAS  Google Scholar 

  34. Youmans, S.J., H.J. Worman, and W.A. Brodsky, ATPase activity and ATP-dependent proton translocation in plasma membrane vesicles of turtle bladder epithelial cells. Biochim Biophys Acta, 1983. 730(1): p. 173–7.

    Article  PubMed  CAS  Google Scholar 

  35. Dixon, T.E. and Q. Al-Awqati, H+/ATP stoichiometry of proton pump of turtle urinary bladder. J Biol Chem, 1980. 255(8): p. 3237–9.

    PubMed  CAS  Google Scholar 

  36. Andersen, O.S., J.E. Silveira, and P.R. Steinmetz, Intrinsic characteristics of the proton pump in the luminal membrane of a tight urinary epithelium. The relation between transport rate and delta mu H. J Gen Physiol, 1985. 86(2): p. 215–34.

    Article  PubMed  CAS  Google Scholar 

  37. Steinmetz, P.R., et al., Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effect of inhibitors of FT ATPase. J Membr Biol, 1981. 59(1): p. 27–34.

    Article  PubMed  CAS  Google Scholar 

  38. Gluck, S. and Q. Al-Awqati, An electrogenic proton-translocating adenosine triphosphatase from bovine kidney medulla. J Clin Invest, 1984. 73(6): p. 1704–10.

    Article  PubMed  CAS  Google Scholar 

  39. Gluck, S. and J. Caldwell, Immunoaffinity purification and characterization of vacuolar H+-ATPase from bovine kidney. J Biol Chem, 1987. 262(32): p. 15780–9.

    PubMed  CAS  Google Scholar 

  40. Gluck, S. and J. Caldwell, Proton-translocating ATPase from bovine kidney medulla: partial purification and reconstitution. Am J Physiol, 1988. 254(1Pt 2): p. F71–9.

    PubMed  CAS  Google Scholar 

  41. Kaunitz, J.D., R.D. Gunther, and G. Sachs, Characterization of an electrogenic ATP and chloride-dependent proton translocating pump from rat renal medulla. J Biol Chem, 1985. 260(21): p. 11567–73.

    PubMed  CAS  Google Scholar 

  42. Diaz-Diaz, F.D., et al., ATP-dependent proton transport in human renal medulla. Am J Physiol, 1986. 251(2 Pt 2): p. F297–302.

    PubMed  CAS  Google Scholar 

  43. Sabolic, I., W. Haase, and G. Burckhardt, ATP-dependent H+ pump in membrane vesicles from rat kidney cortex. Am J Physiol, 1985. 248(6 Pt 2): p. F835–44.

    PubMed  CAS  Google Scholar 

  44. Sabolic, I. and G. Burckhardt, Characteristics of the proton pump in rat renai cortical endocytotic vesicles. Am J Physiol, 1986. 250(5 Pt 2): p. F817–26.

    PubMed  CAS  Google Scholar 

  45. Sabolic, I. and G. Burckhardt, Proton ATPase in rat renal cortical endocytotic vesicles. Biochim Biophys Acta, 1988. 937(2): p. 398–410.

    PubMed  CAS  Google Scholar 

  46. Hilden, S.A., C.A. Johns, and N.E. Madias, Cl(-)-dependent ATP-driven H+ transport in rabbit renal cortical endosomes. Am J Physiol, 1988. 255(5 Pt 2): p. F885–97.

    PubMed  CAS  Google Scholar 

  47. Kinne-Saffran, E., R. Beauwens, and R. Kinne, An ATP-driven proton pump in brush-border membranes from rat renal cortex. J Membr Biol, 1982. 64(1–2): p. 67–76.

    PubMed  CAS  Google Scholar 

  48. Kinne-Saffran, E. and R. Kinne, Proton pump activity and Mg-ATPase activity in rat kidney cortex brushborder membranes: effect of ‘proton ATPase’ inhibitors. Pflugers Arch, 1986. 407(2): p. S180–5.

    Article  PubMed  CAS  Google Scholar 

  49. Turrini, F., et al., Relation of ATPases in rat renal brush-border membranes to ATP-driven H+ secretion. J Membr Biol, 1989. 107(1): p. 1–12.

    Article  PubMed  CAS  Google Scholar 

  50. Simon, B.J. and G. Burckhardt, Characterization of inside-out oriented H(+)-ATPases in cholate-pretreated renal brush-border membrane vesicles. J Membr Biol, 1990. 117(2): p. 141–51.

    Article  PubMed  CAS  Google Scholar 

  51. Jehmlich, K., et al., Biochemical aspects of H(+)-ATPase in renal proximal tubules: inhibition by N,N’-dicyclohexylcarbodiimide, N-ethylmaleimide, and bafilomycin. Kidney Int Suppl, 1991. 33(70): p. S64–70.

    PubMed  CAS  Google Scholar 

  52. Wang, Z.Q. and S. Gluck, Isolation and properties of bovine kidney brush border vacuolar H(+)-ATPase. A proton pump with enzymatic and structural differences from kidney microsomai H(+)-ATPase. J Biol Chem, 1990. 265(35): p. 21957–65.

    PubMed  CAS  Google Scholar 

  53. Yurko, M.A. and S. Gluck, Production and characterization of a monoclonal antibody to vacuolar H+-ATPase of renal epithelia. J Biol Chem, 1987. 262(32): p. 15770–9.

    PubMed  CAS  Google Scholar 

  54. Gluck, S.L., Z.-Q. Wang, and K. Zhang, Properties of the lysosomal vacuolar H+-ATPase isolated from bovine kidney cortex. In preparation, 1994.

    Google Scholar 

  55. Forgac, M., Structure and function of vacuolar class of ATP-driven proton pumps.Review. Physiol Rev, 1989. 69(3): p. 765–96.

    PubMed  CAS  Google Scholar 

  56. Nelson, N., Structural conservation and functional diversity of V-ATPases. Review. J Bioenerg Biomembr, 1992. 24(4): p. 407–14.

    Article  PubMed  CAS  Google Scholar 

  57. Gluck, S.L., The vacuolar H(+)-ATPases: versatile proton pumps participating in constitutive and specialized functions of eukaryotic cells.Review. Int Rev Cytol, 1993: p. 105–37.

    Google Scholar 

  58. Schwartz, G.J., J. Barasch, and Q. Al-Awqati, Plasticity of functional epithelial polarity. Nature, 1985. 318(6044): p. 368–71.

    Article  PubMed  CAS  Google Scholar 

  59. Satlin, L.M. and G.J. Schwartz, Postnatal maturation of rabbit renal collecting duct: intercalated cell function. Am J Physiol, 1987. 253(4 Pt 2): p. F622–35.

    PubMed  CAS  Google Scholar 

  60. Breyer, M.D. and H.R. Jacobson, Regulation of rabbit medullary collecting duct cell pH by basolateral Na+/H+ and Cl-/base exchange. J Clin Invest, 1989. 84(3): p. 996–1004.

    Article  PubMed  CAS  Google Scholar 

  61. Hays, S.R. and R.J. Alpern, Apical and basolateral membrane H+ extrusion mechanisms in inner stripe of rabbit outer medullary collecting duct. Am J Physiol, 1990. 259(4 Pt 2): p. F628–35.

    PubMed  CAS  Google Scholar 

  62. Hays, S.R. and R.J. Alpern, Basolateral membrane Na(+)-independcnt Cl-/HCO3-exchange in the inner stripe of the rabbit outer medullary collecting tubule. J Gen Physiol, 1990. 95(2): p. 347–67.

    Article  PubMed  CAS  Google Scholar 

  63. Kuwahara, M., S. Sasaki, and F. Marumo, Cell pH regulation in rabbit outer medullary collecting duct cells: mechanisms of HCO3(-)-indepcndent processes. Am J Physiol, 1990. 259(6 Pt 2): p. F902–9.

    PubMed  CAS  Google Scholar 

  64. Kuwahara, M., S. Sasaki, and F. Marumo, Mineralocorticoids and acidosis regulate H+/HCO3-transport of intercalated cells. J Clin Invest, 1992. 89(5): p. 1388–94.

    Article  PubMed  CAS  Google Scholar 

  65. Furuya, H., H.R. Jacobson, and M.D. Breyer, Evidence for basolateral membrane Ca2+/H+ exchange in outer medullary collecting duct. Am J Physiol, 1993. 264(1 Pt 2): p. F88–93.

    PubMed  CAS  Google Scholar 

  66. Nelson, R.D., et al., Selectively amplified expression of an isoform of the vacuolar H( +)-ATPase 56-kilodalton subunit in renal intercalated cells. Proc Natl Acad Sci U S A, 1992. 89(8): p. 3541–5.

    Article  PubMed  CAS  Google Scholar 

  67. van Meer, G. and K. Simons, Lipid polarity and sorting in epithelial cells.Review. J Cell Biochem, 1988. 36(1): p. 51–8.

    Article  PubMed  Google Scholar 

  68. Simons, K. and A. Wandinger-Ness, Polarized sorting in epithelia.Review. Cell, 1990. 62(2): p. 207–10.

    Article  PubMed  CAS  Google Scholar 

  69. Simons, K., et al., Biogenesis of cell-surface polarity in epithelial cells and neurons.Review. Cold Spring Harb Symp Quant Biol, 1992. 57: p. 611–9.

    Article  PubMed  CAS  Google Scholar 

  70. Hemken, P., et al., Immunologic evidence that vacuolar H+ ATPases with heterogeneous forms of Mr = 31,000 subunit have different membrane distributions in mammalian kidney. J Biol Chem, 1992. 267(14): p. 9948–57.

    PubMed  CAS  Google Scholar 

  71. Hirsch, S., et al., Isolation and sequence of a cDNA clone encoding the 31-kDa subunit of bovine kidney vacuolar H+-ATPase. Proc Natl Acad Sci USA, 1988. 85(9): p. 3004–8.

    Article  PubMed  CAS  Google Scholar 

  72. Sudhof, T.C., et al., Human endomembrane H+ pump strongly resembles the ATP-synthetase of Archaebacteria. Proc Natl Acad Sci USA, 1989. 86(16): p. 6067–71.

    Article  PubMed  CAS  Google Scholar 

  73. Marushack, M.M., et al., cDNA sequence and tissue expression of bovine vacuolar H(+)-ATPase M(r) 70,000 subunit. Am J Physiol, 1992. 263(1 Pt 2): p. F171–4.

    PubMed  CAS  Google Scholar 

  74. Sander, I., et al., Sequence analysis of the catalytic subunit of H(+)-ATPase from porcine renal brush-border membranes. Biochim Biophys Acta, 1992. 1112(1): p. 129–41.

    Article  PubMed  CAS  Google Scholar 

  75. Puopolo, K., et al., A single gene encodes the catalytic “A” subunit of the bovine vacuolar H(+)-ATPase. J Biol Chem, 1991. 266(36): p. 24564–72.

    PubMed  CAS  Google Scholar 

  76. Puopolo, K., et al., Differential expression of the “B” subunit of the vacuolar H( +)-ATPase in bovine tissues. J Biol Chem, 1992. 267(6): p. 3696–706.

    PubMed  CAS  Google Scholar 

  77. Chan, Y.L. and G. Giebisch, Relationship between sodium and bicarbonate transport in the rat proximal convoluted tubule. Am J Physiol, 1981. 240(3): p. F222–30.

    PubMed  CAS  Google Scholar 

  78. Kurtz, I., Apical Na+/H+ antiporter and glycolysis-dependent H+-ATPase regulate intracellular pH in the rabbit S3 proximal tubule. J Clin Invest, 1987. 80(4): p. 928–35.

    Article  PubMed  CAS  Google Scholar 

  79. Preisig, P.A., Luminal flow rate regulates proximal tubule H-HCO3 transporters. Am J Physiol, 1992. 262(1 Pt 2): p. F47–54.

    PubMed  CAS  Google Scholar 

  80. Nakhoul, N.L., L.K. Chen, and W.F. Boron, Effect of basolateral CO2/HCO3-on intracellular pH regulation in the rabbit S3 proximal tubule. J Gen Physiol, 1993. 102(6): p. 1171–205.

    Article  PubMed  CAS  Google Scholar 

  81. Roos, A. and W.F. Boron, Intracellular pH.Review. Physiol Rev, 1981. 61(2): p. 296–434.

    PubMed  CAS  Google Scholar 

  82. Stoner, L.C., M.B. Burg, and J. Orloff, Ion transport in cortical collecting tubule; effect of amiloride. Am J Physiol, 1974. 227(2): p. 453–9.

    PubMed  CAS  Google Scholar 

  83. McKinney, I.D. and M.B. Burg, Bicarbonate absorption by rabbit cortical collecting tubules in vitro. Am J Physiol, 1978. 234(2): p. F141–5.

    PubMed  CAS  Google Scholar 

  84. Hanley, M.J., et al., Electrophysiologic study of the cortical collecting tubule of the rabbit. Kidney Int, 1980. 17(1): p. 74–81.

    Article  PubMed  CAS  Google Scholar 

  85. Koeppen, B.M. and S.I. Helman, Acidification of luminal fluid by the rabbit cortical collecting tubule perfused in vitro. Am J Physiol, 1982. 242(5): p. F521–31.

    PubMed  CAS  Google Scholar 

  86. Laski, M.E. and N.A. Kurtzman, Characterization of acidification in the cortical and medullary collecting tubule of the rabbit. J Clin Invest, 1983. 72(6): p. 2050–9.

    Article  PubMed  CAS  Google Scholar 

  87. Atkins, J.L. and M.B. Burg, Bicarbonate transport by isolated perfused rat collecting ducts. Am J Physiol, 1985. 249(4 Pt 2): p. F485–9.

    PubMed  CAS  Google Scholar 

  88. Hayashi, M., et al., Effects of in vivo and in vitro alkali treatment on intracelluiar pH regulation of OMCDis cells. Am J Physiol, 1993. 265(5 Pt 2): p. F729–35.

    PubMed  CAS  Google Scholar 

  89. Weiner, I.D. and L.L. Hamm, Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule. Am J Physiol, 1989. 256(5 Pt 2): p. F957–64.

    PubMed  CAS  Google Scholar 

  90. Furuya, H., M.D. Breyer, and H.R. Jacobson, Functional characterization of alpha-and beta-intercalated cell types in rabbit cortical collecting duct. Am J Physiol, 1991. 261(3 Pt 2): p. F377–85.

    PubMed  CAS  Google Scholar 

  91. Muto, S., et al., Electrophysiological identification of alpha-and beta-intercalated cells and their distribution along the rabbit distal nephron segments. J Clin Invest, 1990. 86: p. 1829–1839.

    Article  PubMed  CAS  Google Scholar 

  92. McKinney, T.D. and K.K. Davidson, Bicarbonate transport in collecting tubules from outer stripe of outer medulla of rabbit kidneys. Am J Physiol, 1987. 253(5 Pt 2): p. F816–22.

    PubMed  CAS  Google Scholar 

  93. Verlander, J.W., K.M. Madsen, and C.C. Tisher, Structural and functional features of proton and bicarbonate transport in the rat collecting duct.Review. Semin Nephrol, 1991. 11(4): p. 465–77.

    PubMed  CAS  Google Scholar 

  94. Koeppen, B.M., Conductive properties of the rabbit outer medullary collecting duct: inner stripe. Am J Physiol, 1985. 248(4 Pt 2): p. F500–6.

    PubMed  CAS  Google Scholar 

  95. Ridderstrale, Y., et al., Morphological heterogeneity of the rabbit collecting duct. Kidney Int, 1988. 34(5): p. 655–70.

    Article  PubMed  CAS  Google Scholar 

  96. Schuster, V.L., S.M. Bonsib, and M.L. Jennings, Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry. Am J Physiol, 1986. 251(3 Pt 1): p. C347–55.

    PubMed  CAS  Google Scholar 

  97. Burnatowska-Hledin, M.A. and W.S. Spielman, Immunodissection of mitochondria-rich cells from rabbit outer medullary collecting tubule. Am J Physiol, 1988. 254(6 Pt 2): p. F907–11.

    PubMed  CAS  Google Scholar 

  98. Schuster, V.L., et al., Colocalization of H(+)-ATPase and band 3 anion exchanger in rabbit collecting duct intercalated cells. Am J Physiol, 1991. 260(4 Pt 2): p. F506–17.

    PubMed  CAS  Google Scholar 

  99. Bastani, B., et al., Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest, 1991. 88(1): p. 126–36.

    Article  PubMed  CAS  Google Scholar 

  100. Weiner, I.D. and L.L. Hamm, Regulation of intracellular pH in the rabbit cortical collecting tubule. J Clin Invest, 1990. 85(1): p. 274–81.

    Article  PubMed  CAS  Google Scholar 

  101. Sabolic, L, et al., Apical endosomes isolated from kidney collecting duct principal cells lack subunits of the proton pumping ATPase. J Cell Biol, 1992. 119(1): p. 111–22.

    Article  PubMed  CAS  Google Scholar 

  102. Rodman, J.S., P.D. Stahl, and S. Gluck, Distribution and structure of the vacuolar H+ ATPase in endosomes and lysosomes from LLC-PK1 cells. Exp Cell Res, 1991. 192(2): p. 445–52.

    Article  PubMed  CAS  Google Scholar 

  103. Schmidt, W., H. Winkler, and H. Plattner, Adrenal chromaffin granules: evidence for an ultrastructural equivalent of the proton-pumping ATPase. Eur J Cell Biol, 1982. 27(1): p. 96–104.

    PubMed  CAS  Google Scholar 

  104. Wall, S.M. and M.A. Knepper, Acid-base transport in the inner medullary collecting duct.Review. Semin Nephrol, 1990. 10(2): p. 148–58.

    PubMed  CAS  Google Scholar 

  105. Kleinman, J.G., P. Tipnis, and R. Pscheidt, H(+)-K( +)-ATPase of rat inner medullary collecting duct in primary culture. Am J Physiol, 1993. 265(5 Pt 2): p. F698–704.

    PubMed  CAS  Google Scholar 

  106. Nelson, R.D., et al., Cell-specific amplification of vacuolar H+-ATPase B subunit expression in mammalian kidney. In preparation, 1994.

    Google Scholar 

  107. Zhang, K., Z.Q. Wang, and S. Gluck, Identification and partial purification of a cytosolic activator of vacuolar H(+)-ATPases from mammalian kidney. J Biol Chem, 1992. 267(14): p. 9701–5.

    PubMed  CAS  Google Scholar 

  108. Zhang, K., Z.Q. Wang, and S. Gluck, A cytosolic inhibitor of vacuolar H(+)-ATPases from mammalian kidney. J Biol Chem, 1992. 267(21): p. 14539–42.

    PubMed  CAS  Google Scholar 

  109. Gurich, R.W. and T. DuBose Jr., Heterogeneity of cAMP effect on endosomal proton transport. Am J Physiol, 1989. 257(5 Pt 2): p. F777–84.

    PubMed  CAS  Google Scholar 

  110. Mulberg, A.E., B.M. Tulk, and M. Forgac, Modulation of coated vesicle chloride channel activity and acidification by reversible protein kinase A-dependent phosphorylation. J Biol Chem, 1991. 266(31): p. 20590–3.

    PubMed  CAS  Google Scholar 

  111. Gurich, R.W., J. Codina, and T. DuBose Jr., A potential role for guanine nucleotide-binding protein in the regulation of endosomal proton transport. J Clin Invest, 1991. 87(5): p. 1547–52.

    Article  PubMed  CAS  Google Scholar 

  112. Schuster, V.L., Cortical collecting duct bicarbonate secretion.Review. Kidney Int Suppl, 1991. 33(50): p. S47–50.

    PubMed  CAS  Google Scholar 

  113. Schuster, V.L., Organization of collecting duct intercalated cells.Review. Kidney Int, 1990. 38(4): p. 668–72.

    Article  PubMed  CAS  Google Scholar 

  114. Schuster, V.L., Bicarbonate reabsorption and secretion in the cortical and outer medullary collecting tubule.Review. Semin Nephrol, 1990. 10(2): p. 139–47.

    PubMed  CAS  Google Scholar 

  115. Schuster, V.L., Physiology and cell biology update: control mechanisms for bicarbonate secretion.Review. Am J Kidney Dis, 1989. 13(4): p. 348–52.

    PubMed  CAS  Google Scholar 

  116. Stetson, D.L., et al., A double-membrane model for urinary bicarbonate secretion. Am J Physiol, 1985. 249(4 Pt 2): p. F546–52.

    PubMed  CAS  Google Scholar 

  117. Al-Awqati, Q., Proton-translocating ATPases.Review. Annu Rev Cell Biol, 1986. 2: p. 179–99.

    Article  PubMed  CAS  Google Scholar 

  118. Cohen, L.H., A. Mueller, and P.R. Steinmetz, Inhibition of the bicarbonate exit step in urinary acidification by a disulfonic stilbene. J Clin Invest, 1978. 61(4): p. 981–6.

    Article  PubMed  CAS  Google Scholar 

  119. Husted, R.F., L.H. Cohen, and P.R. Steinmetz, Pathways for bicarbonate transfer across the serosal membrane of turtle urinary bladder: studies with a disulfonic stilbene. J Membr Biol, 1979. 47(1): p. 27–37.

    Article  PubMed  CAS  Google Scholar 

  120. Fischer, J.L., R.F. Husted, and P.R. Steinmetz, Chloride dependence of the HCO3 exit step in urinary acidification by the turtle bladder. Am J Physiol, 1983. 245(5 Pt 1): p. F564–8.

    PubMed  CAS  Google Scholar 

  121. Drenckhahn, D., et al., Band 3 is the basolateral anion exchanger of dark epithelial cells of turtle urinary bladder. Am J Physiol, 1987. 252(5 Pt 1): p. C570–4.

    PubMed  CAS  Google Scholar 

  122. Oliver, J.A., S. Himmelstein, and P.R. Steinmetz, Energy dependence of urinary bicarbonate secretion in turtle bladder. J Clin Invest, 1975. 55(5): p. 1003–8.

    Article  PubMed  CAS  Google Scholar 

  123. Fritsche, C., et al., HCO3-secretion in mitochondria-rich cells is linked to an H+-ATPase. Am J Physiol, 1989. 256(5 Pt 2): p. F869–74.

    PubMed  CAS  Google Scholar 

  124. Leslie, B.R., J.H. Schwartz, and P.R. Steinmetz, Coupling between Cl-absorption and HCO3-secretion in turtle urinary bladder. Am J Physiol, 1973. 225(3): p. 610–7

    PubMed  CAS  Google Scholar 

  125. Kohn, O.F., P.P. Mitchell, and P.R. Steinmetz, Characteristics of apical Cl-HCO3 exchanger of bicarbonate-secreting cells in turtle bladder. Am J Physiol, 1990. 258(1 Pt 2): p. F9–14.

    PubMed  CAS  Google Scholar 

  126. Beauwens, R. and Q. Al-Awqati, Active H+ transport in the turtle urinary bladder. Coupling of transport to glucose oxidation. J Gen Physiol, 1976. 68(4): p. 421–39.

    Article  PubMed  CAS  Google Scholar 

  127. Al-awqati, Q., A. Mueller, and P.R. Steinmetz, Transport of H+ against electrochemical gradients in turtle urinary bladder. Am J Physiol, 1977. 233(6): p. F502–8.

    PubMed  CAS  Google Scholar 

  128. Steinmetz, P.R., R.S. Omachi, and H.S. Frazier, Independence of hydrogen ion secretion and transport of other electrolytes in turtle bladder. J Clin Invest, 1967. 46(10): p. 1541–8.

    Article  PubMed  CAS  Google Scholar 

  129. Ludens, J.H. and D.D. Fanestil, Acidification of urine by the isolated urinary bladder of the toad. Am J Physiol, 1972. 223(6): p. 1338–44.

    PubMed  CAS  Google Scholar 

  130. Husted, R.F. and P.R. Steinmetz, The effects of amiloride and ouabain on urinary acidification by turtle bladder. J Pharmacol Exp Ther, 1979. 210(2): p. 264–8.

    PubMed  CAS  Google Scholar 

  131. Steinmetz, P.R., Characteristics of hydrogen ion transport in urinary bladder of water turtle. J Clin Invest, 1967. 46(10): p. 1531–40.

    Article  PubMed  CAS  Google Scholar 

  132. Ziegler, T.W., D.D. Fanestil, and J.H. Ludens, Influence of transepithelial potential difference on acidification in the toad urinary bladder. Kidney Int, 1976. 10(4): p. 279–86.

    Article  PubMed  CAS  Google Scholar 

  133. Schultz, S.G., Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by “flush-through”.Review. Am J Physiol, 1981. 241(6): p. F579–90.

    PubMed  CAS  Google Scholar 

  134. Steinmetz, P.R., Acid-base relations in epithelium of turtle bladder: site of active step in acidification and role of metabolic CO2. J Clin Invest, 1969. 48(7): p. 1258–65.

    Article  PubMed  CAS  Google Scholar 

  135. Schwartz, J.H. and P.R. Steinmetz, CO2 requirements for H+ secretion by the isolated turtle bladder. Am J Physiol, 1971. 220(6): p. 2051–7.

    PubMed  CAS  Google Scholar 

  136. Gluck, S., C. Cannon, and Q. Al-Awqati, Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc Natl Acad Sci USA, 1982. 79(14): p. 4327–31.

    Article  PubMed  CAS  Google Scholar 

  137. Stetson, D.L. and P.R. Steinmetz, Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder. Am J Physiol, 1983. 245(1): p. Cl 13–20.

    Google Scholar 

  138. Cohen, L.H. and P.R. Steinmetz, Control of active proton transport in turtle urinary bladder by cell pH. J Gen Physiol, 1980. 76(3): p. 381–93.

    Article  PubMed  CAS  Google Scholar 

  139. Waddell, W.J. and T.C. Butler, Calculation of intracellular pH from the distribution of 5,5+-dimethyl-2,4-oxazolidinedione (DMO): application to skeletal muscle of the dog. J Clin Invest, 1959. 38: p. 720–729.

    Article  PubMed  CAS  Google Scholar 

  140. Husted, R.F., et al., Surface characteristics of carbonic-anhydrase-rich cells in turtle urinary bladder. Kidney Int, 1981. 19(4): p. 491–502.

    Article  PubMed  CAS  Google Scholar 

  141. Stetson, D.L. and P.R. Steinmetz, Correlation between apical intramembrane particles and H+ secretion rates during CO2 stimulation in turtle bladder. Pflugers Arch, 1986. 407(2): p. S80–4.

    Article  PubMed  Google Scholar 

  142. Clausen, C. and T.E. Dixon, Membrane electrical parameters in turtle bladder measured using impedance-analysis techniques. J Membr Biol, 1986. 92(1): p. 9–19.

    Article  PubMed  CAS  Google Scholar 

  143. Dixon, T.E., et al., Proton transport and membrane shuttling in turtle bladder epithelium. J Membr Biol, 1986. 94(3): p. 233–43.

    Article  PubMed  CAS  Google Scholar 

  144. Dixon, T.E., C. Clausen, and D. Coachman, Constitutive and transport-related endocytotic pathways in turtle bladder epithelium. J Membr Biol, 1988. 102(1): p. 49–58.

    Article  PubMed  CAS  Google Scholar 

  145. van Adelsberg, J. and Q. Al-Awqati, Regulation of cell pH by Ca+2-mediated exocytotic insertion of H+-ATPases. J Cell Biol, 1986. 102(5): p. 1638–45.

    Article  PubMed  Google Scholar 

  146. Cannon, C., et al., Carbon-dioxide-induced exocytotic insertion of H+ pumps in turtle-bladder luminal membrane: role of cell pH and calcium. Nature, 1985. 314(6010): p. 443–6.

    Article  PubMed  CAS  Google Scholar 

  147. Craber, M.L., et al., Fluorescence identifies an alkaline cell in turtle urinary bladder. Am J Physiol, 1986. 250(1 Pt 2): p. F159–68.

    Google Scholar 

  148. Graber, M., et al., Acetazolamide inhibits acidification by the turtle bladder independent of cell pH. Am J Physiol, 1989. 256(5 Pt 2): p. F923–31.

    PubMed  CAS  Google Scholar 

  149. Arruda, J.A., Z. Talor, and C. Dytko, Effect of agents that alter cell calcium and microfilaments on CO2 stimulated H+ secretion in the turtle bladder. Arch Int Pharmacodyn Ther, 1988. 293: p. 273–83.

    PubMed  CAS  Google Scholar 

  150. Arruda, J.A., G. Dytko, and Z. Talor, Stimulation of H+ secretion by CO2 in turtle bladder: role of intracellular pH, exocytosis, and calcium. Am J Physiol, 1990. 258(1 Pt 2): p. R222–31.

    PubMed  CAS  Google Scholar 

  151. Arruda, J.A., Calcium inhibits urinary acidification: effect of the ionophore A23187 on the turtle bladder. Pflugers Arch, 1979. 381(2): p. 107–11.

    Article  PubMed  CAS  Google Scholar 

  152. Ehrenspeck, G., Effect of calcium ionophore A23187 on electrogenic acid-base transport in turtle bladder. Inhibition of acidification and stimulation of alkalinization. Biochim Biophys Acta, 1983. 732(1): p. 146–53.

    Article  PubMed  CAS  Google Scholar 

  153. Al-Awqati, Q., Effect of aldosterone on the coupling between H+ transport and glucose oxidation. J Clin Invest, 1977. 60(6): p. 1240–7.

    Article  PubMed  CAS  Google Scholar 

  154. Schwartz, J.H. and P.R. Steinmetz, Metabolic energy and PCO2 as determinants of H+ secretion by turtle urinary bladder. Am J Physiol, 1977. 233(2): p. F145–9.

    PubMed  CAS  Google Scholar 

  155. Kelly, S., T.E. Dixon, and Q. Al-Awqati, Metabolic pathways coupled to H+ transport in turtle urinary bladder. J Membr Biol, 1980. 54(3): p. 237–43.

    Article  PubMed  CAS  Google Scholar 

  156. Choate, G.L., L. Lan, and T.E. Mansour, Heart 6-phosphofructo-l-kinase. Subcellular distribution and binding to myofibrils. J Biol Chem, 1985. 260(8): p. 4815–22.

    PubMed  CAS  Google Scholar 

  157. Harrison, M.L., et al., Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J Biol Chem, 1991. 266(7): p. 4106–11.

    PubMed  CAS  Google Scholar 

  158. Beitner, R., Control of glycolytic enzymes through binding to cell structures and by glucose-1,6-bisphosphate under different conditions. The role of Ca2+ and calmodulin.Review. Int J Biochem, 1993. 25(3): p. 297–305.

    Article  PubMed  CAS  Google Scholar 

  159. Low, P.S., P. Rathinavelu, and M.L. Harrison, Regulation of glycolysis via reversible enzyme binding to the membrane protein, band 3. J Biol Chem, 1993. 268(20): p. 14627–31.

    PubMed  CAS  Google Scholar 

  160. Ludens, J.H. and D.D. Fanestil, Aldosterone stimulation of acidification of urine by isolated urinary bladder of the Colombian toad. Am J Physiol, 1974. 226(6): p. 1321–6.

    PubMed  CAS  Google Scholar 

  161. Ludens, J.H., D.A. Vaughn, and D.D. Fanestil, Stimulation of urinary acidification by aldosterone and inhibitors of RNA and protein synthesis. J Membr Biol, 1978.: p. 199-211.

    Google Scholar 

  162. Al-Awqati, Q., et al., Characteristics of stimulation of H+ transport by aldosterone in turtle urinary bladder. J Clin Invest, 1976. 58(2): p. 351–8.

    Article  PubMed  CAS  Google Scholar 

  163. Ehrenspeck, G., Effect of 3-isobutyl-1-methylxanthine on HCO3-transport in turtle bladder. Evidence for electrogenic HCO3-secretion. Biochim Biophys Acta, 1982. 684(2): p. 219–27.

    Article  PubMed  CAS  Google Scholar 

  164. Satake, N., et al., Active electrogenic mechanisms for alkali and acid transport in turtle bladders. Am J Physiol, 1983. 244(3): p. C259–69.

    PubMed  CAS  Google Scholar 

  165. Arruda, J.A. and S. Sabatini, Cholinergic inhibition of urinary acidification by the turtle bladder. Kidney Int, 1980. 17(5): p. 622–30.

    Article  PubMed  CAS  Google Scholar 

  166. Schneider, E.S., et al., Alkali secretion in the turtle bladder: up-regulation by the phospho-inositol cascade and inhibition by diphenylamine carboxylate (DPC). Prog Clin Biol Res, 1988. 258: p. 81–92.

    PubMed  CAS  Google Scholar 

  167. Stetson, D.L. and P.R. Steinmetz, Alpha and beta types of carbonic anhydrase-rich cells in turtle bladder. Am J Physiol, 1985. 249(4 Pt 2): p. F553–65.

    PubMed  CAS  Google Scholar 

  168. Rich, A., T.E. Dixon, and C. Clausen, Changes in membrane conductances and areas associated with bicarbonate secretion in turtle bladder. J Membr Biol, 1990. 113(3): p. 211–9.

    Article  PubMed  CAS  Google Scholar 

  169. Rich, A., T.E. Dixon, and C. Clausen, Electrogenic bicarbonate secretion in the turtle bladder: apical membrane conductance characteristics. J Membr Biol, 1991. 119(3): p. 241–52.

    Article  PubMed  CAS  Google Scholar 

  170. Alpern, R.J., M.G. Cogan, and F. Rector Jr., Effect of luminal bicarbonate concentration on proximal acidification in the rat. Am J Physiol, 1982. 243(1): p. F53–9.

    PubMed  CAS  Google Scholar 

  171. Alpern, R.J. and M. Chambers, Cell pH in the rat proximal convoluted tubule. Regulation by luminal and peritubular pH and sodium concentration. J Clin Invest, 1986. 78(2): p. 502–10.

    Article  PubMed  CAS  Google Scholar 

  172. McKinney, T.D. and K.K. Davidson, Effects of respiratory acidosis on HCO3-transport by rabbit collecting tubules. Am J Physiol, 1988. 255(4 Pt 2): p. F656–65.

    PubMed  CAS  Google Scholar 

  173. Drenckhahn, D., et al., Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science, 1985. 230(4731): p. 1287–9.

    Article  PubMed  CAS  Google Scholar 

  174. Verlander, J.W., et al., Immunocytochemical localization of band 3 protein in the rat collecting duct. Am J Physiol, 1988. 255(1 Pt 2): p. F115–25.

    PubMed  CAS  Google Scholar 

  175. Hays, S.R., Mineralocorticoid modulation of apical and basolateral membrane H+/OH-/HCO3- transport processes in the rabbit inner stripe of outer medullary collecting duct. J Clin Invest, 1992. 90(1): p. 180–7.

    Article  PubMed  CAS  Google Scholar 

  176. Koeppen, B.M., Electrophysiological identification of principal and intercalated cells in the rabbit outer medullary collecting duct. Pflugers Arch, 1987. 409(1–2): p. 138–41.

    Article  PubMed  CAS  Google Scholar 

  177. Wingo, C.S. and F.E. Armitage, Potassium transport in the kidney: regulation and physiological relevance of H+, K(+)-ATPase.Review. Semin Nephrol, 1993. 13(2): p. 213–24.

    PubMed  CAS  Google Scholar 

  178. Husted, R.F. and P.R. Steinmetz, Potassium absorptive pump at the luminal membrane of turtle urinary bladder. Am J Physiol, 1981. 241(3): p. F315–21.

    PubMed  CAS  Google Scholar 

  179. Madsen, K.M. and C.C. Tisher, Cellular response to acute respiratory acidosis in rat medullary collecting duct. Am J Physiol, 1983. 245(6): p. F670–9.

    PubMed  CAS  Google Scholar 

  180. Laski, M.E. and N.A. Kurtzman, Collecting tubule adaptation to respiratory acidosis induced in vivo. Am J Physiol, 1990. 258(1 Pt 2): p. F15–20.

    PubMed  CAS  Google Scholar 

  181. Schwartz, G.J. and Q. Al-Awqati, Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest, 1985. 75(5): p. 1638–44.

    Article  PubMed  CAS  Google Scholar 

  182. Kuwahara, M., S. Sasaki, and F. Marumo, Cl-HCO3 exchange and Na-HCO3 symport in rabbit outer medullary collecting duct cells. Am J Physiol, 1991. 260(5 Pt 2): p. F635–42.

    PubMed  CAS  Google Scholar 

  183. Stone, D.K., et al., Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium-independent effect. J Clin Invest, 1983. 72(1): p. 77–83.

    Article  PubMed  CAS  Google Scholar 

  184. Weiner, I.D. and L.L. Hamm, Regulation of Cl-/HCO3-exchange in the rabbit cortical collecting tubule. J Clin Invest, 1991. 87(5): p. 1553–8.

    Article  PubMed  CAS  Google Scholar 

  185. Breyer, M.D., J.P. Kokko, and H.R. Jacobson, Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration. J Clin Invest, 1986. 77(5): p. 1650–60.

    Article  PubMed  CAS  Google Scholar 

  186. Star, R.A., M.B. Burg, and M.A. Knepper, Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange. J Clin Invest, 1985. 76(3): p. 1123–30.

    Article  PubMed  CAS  Google Scholar 

  187. Verlander, J.W., K.M. Madsen, and C.C. Tisher, Effect of acute respiratory acidosis on two populations of intercalated cells in rat cortical collecting duct. Am J Physiol, 1987. 253(6 Pt 2): p. F1142–56.

    PubMed  CAS  Google Scholar 

  188. Yamaji, Y., et al., Chronic DOC treatment enhances Na(+)-H+ exchanger activity of beta-intercalated cells in rabbit CCD. Am J Physiol, 1992. 262(5 Pt 2): p. F712–7.

    PubMed  CAS  Google Scholar 

  189. Brown, D., I. Sabolic, and S. Gluck, Colchicine-induced redistribution of proton pumps in kidney epithelial cells. Kidney Int Suppl, 1991. 33(83): p. S79–83.

    PubMed  CAS  Google Scholar 

  190. Noel, J., et al., Metabolic cost of bafilomycin-sensitive H+ pump in intact dog, rabbit, and hamster proximal tubules. Am J Physiol, 1993. 264(4 Pt 2): p. F655–61.

    PubMed  CAS  Google Scholar 

  191. Dickman, K.G. and L.J. Mandel, Relationship between HCO3-transport and oxidative metabolism in rabbit proximal tubule. Am J Physiol, 1992. 263(2 Pt 2): p. F342–51.

    PubMed  CAS  Google Scholar 

  192. Bastani, B., M. Kalkbrenner, and S. Gluck, Chronic DOCA administration increases polarization of H+-ATPase in medullary intercalated cells. J Am Soc Nephrol, 1991. 2: p. 694 (Abstr.).

    Google Scholar 

  193. Fejes-Toth, G. and A. Naray-Fejes-Toth, Isolated principal and intercalated cells: hormone responsiveness and Na+-K+-ATPase activity. Am J Physiol, 1989. 256(4 Pt 2): p. F742–50.

    PubMed  CAS  Google Scholar 

  194. Koseki, C, et al., Isolation by monoclonal antibody of intercalated cells of rabbit kidney. Kidney Int, 1988. 33(2): p. 543–54.

    Article  PubMed  CAS  Google Scholar 

  195. Star, R.A., et al., Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest, 1988. 81(6): p. 1879–88.

    Article  PubMed  CAS  Google Scholar 

  196. Schuster, V.L., Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules. J Clin Invest, 1985. 75(6): p. 2056–64.

    Article  PubMed  CAS  Google Scholar 

  197. Schuster, V.L., Cyclic adenosine monophosphate-stimulated anion transport in rabbit cortical collecting duct. Kinetics, stoichiometry, and conductive pathways. J Clin Invest, 1986. 78(6): p. 1621–30.

    Article  PubMed  CAS  Google Scholar 

  198. Hayashi, M., et al., Effect of isoproterenol on intracellular pH of the intercalated cells in the rabbit cortical collecting ducts. J Clin Invest, 1991. 87(4): p. 1153–7.

    Article  PubMed  CAS  Google Scholar 

  199. Hays, S., J.P. Kokko, and H.R. Jacobson, Hormonal regulation of proton secretion in rabbit medullary collecting duct. J Clin Invest, 1986. 78(5): p. 1279–86.

    Article  PubMed  CAS  Google Scholar 

  200. Tornita, K., et al., Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clin Invest, 1986. 77(1): p. 136–41.

    Article  Google Scholar 

  201. Bichara, M., et al., Effects of antidiuretic hormone on urinary acidification and on tubular handling of bicarbonate in the rat. J Clin Invest, 1987. 80(3): p. 621–30.

    Article  PubMed  CAS  Google Scholar 

  202. Delahousse, M., et al., Glucagon inhibits urinary acidification in the rat. Am J Physiol, 1988. 254(5 Pt 2): p. F762–9.

    PubMed  CAS  Google Scholar 

  203. Mercier, O., et al., Effects of glucagon on H(+)-HCO3-transport in Henle’s loop, distal tubule, and collecting ducts in the rat. Am J Physiol, 1989. 257(6 Pt 2): p. F1003–14.

    PubMed  CAS  Google Scholar 

  204. Siga, E., et al., Effects of calcitonin on function of intercalated cells of rat cortical collecting duct. Am J Physiol, 1993. 264(2 Pt 2): p. F221–7.

    PubMed  CAS  Google Scholar 

  205. Hays, S.R., M. Baum, and J.P. Kokko, Effects of protein kinase C activation on sodium, potassium, chloride, and total CO2 transport in the rabbit cortical collecting tubule. J Clin Invest, 1987. 80(6): p. 1561–70.

    Article  PubMed  CAS  Google Scholar 

  206. Bertorello, A.M. and A.I. Katz, Short-term regulation of renal Na-K-ATPase activity: physiological relevance and cellular mechanisms.Review. Am J Physiol, 1993. 265(6 Pt 2): p. F743–55.

    PubMed  CAS  Google Scholar 

  207. Garg, L.C. and N. Narang, Stimulation of an N-ethylmaleimide-sensitive ATPase in the collecting duct segments of the rat nephron by metabolic acidosis. Can J Physiol Pharmacol, 1985. 63(10): p. 1291–6.

    Article  PubMed  CAS  Google Scholar 

  208. Khadouri, C., et al., Effect of adrenalectomy on NEM-sensitive ATPase along rat nephron and on urinary acidification. Am J Physiol, 1987. 253(3 Pt 2): p. F495–9.

    PubMed  CAS  Google Scholar 

  209. Garg, L.C. and N. Narang, Effects of potassium bicarbonate on distal nephron Na-K-ATPase in adrenalectomized rabbits. Pflugers Arch, 1987. 409(1-2): p. 126–31.

    Article  PubMed  CAS  Google Scholar 

  210. Garg, L.C. and N. Narang, Effects of aldosterone on NEM-sensitive ATPase in rabbit nephron segments. Kidney Int, 1988. 34(1): p. 13–7.

    Article  PubMed  CAS  Google Scholar 

  211. Khadouri, C, et al., Short-term effect of aldosterone on NEM-sensitive ATPase in rat collecting tubule. Am J Physiol, 1989. 257(2 Pt 2): p. F177–81.

    PubMed  CAS  Google Scholar 

  212. Garg, L.C. and N. Narang, Decrease in N-ethylmaleimide-sensitive AT-Pase activity in collecting duct by metabolic alkalosis. Can J Physiol Pharmacol, 1990. 68(8): p. 1119–23.

    Article  PubMed  CAS  Google Scholar 

  213. Garg, L.C. and N. Narang, Effects of low-potassium diet on N-ethyl-maleimide-sensitive ATPase in the distal nephron segments. Renal Physiol Biochem, 1990. 13(3): p. 129–36.

    PubMed  CAS  Google Scholar 

  214. Sabatini, S., M.E. Laski, and N.A. Kurtzman, NEM-sensitive ATPase activity in rat nephron: effect of metabolic acidosis and alkalosis. Am J Physiol, 1990. 258(2 Pt 2): p. F297–304.

    PubMed  CAS  Google Scholar 

  215. Khadouri, C., et al., Characterization and control of proton-ATPase along the nephron. Kidney Int Suppl, 1991. 33(8): p. S71–8.

    PubMed  CAS  Google Scholar 

  216. Sabatini, S., et al., Characterization of the N-ethylmaleimide-sensitive ATPase in rat cortical and medullary collecting tubule. Miner Electrolyte Metab, 1991. 17(5): p. 324–30.

    PubMed  CAS  Google Scholar 

  217. Garg, L.C. and N. Narang, Changes in H-ATPase activity in the distal nephron segments of the rat during metabolic acidosis and alkalosis. Contrib Nephrol, 1991. 92: p. 39–45.

    PubMed  CAS  Google Scholar 

  218. Khadouri, C., et al., Effect of metabolic acidosis and alkalosis on NEM-sensitive ATPase in rat nephron segments. Am J Physiol, 1992. 262(4 Pt 2): p. F583–90.

    PubMed  CAS  Google Scholar 

  219. Eiam-Ong, S., et al., The biochemical basis of hypokalemic metabolic alkalosis. Trans Assoc Am Physicians, 1992. 105: p. 157–64.

    PubMed  CAS  Google Scholar 

  220. Eiam-Ong, S., et al., H-K-ATPase in distal renal tubular acidosis: urinary tract obstruction, lithium, and amiloride. Am J Physiol, 1993. 265(6 Pt 2): p. F875–80.

    PubMed  CAS  Google Scholar 

  221. Eiam-Ong, S., N.A. Kurtzman, and S. Sabatini, Regulation of collecting tubule adenosine triphosphatases by aldosterone and potassium. J Clin Invest, 1993. 91(6): p. 2385–92.

    Article  PubMed  CAS  Google Scholar 

  222. Chambrey, R., M. Paillard, and R.A. Podevin, Enzymatic and functional evidence for adaptation of the vacuolar H(+)-ATPase in proximal tubule apical membranes from rats with chronic metabolic acidosis. J Biol Chem, 1994. 269(5): p. 3243–50.

    PubMed  CAS  Google Scholar 

  223. Bowman, E.J., A. Siebers, and K. Altendorf, Bafilomycins: A class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. ProcNatl AcadSci, 1988. 85: p. 7972–7976.

    Article  CAS  Google Scholar 

  224. Verlander, J.W., et al., Immunocytochemical localization of intracellular acidic compartments: rat proximal nephron. Am J Physiol, 1989. 257(3 Pt 2): p. F454–62.

    PubMed  CAS  Google Scholar 

  225. Tisher, C.C., K.M. Madsen, and J.W. Verlander, Structural adaptation of the collecting duct to acid-base disturbances.Review. Contrib Nephrol, 1991. 95: p. 168–77.

    PubMed  CAS  Google Scholar 

  226. Madsen, K.M., et al., Morphological adaptation of the collecting duct to acid-base disturbances. Kidney Int Suppl, 1991. 33(63): p. S57–63.

    PubMed  CAS  Google Scholar 

  227. Ait-Mohamed, A.K., et al., Characterization of N-ethylmaleimide-sensitive proton pump in the rat kidney. Localization along the nephron. J Biol Chem, 1986. 261(27): p. 12526–33.

    PubMed  CAS  Google Scholar 

  228. Good, D.W., Adaptation of HCO3 and NH4 + transport in rat MTAL: effects of chronic metabolic acidosis and Na+ intake. Am J Physiol, 1990. 258(5 Pt 2): p. F1345–53.

    PubMed  CAS  Google Scholar 

  229. Good, D.W., Bicarbonate absorption by the thick ascending limb of Henle’s loop.Review. Semin Nephrol, 1990. 10(2): p. 132–8.

    PubMed  CAS  Google Scholar 

  230. Classman, V.P., R. Safirstein, and V.A. DiScala, Effects of metabolic acidosis on proximal tubule ion reabsorption in dog kidney. Am J Physiol, 1974. 227(4): p. 759–65.

    Google Scholar 

  231. Cogan, M.G., et al., Control of proximal bicarbonate reabsorption in normal and acidotic rats. J Clin Invest, 1979. 64(5): p. 1168–80.

    Article  PubMed  CAS  Google Scholar 

  232. Kunau, R., Jr., J.I. Hart, and K.A. Walker, Effect of metabolic acidosis on proximal tubular total CO2 absorption. Am J Physiol, 1985. 249(1 Pt 2): p. F62–8.

    PubMed  Google Scholar 

  233. Preisig, P.A. and R.J. Alpern, Chronic metabolic acidosis causes an adaptation in the apical membrane Na/H antiporter and basolateral membrane Na(HCO3)3 symporter in the rat proximal convoluted tubule. J Clin Invest, 1988. 82(4): p. 1445–53.

    Article  PubMed  CAS  Google Scholar 

  234. Santella, R.N., F.J. Gennari, and D.A. Maddox, Metabolic acidosis stimulates bicarbonate reabsorption in the early proximal tubule. Am J Physiol, 1989. 257(1 Pt 2): p. F35–42.

    PubMed  CAS  Google Scholar 

  235. Lucci, M.S., et al., Evaluation of bicarbonate transport in rat distal tubule: effects of acid-base status. Am J Physiol, 1982. 243(4): p. F335–41.

    PubMed  CAS  Google Scholar 

  236. Vandorpe, D.H. and D.Z. Levine, Distal tubule bicarbonate reabsorption in NH4C1 acidotic rats. Clin Invest Med, 1989. 12(4): p. 224–9.

    PubMed  CAS  Google Scholar 

  237. McKinney, T.D. and M.B. Burg, Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J Clin Invest, 1977. 60(3): p. 766–8.

    Article  PubMed  CAS  Google Scholar 

  238. McKinney, T.D. and M.B. Burg, Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J Clin Invest, 1978. 61(6): p. 1421–7.

    Article  PubMed  CAS  Google Scholar 

  239. Hamm, L.L., C. Gillespie, and S. Klahr, NH4C1 inhibition of transport in the rabbit cortical collecting tubule. Am J Physiol, 1985. 248(5 Pt 2): p. F631–7.

    PubMed  CAS  Google Scholar 

  240. Levine, D.Z. and H.R. Jacobson, The regulation of renal acid secretion: new observations from studies of distal nephron segments.Review. Kidney Inr, 1986. 29(6): p. 1099–109.

    Article  CAS  Google Scholar 

  241. Hamm, L.L., K.S. Hering-Smith, and V.M. Vehaskari, Control of bicarbonate transport in collecting tubules from normal and remnant kidneys. Am J Physiol, 1989. 256(4 Pt 2): p. F680–7.

    PubMed  CAS  Google Scholar 

  242. Hamm, L.L., I.D. Weiner, and V.M. Vehaskari, Structural-functional characteristics of acid-base transport in the rabbit collecting duct.Review. Semin Nephrol, 1991. 11(4): p. 453–64.

    PubMed  CAS  Google Scholar 

  243. Yasoshima, K., L.M. Satlin, and G.J. Schwartz, Adaptation of rabbit cortical collecting duct to in vitro acid incubation. Am J Physiol, 1992. 263(4 Pt 2): p. F749–56.

    PubMed  CAS  Google Scholar 

  244. Graber, M.L., et al., Acute metabolic acidosis augments collecting duct acidification rate in the rat. Am J Physiol, 1981. 241(6): p. F669–76.

    PubMed  CAS  Google Scholar 

  245. Bengele, H.H., et al., Chronic metabolic acidosis augments acidification along the inner medullary collecting duct. Am J Physiol, 1986. 250(4 Pt 2): p. F690–4.

    PubMed  CAS  Google Scholar 

  246. Bengele, H.H., et al., Inner medullary collecting duct function during rebound alkalemia. Am J Physiol, 1987. 252(4 Pt 2): p. F712–6.

    PubMed  CAS  Google Scholar 

  247. Alexander, E.A. and J.H. Schwartz, Regulation of acidification in the rat inner medullary collecting duct.Review. Am J Kidney Dis, 1991. 18(5): p. 612–8.

    PubMed  CAS  Google Scholar 

  248. Jacobson, H.R., H. Furuya, and M.D. Breyer, Mechanism and regulation of proton transport in the outer medullary collecting duct.Review. Kidney Int Suppl, 1991. 33(6): p. S51–6.

    PubMed  CAS  Google Scholar 

  249. Levine, D.Z., et al., Secretion of bicarbonate by rat distal tubules in vivo. Modulation by overnight fasting. J Clin Invest, 1988. 81(6): p. 1873–8.

    Article  PubMed  CAS  Google Scholar 

  250. Tago, K., et al., Effects of inhibitors of Cl conductance on Cl self-exchange in rabbit cortical collecting tubule. Am J Physiol, 1986. 251(6 Pt 2): p. F1009–17.

    PubMed  CAS  Google Scholar 

  251. Garcia-Austt, J., et al., Deoxycorticosterone-stimulated bicarbonate secretion in rabbit cortical collecting ducts: effects of luminal chloride removal and in vivo acid loading. Am J Physiol, 1985. 249(2 Pt 2): p. F205–12.

    PubMed  CAS  Google Scholar 

  252. Satlin, L.M. and G.J. Schwartz, Cellular remodeling of HCO3(-)-secreting cells in rabbit renal collecting duct in response to an acidic environment. J Cell Biol, 1989. 109(3): p. 1279–88.

    Article  PubMed  CAS  Google Scholar 

  253. Satlin, L.M., F. Matsumoto, and G.J. Schwartz, Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells. Am J Physiol, 1992. 262(2 Pt 2): p. F199–208.

    PubMed  CAS  Google Scholar 

  254. Dφrup, J., Structural adaptation of intercalated cells in rat renal cortex to acute metabolic acidosis and alkalosis. J Ultrastruct Res, 1985. 92(1–2): p. 119–31.

    Google Scholar 

  255. Madsen, K.M. and C.C. Tisher, Response of intercalated cells of rat outer medullary collecting duct to chronic metabolic acidosis. Lab Invest, 1984. 51(3): p. 268–76.

    PubMed  CAS  Google Scholar 

  256. Chang, C.S., Z. Talor, and J.A. Arruda, Effect of metabolic or respiratory acidosis on rabbit renal medullary proton-ATPase. Biochem Cell Biol, 1988. 66(1): p. 20–4.

    Article  PubMed  CAS  Google Scholar 

  257. Kriz, W. and L. Bankir, A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS). Kidney Int, 1988. 33(1): p. 1–7.

    Article  PubMed  CAS  Google Scholar 

  258. Kunau, R., Jr. and K.A. Walker, Total CO2 absorption in the distal tubule of the rat. Am J Physiol, 1987. 252(3 Pt 2): p. F468–73.

    PubMed  Google Scholar 

  259. Kohn, O.F., P.P. Mitchell, and P.R. Steinmetz, Sch-28080 inhibits bafilomycin-sensitive H+ secretion in turtle bladder independently of luminal K+. Am J Physiol, 1993. 265(2 Pt 2): p. F174–9.

    PubMed  CAS  Google Scholar 

  260. Graber, M.L. and P. Devine, Omeprazole and SCH 28080 inhibit acid secretion by the turtle urinary bladder. Renal Physiol Biochem, 1993. 16(5): p. 257–67.

    PubMed  CAS  Google Scholar 

  261. Malnic, G., M. De Mello Aires, and G. Giebisch, Micropuncture study of renal tubular hydrogen ion transport in the rat. Am J Physiol, 1972. 222(1): p. 147–58.

    PubMed  CAS  Google Scholar 

  262. Capasso, G., et al., Renal bicarbonate reabsorption in the rat. I. Effects of hypokalemia and carbonic anhydrase. J Clin Invest, 1986. 78(6): p. 1558–67.

    Article  PubMed  CAS  Google Scholar 

  263. Iacovitti, M., et al., Distal tubule bicarbonate accumulation in vivo. Effect of flow and transtubular bicarbonate gradients. J Clin Invest, 1986. 78(6): p. 1658–65.

    Article  PubMed  CAS  Google Scholar 

  264. Chan, Y.L., G. Malnic, and G. Giebisch, Renal bicarbonate reabsorption in the rat. III. Distal tubule perfusion study of load dependence and bicarbonate permeability. J Clin Invest, 1989. 84(3): p. 931–8.

    Article  PubMed  CAS  Google Scholar 

  265. Levine, D.Z., D. Vandorpe, and M. Iacovitti, Luminal chloride modulates rat distal tubule bidirectional bicarbonate flux in vivo. J Clin Invest, 1990. 85(6): p. 1793–8.

    Article  PubMed  CAS  Google Scholar 

  266. Capasso, G., et al., Renal bicarbonate reabsorption in the rat. II. Distal tubule load dependence and effect of hypokalemia. J Clin Invest, 1987. 80(2): p. 409–14.

    Article  PubMed  CAS  Google Scholar 

  267. Levine, D.Z., An in vivo microperfusion study of distal tubule bicarbonate reabsorption in normal and ammonium chloride rats. J Clin Invest, 1985. 75(2): p. 588–95.

    Article  PubMed  CAS  Google Scholar 

  268. Gifford, J.D., et al., Total CO2 transport in rat cortical collecting duct in chloride-depletion alkalosis. Am J Physiol, 1990. 258(4 Pt 2): p. F848–53.

    PubMed  CAS  Google Scholar 

  269. Gifford, J.D., et al., HCO3-transport in rat CCD: rapid adaptation by in vivo but not in vitro alkalosis. Am J Physiol, 1993. 264(3 Pt 2): p. F435–40.

    PubMed  CAS  Google Scholar 

  270. Verlander, J.W., et al., Response of intercalated cells to chloride depletion metabolic alkalosis. Am J Physiol, 1992. 262(2 Pt 2): p. F309–19.

    PubMed  CAS  Google Scholar 

  271. Galla, J.H., et al., Segmental chloride and fluid handling during correction of chloride-depletion alkalosis without volume expansion in the rat. J Clin Invest, 1984. 73(1): p. 96–106.

    Article  PubMed  CAS  Google Scholar 

  272. Kim, J., et al., Immunocytochemical response of type A and type B intercalated cells to increased sodium chloride delivery. Am J Physiol, 1992. 262(2 Pt 2): p. F288–302.

    PubMed  CAS  Google Scholar 

  273. Wesson, D.E. and G.M. Dolson, Augmented bidirectional HCO3 transport by rat distal tubules in chronic alkalosis. Am J Physiol, 1991. 261(2 Pt 2): p. F308–17.

    PubMed  CAS  Google Scholar 

  274. Levine, D.Z., M. Iacovitti, and V. Harrison, Bicarbonate secretion in vivo by rat distal tubules during alkalosis induced by dietary chloride restriction and alkali loading. J Clin Invest, 1991. 87(5): p. 1513–8.

    Article  PubMed  CAS  Google Scholar 

  275. Wesson, D.E. and G.M. Dolson, Enhanced HCO3 secretion by distal tubule contributes to NaCl-induced correction of chronic alkalosis. Am J Physiol, 1993. 264(5 Pt 2): p. F899–906.

    PubMed  CAS  Google Scholar 

  276. Galla, J.H., D.N. Bonduris, and R.G. Luke, Superficial distal and deep nephrons in correction of metabolic alkalosis. Am J Physiol, 1989. 257(1 Pt 2): p. F107–13.

    PubMed  CAS  Google Scholar 

  277. Wesson, D.E., Augmented bicarbonate reabsorption by both the proximal and distal nephron maintains chloride-deplete metabolic alkalosis in rats. J Clin Invest, 1989. 84(5): p. 1460–9.

    Article  PubMed  CAS  Google Scholar 

  278. Wesson, D.E. and G.M. Dolson, Maximal proton secretory rate of rat distal tubules is higher during chronic metabolic alkalosis. Am J Physiol, 1991. 261(5 Pt 2): p. F753–9.

    PubMed  CAS  Google Scholar 

  279. Mills, J.N., S. Thomas, and K.S. Williamson, The acute effect of hydro-cortisone, deoxycorticosterone, and aldosterone upon the excretion of sodium, potassium, and acid by the human kidney. J Physiol (Lond), 1960. 151: p. 312–331.

    CAS  Google Scholar 

  280. Hulter, H.N., et al., Impaired renal H+ secretion and NH3 production in mineralocorticoid-deficient glucocorticoid-replete dogs. Am J Physiol, 1977. 232(2): p. F136–46.

    PubMed  CAS  Google Scholar 

  281. Sebastian, A., et al., Effect of mineralocorticoid replacement therapy on renal acid-base homeostasis in adrenalectomized patients. Kidney Int, 1980. 18(6): p. 762–73.

    Article  PubMed  CAS  Google Scholar 

  282. Dubrovsky, A.H., et al., Renal net acid excretion in the adrenalectomized rat. Kidney Int, 1981. 19(4): p. 516–28.

    Article  PubMed  CAS  Google Scholar 

  283. Wilcox, C.S., D.A. Cemerikic, and G. Giebisch, Differential effects of acute mineralo-and glucocorticosteroid administration on renal acid elimination. Kidney Int, 1982. 21(4): p. 546–56.

    Article  PubMed  CAS  Google Scholar 

  284. Lombes, M., et al., Immunohistochemical localization of renal mineralocorticoid receptor by using an anti-idiotypic antibody that is an internal image of aldosterone. Proc Natl Acad Sci USA, 1990. 87(3): p. 1086–8.

    Article  PubMed  CAS  Google Scholar 

  285. Farman, N., et al., Immunolocalization of gluco-and mineralocorticoid receptors in rabbit kidney. Am J Physiol, 1991. 260(2 Pt 1): p. C226–33.

    PubMed  CAS  Google Scholar 

  286. Farman, N., Steroid receptors: distribution along the nephron.Review. Semin Nephrol, 1992. 12(1): p. 12–7.

    PubMed  CAS  Google Scholar 

  287. Wade, J.B., et al., Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J Cell Biol, 1979. 81(2): p. 439–45.

    Article  PubMed  CAS  Google Scholar 

  288. Stanton, B., et al., Ultrastructure of rat initial collecting tubule. Effect of adrenal corticosteroid treatment. J Clin Invest, 1985. 75(4): p. 1327–34.

    Article  PubMed  CAS  Google Scholar 

  289. Mujais, S.K., Effects of aldosterone on rat collecting tubule N-ethylmaleimide-sensitive adenosine triphosphatase. J Lab Clin Med, 1987. 109(1): p. 34–9.

    PubMed  CAS  Google Scholar 

  290. Relman, A.S., B. Esten, and W.B. Schwartz, The regulation of renal bicarbonate reabsorption by plasma carbon dioxide. J Clin Invest, 1953. 32: p. 972–978.

    Article  PubMed  CAS  Google Scholar 

  291. Polak, A., et al., Effects of chronic hypercapnia on electrolyte and acid-base equilibrium. 1. Adaptation. J Clin Invest, 1961. 40: p. 1223–1237.

    Article  PubMed  CAS  Google Scholar 

  292. Schwartz, W.B. and J.J. Cohen, The nature of the renal response to chronic disorders of acid-base equilibrium.Review. Am J Med, 1978. 64(3): p. 417–28.

    Article  PubMed  CAS  Google Scholar 

  293. Graf, R., et al., A novel 14-kDa V-ATPase subunit in the tobacco horn-worm midgut. J Biol Chem, 1994. 269(5): p. 3767–74.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gluck, S.L., Nelson, R.D., Lee, B.S.M., Holliday, L.S., Iyori, M. (1995). Properties of Kidney Plasma Membrane Vacuolar H+-ATPases: Proton Pumps Responsible for Bicarbonate Transport, Urinary Acidification, and Acid-Base Homeostasis. In: Organellar Proton-ATPases. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22265-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22265-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22267-6

  • Online ISBN: 978-3-662-22265-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics