Skip to main content

Abstract

One of the major feats accomplished by proliferating cells is the duplication of the genome once each cell cycle. In rapidly growing S. pombe cells this process occurs in a brief S phase early in the cell cycle, roughly coinciding with septum formation and cell separation. Each of the three chromosomes is replicated with remarkable fidelity to generate the two sister chromosomes that will be distributed to daughter cells at the subsequent mitosis. DNA synthesis is initiated at multiple internal sites along the chromosomal DNA and has to be highly regulated. (1) Initiation sites (origins) must be dispersed along the chromosomal DNA at frequent enough intervals to allow timely completion of genome duplication. (2) Initiation of DNA synthesis at the various chromosomal sites must be temporally coordinated to ensure that replication is completed before mitosis. (3) Initiation events must be confined to the original parental genome so that only two progeny genomes are produced during each cell cycle. The mechanisms that regulate DNA replication in S. pombe and other eukaryotes are only partially understood at this time. Based largely on studies in S. cerevisiae, S. pombe and Xenopus laevis, we have a general picture of the process, but the biochemical details are still largely obscure (Stillman 1996; Kelly and Brown 2000; Bell and Dutta 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi Y, Usukura J, Yanagida M (1997) A globular complex formation by Ndal and the other five members of the MCM protein family in fission yeast. Genes Cells 2: 467–479

    Article  PubMed  CAS  Google Scholar 

  • Alcasabas AA, Osborn AJ, Bachant J et al. (2001) Mrcl transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3: 958–965

    Article  PubMed  CAS  Google Scholar 

  • Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91: 59–69

    Article  PubMed  CAS  Google Scholar 

  • Aparicio OM, Stout AM, Bell SP (1999) Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc Natl Acad Sci USA 96: 9130–9135

    Article  PubMed  CAS  Google Scholar 

  • Baum B, Nishitani H, Yanow S, Nurse P (1998) Cdc18 transcription and proteolysis couple S phase to passage through mitosis. EMBO J 17: 5689–5698

    Article  PubMed  CAS  Google Scholar 

  • Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  PubMed  CAS  Google Scholar 

  • Brewer BJ, Fangman WL (1987) The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51: 463–471

    Article  Google Scholar 

  • Brown GW, Kelly TJ (1998) Purification of Hskl, a minichromosome maintenance protein kinase from fission yeast. J Biol Chem 273: 22083–22090

    Article  PubMed  CAS  Google Scholar 

  • Brown GW, Kelly TJ (1999) Cell cycle regulation of Dfpl, an activator of the Hskl protein kinase. Proc Natl Acad Sci USA 96: 8443–8448

    Article  PubMed  CAS  Google Scholar 

  • Brown GW, Jallepalli PV, Huneycutt BJ, Kelly TJ (1997) Interaction of the S phase regulator Cdcl8 with cyclin-dependent kinase in fission yeast. Proc Natl Acad Sci USA 94: 6142–6147

    Article  PubMed  CAS  Google Scholar 

  • Bueno A, Russell P (1993) Two fission yeast B-type cyclins, Cig2 and Cdc13, have different functions in mitosis. Mol Cell Biol 13: 2286–2297

    PubMed  CAS  Google Scholar 

  • Bullock PA (1997) The initiation of simian virus 40 DNA replication in vitro. Crit Rev Biochem Mol Biol 32: 503–568

    Article  PubMed  CAS  Google Scholar 

  • Caddie MS, Calos MP (1994) Specific initiation at an origin of replication from Schizosaccharomyces pombe. Mol Cell Biol 14: 1796–1805

    Google Scholar 

  • Chong JP, Hayashi MK, Simon MN et al. (2000) A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci USA 97: 1530–1535

    Article  PubMed  CAS  Google Scholar 

  • Chuang RY, Kelly TJ (1999) The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc Natl Acad Sci USA 96: 2656–2661

    Article  PubMed  CAS  Google Scholar 

  • Chuang RY, Chrétien L, Dai J, Kelly TJ (2002) Purification and characterization of the Schizosaccharomyces pombe origin recognition complex: Interaction with origin DNA and Cdcl8 protein. J Biol Chem 277: 16920–16927

    Article  PubMed  CAS  Google Scholar 

  • Clyne RK, Kelly TJ (1995) Genetic analysis of an ARS element from the fission yeast Schizo-saccharomyces pombe. EMBO J 14: 6348–6357

    PubMed  CAS  Google Scholar 

  • Donovan S, Harwood J, Drury LS, Diffley JF (1997) Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci USA 94: 5611–5616

    Article  PubMed  CAS  Google Scholar 

  • Dubey DD, Zhu J, Carlson DL et al. (1994) Three ARS elements contribute to the ura4 replication origin in the fission yeast, Schizosaccharomyces pombe. EMBO J 13: 3638–3647

    PubMed  CAS  Google Scholar 

  • Dubey DD, Kim SM, Todorov IT, Huberman JA (1996) Large, complex modular structure of a fission yeast DNA replication origin. Curr Biol 6: 467–473

    Article  PubMed  CAS  Google Scholar 

  • Fenech M, Carr AM, Murray JM et al. (1991) Cloning and characterisation of the rad4 gene of Schizosaccharomyces pombe. Nucleic Acids Res 19: 6737–6741

    Article  PubMed  CAS  Google Scholar 

  • Forsburg SL, Nurse P (1994) The fission yeast cdc19 + gene encodes a member of the MCM family of replication proteins. J Cell Sci 107: 2779–2788

    PubMed  CAS  Google Scholar 

  • Gómez M, Antequera F (1999) Organization of DNA replication origins in the fission yeast genome. EMBO J 18: 5683–5690

    Article  PubMed  Google Scholar 

  • Gopalakrishnan V, Simancek P, Houchens C et al. (2001) Redundant control of rereplication in fission yeast. Proc Natl Acad Sci USA 98: 13114–13119

    Article  PubMed  CAS  Google Scholar 

  • Greenwood E, Nishitani H, Nurse P (1998) Cdcl8p can block mitosis by two independent mechanisms. J Cell Sci 111: 3101–3108

    PubMed  CAS  Google Scholar 

  • Hayles J, Fisher D, Woollard A, Nurse P (1994) Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. Cell 78: 813–822

    Article  PubMed  CAS  Google Scholar 

  • Heyer WD, Sipiczki M, Kohli J (1986) Replicating plasmids in Schizosaccharomyces pombe: Improvement of symmetric segregation by a new genetic element. Mol Cell Biol 6: 80–89

    Google Scholar 

  • Hofmann JF, Beach D (1994) cdtl is an essential target of the Cdc10/Sctl transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J 13: 425–434

    Google Scholar 

  • Huberman JA (1999) Genetic methods for characterizing the cis-acting components of yeast DNA replication origins. Methods 18: 356–367

    Article  PubMed  CAS  Google Scholar 

  • Huberman JA, Spotila LD, Nawotka KA et al. (1987) The in vivo replication origin of the yeast 2.m plasmid. Cell 51: 473–481

    Article  PubMed  CAS  Google Scholar 

  • Ishiai M, Dean FB, Okumura K et al. (1997) Isolation of human and fission yeast homologues of the budding yeast origin recognition complex subunit ORC5: human homologue (ORC5L) maps to 7q22. Genomics 46: 294–298

    Article  PubMed  CAS  Google Scholar 

  • Ishimi Y (1997) A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J Biol Chem 272: 24508–24513

    Article  PubMed  CAS  Google Scholar 

  • Jallepalli PV, Kelly TJ (1996) Ruml and Cdc18 link inhibition of cyclin-dependent kinase to the initiation of DNA replication in Schizosaccharomyces pombe. Genes Dev 10: 541–552

    Article  PubMed  CAS  Google Scholar 

  • Jallepalli PV, Brown GW, Muzi-Falconi M et al. (1997) Regulation of the replication initiator protein p65cdc18 by CDK phosphorylation. Genes Dev 11: 2767–2779

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Hunter T (1997) Identification and characterization of a human protein kinase related to budding yeast Cdc7p. Proc Natl Acad Sci USA 94: 14320–14325

    Article  PubMed  CAS  Google Scholar 

  • Johnston LH, Masai H, Sugino A (1999) First the CDKs, now the DDKs. Trends Cell Biol 9: 249–252

    Article  PubMed  CAS  Google Scholar 

  • Kelly TJ, Brown GW (2000) Regulation of chromosome replication. Annu Rev Biochem 69: 829–880

    Article  PubMed  CAS  Google Scholar 

  • Kelly TJ, Martin GS, Forsburg SL (1993) The fission yeast cdc18 + gene product couples S phase to START and mitosis. Cell 74: 371–382

    Article  PubMed  CAS  Google Scholar 

  • Kim SM, Huberman JA (1998) Multiple orientation-dependent, synergistically interacting, similar domains in the ribosomal DNA replication origin of the fission yeast, Schizosaccharomyces pombe. Mol Cell Biol 18: 7294–7303

    PubMed  CAS  Google Scholar 

  • Kim SM, Huberman JA (1999) Influence of a replication enhancer on the hierarchy of origin efficiencies within a cluster of DNA replication origins. J Mol Biol 288: 867–882

    Article  PubMed  CAS  Google Scholar 

  • Kim SM, Huberman JA (2001) Regulation of replication timing in fission yeast. EMBO J 20: 6115–6126

    Article  PubMed  CAS  Google Scholar 

  • Kim SM, Zhang DY, Huberman JA (2001) Multiple redundant sequence elements within the fission yeast ura4 replication origin enhancer. BMC Mol Biol 2: 1

    Article  PubMed  CAS  Google Scholar 

  • Kong D, DePamphilis ML (2001) Site-specific DNA binding of the Schizosaccharomyces pombe origin recognition complex is determined by the Orc4 subunit. Mol Cell Biol 21: 8095–8103

    Article  PubMed  CAS  Google Scholar 

  • Kong D, DePamphilis ML (2002) Site-specific ORC binding, pre-replication complex assembly and DNA synthesis at Schizosaccharomyces pombe replication origins. EMBO J 21: 5567–5576

    Article  PubMed  CAS  Google Scholar 

  • Labib K, Moreno S, Nurse P (1995) Interaction of cdc2 and ruml regulates Start and S-phase in fission yeast. J Cell Sci 108: 3285–3294

    PubMed  CAS  Google Scholar 

  • Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2–7 function required for DNA replication fork progression. Science 288: 1643–1647

    Article  PubMed  CAS  Google Scholar 

  • Leatherwood J, Lopez-Girona A, Russell P (1996) Interaction of Cdc2 and Cdc18 with a fission yeast ORC2-like protein. Nature 379: 360–363

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Hurwitz J (2000) Isolation and characterization of various complexes of the mini-chromosome maintenance proteins of Schizosaccharomyces pombe. J Biol Chem 275: 18871–18878

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Hurwitz J (2001) Processive DNA helicase activity of the minichromosome maintenance proteins 4, 6, and 7 complex requires forked DNA structures. Proc Natl Acad Sci USA 98: 54–59

    CAS  Google Scholar 

  • Lee JK, Moon KY, Jiang Y, Hurwitz J (2001) The Schizosaccharomyces pombe origin recognition complex interacts with multiple AT-rich regions of the replication origin by means of the AT-hook domains of the spOrc4 protein. Proc Natl Acad Sci USA 24: 13589–13594

    Article  Google Scholar 

  • Lei M, Tye BK (2001) Initiating DNA synthesis: from recruiting to activating the MCM complex. J Cell Sci 114: 1447–1454

    PubMed  CAS  Google Scholar 

  • Lei M, Kawasaki Y, Young MR et al. (1997) Mcm2 is a target of regulation by Cdc7-Dbf4 during the initiation of DNA synthesis. Genes Dev 11: 3365–3374

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Smith CL, DeRyckere D et al. (2000) Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol Cell 6: 637–648

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Girona A, Mondesert O, Leatherwood J, Russell P (1998) Negative regulation of Cdcl8 DNA replication protein by Cdc2. Mol Biol Cell 9: 63–73

    PubMed  CAS  Google Scholar 

  • Lygerou Z, Nurse P (1999) The fission yeast origin recognition complex is constitutively associated with chromatin and is differentially modified through the cell cycle. J Cell Sci 112: 3703–3712

    PubMed  CAS  Google Scholar 

  • Lygerou Z, Nurse P (2000) Cell cycle. License withheld - geminin blocks DNA replication. Science 290: 2271–2273

    Google Scholar 

  • Maiorano D, Assendelft GBv, Kearsey SE (1996) Fission yeast Cdc21, a member of the MCM protein family, is required for onset of S phase and is located in the nucleus throughout the cell cycle. EMBO J 15: 861–872

    PubMed  CAS  Google Scholar 

  • Maiorano D, Moreau J, Mechali M (2000) XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 404: 622–625

    Article  PubMed  CAS  Google Scholar 

  • Marchetti MA, Kumar S, Hartsuiker E et al. (2002) A single unbranched S-phase DNA damage and replication fork blockage checkpoint pathway. Proc Natl Acad Sci USA 99: 7472–7477

    Article  PubMed  CAS  Google Scholar 

  • Martin-Castellanos C, Labib K, Moreno S (1996) B-type cyclins regulate G1 progression in fission yeast in opposition to the p25’ Cdk inhibitor. EMBO J 15: 839–849

    PubMed  CAS  Google Scholar 

  • Martin-Castellanos C, Blanco MA, de Prada JM, Moreno S (2000) The Pucl cyclin regulates the G1 phase of the fission yeast cell cycle in response to cell size. Mol Biol Cell 11: 543–554

    PubMed  CAS  Google Scholar 

  • Masai H, Miyake T, Arai K (1995) hsk1 +, a Schizosaccharomyces pombe gene related to Saccharomyces cerevisiae CDC7, is required for chromosomal replication. EMBO J 14: 3094–3104

    Google Scholar 

  • Masumoto H, Sugino A, Araki H (2000) Dpbll controls the association between DNA polymerases a and e and the autonomously replicating sequence region of budding yeast. Mol Cell Biol 20: 2809–2817

    Article  PubMed  CAS  Google Scholar 

  • Masumoto H, Muramatsu S, Kamimura Y, Araki H (2002) S-Cdk-dependent phosphorylation of Sld2 essential for chromosomal DNA replication in budding yeast. Nature 415: 651–655

    Article  PubMed  CAS  Google Scholar 

  • Maundrell K, Wright APH, Piper M, Shall S (1985) Evaluation of heterologous ARS activity in S. cerevisiae using cloned DNA from S. pombe. Nucleic Acids Res 13: 3711–3722

    Article  PubMed  CAS  Google Scholar 

  • Maundrell K, Hutchison A, Shall S (1988) Sequence analysis of ARS elements in fission yeast. EMBO J 7: 2203–2209

    PubMed  CAS  Google Scholar 

  • McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93: 1043–1053

    Article  PubMed  CAS  Google Scholar 

  • Miyake S, Yamashita S (1998) Identification of sna41 gene, which is the suppressor of nda4 mutation and is involved in DNA replication in Schizosaccharomyces pombe. Genes Cells 3: 157–166

    Article  PubMed  CAS  Google Scholar 

  • Miyake S, Okishio N, Samejima I et al. (1993) Fission yeast genes nda1 + and nda4 +, mutations of which lead to S-phase block, chromatin alteration and Cat+ suppression, are members of the CDC46/MCM2 family. Mol Biol Cell 4: 1003–1015

    PubMed  CAS  Google Scholar 

  • Mondesert 0, McGowan CH, Russell P (1996) Cig2, a B-type cyclin, promotes the onset of S in Schizosaccharomyces pombe. Mol Cell Biol 16: 1527–1533

    PubMed  Google Scholar 

  • Moon KY, Kong D, Lee JK et al. (1999) Identification and reconstitution of the origin recognition complex from Schizosaccharomyces pombe. Proc Natl Acad Sci USA 96: 12367–12372

    Article  PubMed  CAS  Google Scholar 

  • Moreno S, Nurse P (1994) Regulation of progression through the G1 phase of the cell cycle by the ruml + gene. Nature 367: 236–242

    Article  PubMed  CAS  Google Scholar 

  • Muzi-Falconi M, Brown GW, Kelly TJ (1996) cdc18 + regulates initiation of DNA replication in Schizosaccharomyces pombe. Proc Natl Acad Sci USA 93: 1566–1570

    Google Scholar 

  • Muzi-Falconi M, Kelly TJ (1995) Orpl, a member of the Cdc18/Cdc6 family of S-phase regulators, is homologous to a component of the origin recognition complex. Proc Natl Acad Sci USA 92: 12475–12479

    Article  PubMed  CAS  Google Scholar 

  • Nakajima R, Masukata H (2002) SpSld3 is required for loading and maintenance of SpCdc45 on chromatin in DNA replication in fission yeast. Mol Biol Cell 13: 1462–1472

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VQ, Co C, Li JJ (2001) Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411: 1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Nurse P (1995) p65cdc18 plays a major role controlling the initiation of DNA replication in fission yeast. Cell 83: 397–405

    Google Scholar 

  • Nishitani H, Lygerou Z, Nishimoto T, Nurse P (2000) The Cdtl protein is required to license DNA for replication in fission yeast. Nature 404: 625–628

    Article  PubMed  CAS  Google Scholar 

  • Noguchi E, Shanahan P, Noguchi C, Russell P (2002) CDK phosphorylation of Drcl regulates DNA replication in fission yeast. Curr Biol 12: 599–605

    Article  PubMed  CAS  Google Scholar 

  • Ogawa Y, Takahashi T, Masukata H (1999) Association of fission yeast Orpl and Mcm6 proteins with chromosomal replication origins. Mol Cell Biol 19: 7228–7236

    PubMed  CAS  Google Scholar 

  • Okuno Y, Okazaki T, Masukata H (1997) Identification of a predominant replication origin in fission yeast. Nucleic Acids Res 25: 530–536

    Article  PubMed  CAS  Google Scholar 

  • Okuno Y, Satoh H, Sekiguchi M, Masukata H (1999) Clustered adenine/thymine stretches are essential for function of a fission yeast replication origin. Mol Cell Biol 19: 6699–6709

    PubMed  CAS  Google Scholar 

  • Olsson T, Ekwall K, Ruusala T (1993) The silent P mating type locus in fission yeast contains two autonomously replicating sequences. Nucleic Acids Res 21: 855–861

    Article  PubMed  CAS  Google Scholar 

  • Oshiro G, Owens JC, Shellman Y et al. (1999) Cell cycle control of Cdc7p kinase activity through regulation of Dbf4p stability. Mol Cell Biol 19: 4888–4896

    PubMed  CAS  Google Scholar 

  • Pak DTS, Pflumm M, Chesnokov I et al. (1997) Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell 91: 311–323

    Article  PubMed  CAS  Google Scholar 

  • Pereverzeva I, Whitmire E, Khan B, Coue M (2000) Distinct phosphoisoforms of the Xeno-pus Mcm4 protein regulate the function of the Mcm complex. Mol Cell Biol 20: 3667–3676

    Article  PubMed  CAS  Google Scholar 

  • Raghuraman MK, Winzeler EA, Collingwood D et al. (2001) Replication dynamics of the yeast genome. Science 294: 115–121

    Article  PubMed  CAS  Google Scholar 

  • Saka Y, Yanagida M (1993) Fission yeast cut5 +, required for S phase onset and M phase restraint, is identical to the radiation-damage repair gene rad4 +. Cell 74: 383–393

    Article  PubMed  CAS  Google Scholar 

  • Saka Y, Fantes P, Sutani T et al. (1994) Fission yeast cuts links nuclear chromatin and M phase regulator in the replication checkpoint control. EMBO J 13: 5319–5329

    PubMed  CAS  Google Scholar 

  • Saka Y, Esashi F, Matsusaka T et al. (1997) Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cuts and Chkl. Genes Dev 11: 3387–3400

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi J, Yamamoto M (1982) Cloned ural locus of Schizosaccharomyces pombe propagates autonomously in this yeast assuming a polymeric form. Proc Natl Acad Sci USA 79: 7819–7823

    Article  PubMed  CAS  Google Scholar 

  • Sanchez JA, Kim SM, Huberman JA (1998) Ribosomal DNA replication in the fission yeast, Schizosaccharomyces pombe. Exp Cell Res 238: 220–230

    CAS  Google Scholar 

  • Sclafani RA (2000) Cdc7p-Dbf4p becomes famous in the cell cycle. J Cell Sci 113: 2111–2117

    PubMed  CAS  Google Scholar 

  • Sharma K, Weinberger M, Huberman JA (2001) Roles for internal and flanking sequences in regulating the activity of mating-type-silencer-associated replication origins in Saccharomyces cerevisiae. Genetics 159:35–45

    PubMed  CAS  Google Scholar 

  • Sherman DA, Forsburg SL (1998) Schizosaccharomyces pombe Mcm3p, an essential nuclear protein, associates tightly with Nda4p (Mcm5p) Nucleic Acids Res 26:3955–3960

    Article  PubMed  CAS  Google Scholar 

  • Smith JG, Caddie MS, Bulboaca GH et al. (1995) Replication of centromere II of Schizosaccharomyces pombe. Mol Cell Biol 15: 5165–5172

    PubMed  CAS  Google Scholar 

  • Stern B, Nurse P (1997) Fission yeast pheromone blocks S-phase by inhibiting the G1 cyclin B- p34cdc2 kinase. EMBO J 16: 534–544

    Article  PubMed  CAS  Google Scholar 

  • Stillman B (1996) Cell cycle control of DNA replication. Science 274: 1659–1664

    Article  PubMed  CAS  Google Scholar 

  • Tada S, Li A, Maiorano D et al. (2001) Repression of origin assembly in metaphase depends on inhibition of RLF- B/Cdtl by geminin. Nat Cell Biol 3: 107–113

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Masukata H (2001) Interaction of fission yeast ORC with essential adenine/thymine stretches in replication origins. Genes Cells 6: 837–849

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Murakami S, Chikashige Y et al. (1992) A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 3: 819–835

    PubMed  CAS  Google Scholar 

  • Takeda T, Ogino K, Matsui E et al. (1999) A fission yeast gene, him1 + /dfp1 +, encoding a regulatory subunit for Hskl kinase, plays essential roles in S-phase initiation as well as in S-phase checkpoint control and recovery from DNA damage. Mol Cell Biol 19: 5535–5547

    PubMed  CAS  Google Scholar 

  • Tanaka T, Knapp D, Nasmyth K (1997) Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90: 649–660

    Article  PubMed  CAS  Google Scholar 

  • Thon G, Bjerling P, Bünner CM, Verhein-Hansen J (2002) Expression-state boundaries in the mating-type region of fission yeast. Genetics 161: 611–622

    PubMed  CAS  Google Scholar 

  • Tye BK (1999) MCM proteins in DNA replication. Annu Rev Biochem 68: 649–686

    Article  PubMed  CAS  Google Scholar 

  • Tye BK, Sawyer S (2000) The hexameric eukaryotic MCM helicase: building symmetry from nonidentical parts. J Biol Chem 275: 34833–34836

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama M, Arai K, Masai H (2001a) sna41-goal, a novel mutation causing G1/S arrest in fission yeast, is defective in a CDC45 homolog and interacts genetically with pola. Mol Genet Genomics 265: 1039–1049

    Google Scholar 

  • Uchiyama M, Griffiths D, Arai K, Masai H (2001b) Essential role of Sna41/Cdc45 in loading of DNA polymerase a onto minichromosome maintenance proteins in fission yeast. J Biol Chem 276: 26189–26196

    Article  PubMed  CAS  Google Scholar 

  • Vas A, Mok W, Leatherwood J (2001) Control of DNA rereplication via Cdc2 phosphorylation sites in the origin recognition complex. Mol Cell Biol 21: 5767–5777

    Article  PubMed  CAS  Google Scholar 

  • Walter JC (2000) Evidence for sequential action of Cdc7 and Cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J Biol Chem 275: 39773–39778

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Elledge SJ (1999) Drcl, DNA replication and checkpoint protein 1, functions with Dpbll to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96: 3824–3829

    Article  PubMed  CAS  Google Scholar 

  • Wohlgemuth JG, Bulboaca GH, Moghadam M et al. (1994) Physical mapping of origins of replication in the fission yeast Schizosaccharomyces pombe. Mol Biol Cell 5: 839–849

    PubMed  CAS  Google Scholar 

  • Wohlschlegel JA, Dwyer BT, Dhar SK et al. (2000) Inhibition of eukaryotic DNA replication by geminin binding to Cdtl. Science 290: 2309–2312

    Article  PubMed  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA et al. (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415: 871–880

    Article  PubMed  CAS  Google Scholar 

  • Wright APH, Maundrell K, Shall S (1986) Transformation of Schizosaccharomyces pombe by non-homologous, unstable integration of plasmids in the genome. Curr Genet 10: 503–508

    Article  PubMed  CAS  Google Scholar 

  • Wuarin J, Buck V, Nurse P, Millar JB (2002) Stable association of mitotic cyclin b/Cdc2 to replication origins prevents endoreduplication. Cell 111: 419–431

    Article  PubMed  CAS  Google Scholar 

  • Wyrick JJ, Aparicio JG, Chen T et al. (2001) Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294: 2357–2360

    Article  PubMed  CAS  Google Scholar 

  • Yamano H, Kitamura K, Kominami K et al. (2000) The spike of S phase cyclin Cig2 expression at the G1-S border in fission yeast requires both APC and SCF ubiquitin ligases. Mol Cell 6: 1377–1387

    Article  PubMed  CAS  Google Scholar 

  • Yanow SK, Lygerou Z, Nurse P (2001) Expression of Cdc18/Cdc6 and Cdtl during G2 phase induces initiation of DNA replication. EMBO J 20: 4648–4656

    Article  PubMed  CAS  Google Scholar 

  • Yu G, Wu JR, Gilbert DM (1998) Analysis of mammalian origin specification in ORC-depleted Xenopus egg extracts. Genes Cells 3: 709–720

    Article  PubMed  CAS  Google Scholar 

  • Zarzov P, Decottignies A, Baldacci G, Nurse P (2002) GI/S CDK is inhibited to restrain mi- totic onset when DNA replication is blocked in fission yeast. EMBO J 21: 3370–3376

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Carlson DL, Dubey DD et al. (1994) Comparison of the two major ARS elements of the ura4 replication origin region with other ARS elements in the fission yeast, Schizo-saccharomyces pombe. Chromosoma 103: 414–422

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Stillman B (2000) Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol 20: 3086–3096

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Masukata, H., Huberman, J.A., Frattini, M.G., Kelly, T.J. (2004). DNA Replication in S. pombe . In: Egel, R. (eds) The Molecular Biology of Schizosaccharomyces pombe . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10360-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10360-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05631-4

  • Online ISBN: 978-3-662-10360-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics