Skip to main content

Regulation of Allantoin Catabolism in Saccharomyces cerevisiae

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Transcriptional regulation of allantoin catabolism provides an effective model for studying the integration of two physiological processes at the molecular level: (1) induction of gene expression in response to a specific environmental signal and (2) repression or loss of gene expression in response to availability of readily used nitrogen sources. The latter phenomenon has been termed nitrogen catabolite repression (NCR; Wiame 1971; Cooper 1982a; Wiame et al. 1985). Nearly a decade has passed since the last comprehensive review of the literature describing control of allantoin catabolism in Saccharomyces cerevisiae (Cooper 1982a,b, 1984). The topic has, however, been briefly treated in two more recent works (Wiame et al. 1985; Magasanik 1992). The objective of this chapter is to present an integrated view and analysis of the primary data accumulated since 1982 relative to this regulon and the cis- and trans-acting factors of which it consists. This chapter builds on the reviews published in 1982 and 1984 (Cooper 1982a,b, 1984), and hence is designed to be read in concert with them. The four reviews together yield a comprehensive description of all work published on allantoin regulon in yeast prior to August, 1994.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • André B, Jauniaux JC (1990) Nucleotide sequence of the DURM gene coding for a positive regulator of allophanate-inducible genes in Saccharomyces cerevisiae. Nucl Acids Res 18: 7136

    Article  PubMed  Google Scholar 

  • Andre B, Hein C, Grenson M, Jauniaux JC (1993) Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol Gen Genet 237: 17–25

    Article  PubMed  CAS  Google Scholar 

  • Axelrod JD, Majors J, Brandriss MC (1991) Proline-independent Binding of PUTS transcriptional activator protein detected by footprinting in vivo. Mol Cell Biol 11: 564–567

    PubMed  CAS  Google Scholar 

  • Benjamin PM, Wu J, Mitchell AP, Magasanik B (1989) Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription. Mol Gen Genet 217: 370–377

    Article  PubMed  CAS  Google Scholar 

  • Bossinger J, Cooper TG (1975) Possible failure of NADPglutamate dehydrogenase to participate directly in nitrogen repression of the allantoin enzymes of Saccharomyces cerevisiae. Biochem Biophys Res Commun 66: 889–892

    Article  PubMed  CAS  Google Scholar 

  • Brandriss MC, Magasanik B (1979) Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline. J Bacteriol 140: 498–503

    PubMed  CAS  Google Scholar 

  • Brandriss MC, Magasanik B (1980) Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae. J Bacteriol 143: 1403–1410

    PubMed  CAS  Google Scholar 

  • Bricmont PA, Cooper TG (1989) A gene product needed for induction of allantoin system genes in Saccharomyces cerevisiae but not for their transcriptional activation. Mol Cell Biol 9: 3869–3877

    PubMed  CAS  Google Scholar 

  • Bricmont PA, Daugherty JR, Cooper (1991) The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae. Mol Cell Biol 11: 1161–1166

    CAS  Google Scholar 

  • Buckholz RG, Cooper TG (1983) Oxalurate induction of multiple (URA3) transcripts in S. cerevisiae. Mol Cell Biol 11: 1889–1897

    Google Scholar 

  • Buckholz RG, Cooper TG (1991) The allantoinase (DAL1) gene of Saccharomyces cerevisiae. Yeast 7: 913923

    Google Scholar 

  • Bysani N, Daugherty JR, Cooper TG (1991) Saturation mutagenesis of the UAS,TR (GATAA) responsible for nitrogen catabolite repression-sensitive transcriptional activation of the allantoin pathway genes in Saccharomyces cerevisiae. J Bacteriol 173: 4977–4982

    PubMed  CAS  Google Scholar 

  • Chang YN, Dong DLY, Hayward GS, Hayward SD (1990) The Epstein-Barr virus ZTA transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J Virol 64: 3358–3369

    PubMed  CAS  Google Scholar 

  • Chevallier MR (1982) Cloning and transcriptional control of a eucaryotic permease gene. Mol Cell Biol 2: 977–984

    PubMed  CAS  Google Scholar 

  • Chisholm G, Cooper TG (1982) Isolation and characterization of mutants that constitutively produce the allantoin degrading enzymes in S. cerevisiae. Mol Cell Biol 2: 10881095

    Google Scholar 

  • Chisholm G, Cooper TG (1984) Cis dominant mutations which dramatically enhance DURJ,2 gene expression without affecting its normal regulation. Mol Cell Biol 5: 947–955

    Google Scholar 

  • Chisholm GE, Cooper TG (1992) Ty insertions upstream and downstream of native DUR1,2 promoter elements generate different patters of DUR1,2 expression in Saccharomyces cerevisiae. J Bacteriol 174: 2548–2559

    Google Scholar 

  • Chisholm GE, Genbauffe GF, Cooper TG (1984) Tau, a repeated DNA sequence in yeast. Proc Natl Acad Sci USA 81: 2965–2969

    Google Scholar 

  • Chisholm VT, Lea HZ, Rai R, Cooper TG (1987) Regulation of allantoate transport in wild-type and mutant strains of Saccharomyces cerevisiae. J Bacterial 169: 1684–1690

    CAS  Google Scholar 

  • Coffman JA, El Berry HM, Cooper TG (1994) The URE2 protein regulates nitrogen catabolite repression through the GATAA-containing UAS NT,z element in Saccharomyces cerevisiae. J Bacteriol 176: 7476–7483

    PubMed  CAS  Google Scholar 

  • Cooper TG (1978) Mutants of Saccharomyces cerevisiae possessing fully induced levels of urea amido-lyase in the absence of added inducers. Biochem Biophys Acta 82: 1258–1263

    CAS  Google Scholar 

  • Cooper TG (1980) Selective gene expression and intracellular compartmentation: two means of regulating nitrogen metabolism in yeast. Trends Biochem Sci 5: 332334

    Google Scholar 

  • Cooper TG (1982a) Nitrogen Metabolism in Saccharomyces cerevisiae. In: Molecular biology of the yeast Saccharomyces: metabolism and gene expression. In: Strathern JN, Jones EW, Broach JR (eds) Cold spring Harbor Press, Cold Spring Harbor, pp 39–99

    Google Scholar 

  • Cooper TG (1982b) Transport in Saccharomyces cerevisiae. In: Molecular biology of the yeast Saccharomyces: metabolism and gene expression. In Strathern JN, Jones EW, Broach JR (eds) Cold Spring Harbor Press, Cold Spring Harbor, pp 399–461

    Google Scholar 

  • Cooper TG (1984) Allantoin degradation by Saccharomyces cerevisiae — a model system for gene regulation and metabolic integration. Advances in enzymology and related areas of molecular biology 56: 91–139

    PubMed  CAS  Google Scholar 

  • Cooper TG, Chisholm GE (1985) Position-dependent, Ty-mediated enhancement of DUR1,2 gene expression. In: Simon M, Herskowitz I (eds) Genome rearrangement. Alan R Liss Inc., New York, NY, pp 289–303

    Google Scholar 

  • Cooper TG, Lawther RP (1973) Induction of the allantoin degradative enzymes in Saccharomyces cerevisiae by the last intermediate of the pathway. Proc Natl Acad Sci USA 70: 2340–2344

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG, Sumrada R (1982) Isolation of the CARI gene from Saccharomyces cerevisiae and analysis of its expression. Mol Cell Biol 2: 1514–1523

    PubMed  Google Scholar 

  • Cooper TG, Sumrada RA (1983) What is the function of nitrogen catabolite repression in Saccharomyces cerevisiae J Bacteriol 155: 623–627

    CAS  Google Scholar 

  • Cooper TG, McKelvey J, Sumrada RA (1979) Oxalurate transport in Saccharomyces cerevisiae. J Bacteriol 139: 917–923

    PubMed  CAS  Google Scholar 

  • Cooper TG, Chisholm GE, Genbauffe FS (1983) Genetic control of gene expression in S. cerevisiae. In: Hamer DH, Rosenberg MV (eds) Gene expression Alan R Liss Inc., New York, NY, pp 145–157

    Google Scholar 

  • Cooper TG, Chisholm VT, Cho HJ, Yoo HS (1986) Dual regulation of the allantoin permease in Saccharomyces cerevisiae. In: Microbiology. Am Soc Microbial, Washington, DC, pp 242–245

    Google Scholar 

  • Cooper TG, Chisholm VT, Cho HJ, Yoo HS (1987) Allantoin transport in Saccharomyces cerevisiae is regulated by two induction systems. J Bacteriol 169: 4660–4667

    PubMed  CAS  Google Scholar 

  • Cooper TG, Rai R, Yoo HS (1989) Requirement of upstream activation sequences for nitrogen catabolite repression of the allantoin system genes in Saccharomyces cerevisiae. Mol Cell Biol 9: 5440–5444

    PubMed  CAS  Google Scholar 

  • Cooper TG, Ferguson D, Rai R, Bysani N (1990) The GLN3 gene product is required for transcriptional activation of allantoin system gene expression in Saccharomyces cerevisiae. J Bacteriol 172: 1014–1018

    PubMed  CAS  Google Scholar 

  • Cooper TG, Kovari L, Sumrada RA, Park HD, Luche RM, Kovari I (1992) Nitrogen catabolite repression of arginase (CARI) expression in Saccharomyces cerevisiae is derived from regulated inducer exclusion. J Bacterial 174: 48–55

    CAS  Google Scholar 

  • Coornaert D, Vissers S, André B (1991) The pleiotropic UGA35(DURL) regulatory gene of Saccharomyces cerevisiae: cloning, sequence and identity with the DAL81 gene. Gene 97: 163–171

    Article  PubMed  CAS  Google Scholar 

  • Coornaert D, Vissers S, André B, Grenson M (1992) The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper. Curr Genet 21: 301–307

    Article  PubMed  CAS  Google Scholar 

  • Coschigano PW, Magasanik B (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol Cell Biol 11: 822–832

    PubMed  CAS  Google Scholar 

  • Courchesne W, Magasanik B (1983) Ammonia regulation of amino acid permeases in Saccharomyces cerevisiae. Mol Cell Biol 3: 672–683

    PubMed  CAS  Google Scholar 

  • Courchesne WE, Magasanik B (1988) Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes. J Bacterial 170: 708–713

    CAS  Google Scholar 

  • Cunningham TS, Cooper TG (1991) Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolitc repression. Mol Cell Biol 11: 6205–6215

    PubMed  CAS  Google Scholar 

  • Cunningham T, Cooper TG (1993) The Saccharomyces cerevisiae DAL80 repressor protein binds to multiple copies of GATAA-containing sequences. J Bacteriol 174: 5851–5861

    Google Scholar 

  • Cunningham T, Dorington RA. Cooper TG (1994) The UGA4 UAS v.z Site required for GLN3-dependent transcriptional Activation also mediates DAL80responsive regulation and DAL80 Protein Binding in Saccharomyces cerevisiae. J Bacterial; 176:4718–4725

    Google Scholar 

  • Daugherty JR, Cooper TG (1991) The SECI1 gene is situated adjacent to DAL81 on the right arm of chromosome IX in Saccharomyces cerevisiae. Yeast 7: 757–760

    Article  PubMed  CAS  Google Scholar 

  • Daugherty JR, Rai R, El Berry HM, Cooper TG (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 Proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J Bacteriol 175: 64–73

    PubMed  CAS  Google Scholar 

  • Degols G (1987) Functional analysis of the regulation region adjacent to the cargB gene of Saccharomyces cerevisiae — nucleotide sequence, gene fusion experiments and cis-dominant regulatory mutation analysis. Eur J Biochem 169: 193–200

    Article  PubMed  CAS  Google Scholar 

  • Dorrington RA, Cooper TO (1993) The DAL82 protein of Saccharomyces cerevisiae hinds to the DA L upstream induction sequence (UIS). Nucl Acids Res 16: 37773784

    Google Scholar 

  • Drillen R, Lacroute F (1972) Ureidosuccinic acid uptake in yeast and some aspects of its regulation. J Bacteriol 109: 203–208

    Google Scholar 

  • Drillen R, Aigle M, Lacroute F (1973) Yeast mutants pleiotropically impaired in the regulation of two glutamate dehydrogenases. Biochem Biophys Res Commun 53: 367–372

    Article  Google Scholar 

  • Dubois E, Grenson M (1974) Absence of involvement of glutamine synthetase and of NAD-linked glutamate dehydrogenase in the nitrogen catabolite repression of arginase and other enzymes in Saccharomyces cerevisiae. Biochem Biophys Res Commun 60: 150–157

    Article  PubMed  CAS  Google Scholar 

  • Dubois E, Grenson M, Wiame JM (1973) Release of the “ammonia effect” on three catabolic enzymes by NADPspecific glutamate dehydrogenaseless mutations in Saccharomyces cerevisiae. Biochem Biophys Res Commun 50: 967–972

    Article  PubMed  CAS  Google Scholar 

  • Dubois E, Grenson M, Wiame JM (1974) The participation of anabolic glutamate dehydrogenase in the nitrogen catabolite repression of arginase in Saccharomyces cerevisiae. Eur J Biochem 48: 603–616

    Article  PubMed  CAS  Google Scholar 

  • Dubois E, Vissers S, Grenson M, Wiame JM (1977) Glutamine and ammonia in nitrogen catabolite repression of Saccharomyces cerevisiae. Biochem Biophys Res Commun 75: 233–239

    Article  PubMed  CAS  Google Scholar 

  • Dunlop PC, Meyer GM, Roon RJ (1980) Nitrogen catabolie repression of asparaginase II in Saccharomyces cerevisiae. J Bacteriol 143: 422–426

    PubMed  CAS  Google Scholar 

  • El Berry HM, Majumdar ML, Cunningham TS, Sumrada RA, Cooper TG (1993) Regulation of the urea active transporter gene ( DURS) in Saccharomyces cerevisiae. J Bacteriol 175: 4688–4698

    Google Scholar 

  • Errede B, Cardillo TS, Sherman F, Dubois E, Deschamps J, Wiame JM (1980) Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell 22: 427–436

    Article  PubMed  CAS  Google Scholar 

  • Finley RL, West RW (1989) Differential repression of GAL4 and adjacent transcription activators by operators in the yeast GAL upstream activating sequence. Mol Cell Biol 9: 4282–4290

    PubMed  CAS  Google Scholar 

  • Fu YH, Marzluf GA (1990) NIT2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol 10: 1056–1065

    Google Scholar 

  • Genbauffe FS, Cooper TG (1986) Induction and repression of the urea amidolyase gene in Saccharomyces cerevisiae. Mol Cell Biol 6: 3954–3964

    PubMed  CAS  Google Scholar 

  • Genbauffe FS, Cooper TG (1991) The urea amidolyase (DUR1,2) gene of Saccharomyces cerevisiae. DNA Sequencing Mapping 2: 19–32

    CAS  Google Scholar 

  • Genbauffe FS, Chisholm GE, Cooper TG (1984) Tau, sigma, and delta: a family of repeated elements in yeast. J Biol Chem 259: 10518–10525

    PubMed  CAS  Google Scholar 

  • Georgakopoulos T, Thireos G (1992) Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J 11: 4145–4152

    PubMed  CAS  Google Scholar 

  • Grenson M (1992) Amino acid transporters in yeast: structure, function and regulation. In: J. JH HM dePont (ed) Molecular aspects of transport proteins. Elsevier, Amsterdam the Netherlands, pp 219–245

    Chapter  Google Scholar 

  • Grenson M, Dubois E, Piotrowska M, Drillien R, Aigle M (1974) Ammonia assimilation in Saccharomyces cerevisiae as mediated by the two glutamate dehydrogenases. Evidence for the gdhA locus being a structural gene for the NADP-dependent glutamate dehydrogenase. Mol Gen Genet 128: 73–85

    Article  PubMed  CAS  Google Scholar 

  • Guan KL, Hakes DJ, Wang Y, Park HD, Cooper TG, Dixon JE (1992) A yeast protein phosphatase related to the vaccinia virus VH1 phosphatase is induced by nitrogen starvation. Proc Natl Acad Sci 89: 12175–12179

    Article  PubMed  CAS  Google Scholar 

  • Guan KL, Hakes D, Dixon JE, Park HD, Cooper TG (1993) The yeast open reading frame encoding a dual specificity phosphatase. Trends Biochem Sci 18: 6–7

    Article  PubMed  CAS  Google Scholar 

  • Han EK, Michels CA (1992) Glucose-induced inactivation of maltose permease in Saccharomyces. Yeast 8: S512

    Google Scholar 

  • Hartig A, Simon MM, Schuster T, Daugherty JR, Yoo HS, Cooper TG (1992) Differentially regulated malate synthase genes participate in carbon and nitrogen metabolism of S. cerevisiae. Nucl Acids Res 20: 5677–5686

    Article  PubMed  CAS  Google Scholar 

  • Hennaut C (1981) L-ornithine transaminase synthesis in Saccharomyces cerevisiae: induction by allophanate, intermediate and inducer of the urea degradative pathway adds to arginine induction. Curr Genet 4: 69–72

    Article  CAS  Google Scholar 

  • Hoey T, Weinzierl RO, Gill G, Chen JL, Dynlacht BD, Tjian R (1993) Molecular cloning and functional analysis of Drosophila TAFIID reveal properties expected of coactivators. Cell 72: 247–260

    Article  PubMed  CAS  Google Scholar 

  • Jacobs E, Dubois E, Hennaut C, Wiame JM (1981) Positive regulatory elements involved in urea amidolyase and urea uptake induction in Saccharomyces cerevisiae. Curr Genet 4: 13–18

    Article  CAS  Google Scholar 

  • Jauniaux JC, Grenson M (1990) GAPI, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190: 39–44

    Google Scholar 

  • Jauniaux JC, Vandenbol M, Vissers S, Broman K, Grenson M (1987) Nitrogen catabolite regulation of praline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains. Eur J Biochem 164: 601–606

    Article  PubMed  CAS  Google Scholar 

  • Jund R, Weber E, Chevallier MR (1988) Primary structure of the uracil transport protein of Saccharomyces cerevisiae. Eur J Biochem 171: 417–424

    Article  PubMed  CAS  Google Scholar 

  • Kim KW, Roon RJ (1982) Transport and metabolic effects of y-aminoisobutyric acid in Saccharomyces cerevisiae. Biochim Biophys Acta 719: 356–362

    Article  PubMed  CAS  Google Scholar 

  • Ko KJ, Yamamoto M, Leonard MW, George KM, Ting P, Engel DG (1991) Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol Cell Biol 11: 2778–2784

    PubMed  CAS  Google Scholar 

  • Kohchi C, Tohe T (1984) Nucleotide sequence of Candida pelliculosa P-glucosidase gene. Nucl Acids Res 13: 62736282

    Google Scholar 

  • Kovari LZ, Fourie M, Park HD, Kovari IA, van Vuuren HJJ, Cooper TG (1993) Analysis of the Inducer-responsive CARI upstream activation sequence (UAS1) and the factors required for its operation. Yeast 9: 835–845

    Article  PubMed  CAS  Google Scholar 

  • Kovari L, Sumrada R, Kovari I, Cooper TG (1990) Multiple positive and negative cis-acting elements mediate induced arginase (CARI) gene expression in Saccharomyces cerevisiae. Mol Cell Biol 10: 5087–5097

    PubMed  CAS  Google Scholar 

  • Lacroute F (1968) Regulation of pyrimidine biosynthesis in Saccharomyces cerevisiae. J Bacteriol 95: 824–832

    PubMed  CAS  Google Scholar 

  • Lacroute F (1971) Non-mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacterial 106: 519522

    Google Scholar 

  • Lawther RP, Cooper TG (1975) Kinetics of induced and repressed enzyme synthesis in Saccharomyces cerevisiae. J Bacterial 121: 1064–1073

    CAS  Google Scholar 

  • Legrain C, Vissers S, Dubois E, Legrain M, Wiame JM (1982) Regulation of glutamine synthetase from Saccharomyces cerevisiae by repression, inactivation and proteolysis. Eur J Biochem 123: 611–616

    Article  PubMed  CAS  Google Scholar 

  • Lemoine Y, Dubois E, Wiame JM (1978) The regulation of urea amidolyase of Saccharomyces cerevisiae. Mol Gen Genet 166: 251–258

    PubMed  CAS  Google Scholar 

  • Lopes JM, Henry SA (1991) Interaction of trans and cis regulatory elements in the INOI promoter of Saccharomyces cerevisiae. Nucl Acids Res 19: 39873994

    Google Scholar 

  • Lucero P, Herweiver M, Lagunas R (1993) Catabolite inactivation of the yeast maltose transporter is due to proteolysis. FEBS Lett 333: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Luche RM, Sumrada R, Cooper TG (1990) A cis-acting element present in multiple genes serves as a repressor protein binding site for the yeast CARI gene. Mol Cell Biol 10: 3884–3895

    PubMed  CAS  Google Scholar 

  • Luche RM, Smart WC, Cooper TG (1992) Purification of the heteromeric protein binding to the URSI transcriptional repression site in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89: 7412–7416

    Article  PubMed  CAS  Google Scholar 

  • Luche RM, Smart WC, Marion T, Tillman M, Sumrada RA, Cooper TG (1993) Saccharomyces cerevisiae BUF protein binds to sequences participating in DNA replication in addition to those mediating transcriptional repression (URSI) and activation. Mol Cell Biol 13: 5749–5761

    Google Scholar 

  • Lundgren, DW, Ogur M, Yuen S (1972) The isolation and characterization of a Saccharomyces mutant deficient in pyrolline-5-carboxylate dehydrogenase activity. Biochim Biophs Acta 286: 360–362

    Article  CAS  Google Scholar 

  • Magasanik B (1961) Catabolite repression. Cold Spring Harbor Symp 26: 249–256

    Article  CAS  Google Scholar 

  • Magasanik B (1992) Regulation of nitrogen utilization. In: Jones EW, Pringle JR, Broach JR (eds) The molecular and cellular biology of the yeast Saccharomyces: gene expression, vol II. Cold Spring Harbor, pp 283–317

    Google Scholar 

  • Martin DIK, Orkin S (1990) Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-El/EryF1. Genes Dev 4: 886–898

    Google Scholar 

  • McKelvey J, Rai R, Cooper TG (1990) GABA transport in Saccharomyces cerevisiae. Yeast 6: 263–270

    Article  PubMed  CAS  Google Scholar 

  • Miller SM, Magasanik B (1991) Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae. Mol Cell Biol 11: 6229–6247

    PubMed  CAS  Google Scholar 

  • Minehart PL, Magasanik B (1991) Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol 11: 6216–6228

    PubMed  CAS  Google Scholar 

  • Minehart PL, Magasanik B (1992) Sequence of the GLN1 Gene of Saccharomyces cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J Bacteriol 174: 1828–1836

    PubMed  CAS  Google Scholar 

  • Mitchell AP, Magasanik B (1984a) Regulation of glutamine-repressible gene products by the GLN3 function in Saccharomyces cerevisiae. Mol Cell Biol 4: 2758–2766

    PubMed  CAS  Google Scholar 

  • Mitchell AP, Magasanik B (1984b) Three regulatory systems control production of glutamine synthetase in Saccharomyces cerevisiae. Mol Cell Biol 4: 2767–2773

    PubMed  CAS  Google Scholar 

  • Olive MG, Daugherty JR, Cooper TG (1991) DAL82, a second gene required for induction of allantoin system gene transcription in Saccharomyces cerevisiae. J Bacteriol 173:255–261 p

    Google Scholar 

  • Rai R, Daugherty JR, Cooper TG (1995) UASS,TR Functioning in Combination with other UAS elements underlies Exceptional Patterns of Nitrogen in Saccharomyces cerevisiae. Yeast 11: 247–260

    Article  PubMed  CAS  Google Scholar 

  • Rai R, Genbauffe FS, Lea HZ, Cooper TG (1987) Transcriptional regulation of the DAL5 gene in Saccharomyces cerevisiae. J Bacteriol 169: 3521–3524

    PubMed  CAS  Google Scholar 

  • Rai R, Genbauffe FS, Cooper TG (1988) Structure and transcription of the allantoate permease gene (DAL5) from Saccharomyces cerevisiae. J Bacteriol 170: 266–271

    PubMed  CAS  Google Scholar 

  • Rai R, Genbauffe FS, Sumrada RA, Cooper TG (1989) Identification of sequences responsible for transcriptional activation of the allantoate permease gene in Saccharomyces cerevisiae. J Bacteriol 9: 602–608

    CAS  Google Scholar 

  • Ramos F, El Guezzar M, Grenson M, Wiame JM (1985) Mutations affecting the enzymes involved in the utilizaton of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae. Eur J Biochem 149: 401–404

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez D, Ginger RS, Baker A, Northcote DH (1990) Nucleotide sequence analysis of a cDNA clone encoding malate synthase of castor bean (Ricinus communis) reveals homology to DAL7, a gene involved in allantoin degradation in Saccharomyces cerevisiae. Plant Mol Biol 15: 501–504

    Article  PubMed  CAS  Google Scholar 

  • Roush AH (1961) Crystallization of purine in the vacuole of Candida utilis. Nature 190: 449

    Article  PubMed  CAS  Google Scholar 

  • SiddiQui AH, Brandriss MC (1988) A regulatory Region responsible for Proline-Specific induction of the yeast PUT2 geneis Adjacent to its TATA box. Mol Cell Biol 8: 4634–4641

    PubMed  CAS  Google Scholar 

  • SiddiQui AH, Brandriss MC (1989) The Saccharomyces cerevisiae PUTS Activator Protein Associates with Proline-Specific Upstream Activation Sequences. Mol Cell Biol 9: 4706–4712

    PubMed  CAS  Google Scholar 

  • Sorger PK, Nelson HCM (1989) Trimerization of a yeast transcription activator via a coiled-coil motif. Cell 59: 807–813

    Article  PubMed  CAS  Google Scholar 

  • Sumrada RA, Cooper TG (1978) Control of vacuole permeability and protein degradation by the cell cycle arrest signal in Saccharomyces cerevisiae. J Bacteriol 136: 234246

    Google Scholar 

  • Sumrada RA, Cooper TG (1982a) Urea carboxylase and allophanate hydrolase are components of a multifunctional protein in yeast. J Biol Chem 257: 91199127

    Google Scholar 

  • Sumrada RA, Cooper TG (1982b) Post-translational processing of urea amidolyase in Saccharomyces cerevisiae. Mol Cell Biol 2: 800–804

    PubMed  CAS  Google Scholar 

  • Sumrada R, Cooper TG (1985) A point mutation generates constitutive expression of an inducible eucaryotic gene. Proc Natl Acad Sci USA 82: 643–647

    Article  PubMed  CAS  Google Scholar 

  • Sumrada R, Cooper TG (1987) Ubiquitous upstream repression sequences control activation of the inducible arginase gene in yeast. Proc Natl Acad Sci USA 84: 39974001

    Google Scholar 

  • Turoscy V, Cooper TG (1982) Pleiotropic control of five eucaryotic genes by multiple regulatory elements. J Bacteriol 151: 1237–1246

    PubMed  CAS  Google Scholar 

  • Turoscy V, Cooper TG (1987) Ureidosuccinate is transported by the allantoate transport system in Saccharomyces cerevisiae. J Bacteriol 169: 2598–2600

    PubMed  CAS  Google Scholar 

  • Turoscy V, Chisholm G, Cooper TG (1984) Location of the genes that control induction of the allantoin-degrading enzymes in Saccharomyces cerevisiae. Genetics 108: 827–831

    PubMed  CAS  Google Scholar 

  • Van Vuuren HJJ, Daugherty JR. Rai R, Cooper TG (1991) Upstream induction sequence. the cis-acting element required for response to the allantoin pathway inducer and enhancement of operation of the nitrogen-regulated upstream activation sequence in Saccharomyces cerevisiae. J Bacteriol 173:7186–7195

    Google Scholar 

  • Viljoen M, Kovari LZ, Kovari IA, Park HD, van Vuuren HJJ, Cooper TG (1992) Tripartite Structure of the Saccharomyces cerevisiae Arginase ( CARI) Gene Inducer-Responsive Upstream Activation Sequence. J Bacteriol 174: 6831–6839

    Google Scholar 

  • Vissers S, Andre B, Muyldermans F, Grenson G (1989) Positive and negative regulatory elements control the expression of the UGA4 gene coding for the inducible 4-aminobutyric-acid-specific permease in Saccharomyces cerevisiae. Eur J Biochem 181: 357–361

    Article  PubMed  CAS  Google Scholar 

  • Vissers S, Andre B, Muyldermans F, Grenson M (1990) Induction of the 4-aminobutyrate and urea-catabolic pathways in Saccharomyces cerevisiae. Specific and common transcriptional regulators. Eur J Biochem 187: 611616

    Google Scholar 

  • Wang SS, Brandriss MC (1987) Proline utilization in Saccharomyces cerevisiae: Sequence, regulation, and mitochondrial localization of the PUT1 gene product. Mol Cell Biol 7: 4431–4440

    PubMed  CAS  Google Scholar 

  • Watabe K, Ishikawa, T, Mukohara Y, Nakamura H (1992a) Cloning and sequencing of the genes involved in the conversion of 5-substituted hydantoins to the corresponding L-amino acids from the native plasmid of Pseudomonas sp. strain NS671. J Bacteriol 174: 962–969

    PubMed  CAS  Google Scholar 

  • Watabe K, Ishikawa, T, Mukohara Y, Nakamura H (1992b) Identification and sequencing of a gene encoding a hydantoin racemase from the native plasmid of Pseudomonas sp. strain NS671. J Bacteriol 174: 34613466

    Google Scholar 

  • Watson TG (1977) Inhibition of proline utilization by glutamate during steady-state growth of Saccharomyces cerevisiae. J Gen Microbiol 103: 123–126

    Article  CAS  Google Scholar 

  • Weinzierl RO, Dynlacht BD, Tjian R (1993) Largest subunit of Drosophila transcription factor IID directs assembly of a complex containing TBP and a coactivator. Nature 362: 511–517

    Article  PubMed  CAS  Google Scholar 

  • Wiame JM (1971) The regulation of arginine metabolism in Saccharomyces cerevisiae: exclusion mechanisms. Curr Top Cell Regul 4: 1–38

    CAS  Google Scholar 

  • Wiame JM, Grenson M, Arst HN (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microbiol Physiol 26: 2–87

    Google Scholar 

  • Wickner RB (1994) [URE3] as an altered URE2 protein: Evidence for a prion analogue in Saccharomyces cerevisiae. Sci 264: 566–569

    Google Scholar 

  • Williamson VM, Young ET, Ciriacy M (1981) Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase II. Cell 23: 605614

    Google Scholar 

  • Yamamoto M, Ko LJ, Leonard MW, Beug H, Orkin SH, Engel HD (1990) Activity and tissue-specific expression of the transcription activator NF-E1 multigene family. Genes Dey 4: 1650–1662

    Article  CAS  Google Scholar 

  • Yoo HS, Cooper TG (1989) The DAL7 promoter consists of multiple elements that cooperatively mediate regulation of the gene’s expression. Mol Cell Biol 9: 3231–3243

    PubMed  CAS  Google Scholar 

  • Yoo HS, Cooper TG (1991a) The ureidoglycollate hydrolase (DAL3) gene in Saccharomyces cerevisiae. Yeast 7: 693–698

    Article  PubMed  CAS  Google Scholar 

  • Yoo HS, Cooper TG (1991b) Sequences of two adjacent genes, one (DAL2) encoding allantoicase and another (DCG1) sensitive to nitrogen-catabolite repression in Saccharomyces cerevisiae. Gene 104: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Yoo HS, Genbauffe FS, Cooper TG (1985) Identification of the ureidoglycollate hydrolase gene in the DAL cluster of Saccharomyces cerevisiae. Mol Cell Biol 5: 22792288

    Google Scholar 

  • Yoo HS, Cunningham TS, Cooper TG (1992) The allantoin and uracil permease gene sequences of Saccharomyces cerevisiae are nearly identical. Yeast 8: 997–1006

    Article  PubMed  CAS  Google Scholar 

  • Zacharski CA, Cooper TG (1978) Metabolite cornpartmentation in Saccharomyces cerevisiae. J Bacteriol 135: 490–497

    PubMed  CAS  Google Scholar 

  • Zhang J, Xia WL, Brew K, Ahmad F (1993) Adipose pyruvate carboxylase: amino acid sequence and domain structure deduced from cDNA sequencing. Proc Natl Acad Sci USA 90: 1766–1770

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cooper, T.G. (1996). Regulation of Allantoin Catabolism in Saccharomyces cerevisiae . In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10367-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10367-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10369-2

  • Online ISBN: 978-3-662-10367-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics