Skip to main content

Fungal Molecular Evolution: Gene Trees and Geologic Time

  • Chapter
Systematics and Evolution

Part of the book series: The Mycota ((MYCOTA,volume 7B))

Abstract

Fungal phylogenetics has always been based on characters, but technological and intellectual advances are introducing new kinds of characters and new ways of thinking about them. First light microscopy, then electron microscopy, and now DNA sequencing successively upset previous views of fungal relationships. Phenetics, cladistics, and computerized data analysis and phylogenetic tree generation are now changing the intellectual rules for taxonomy and phylogenetics. The combination of new characters and new analytical tools have supported some taxonomic groups, established some new ones, and demolished a few old ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 289.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldauf SL, Palmer JD (1993) Animals and fungi are each other’s closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci USA 90: 11558–11562

    Article  PubMed  CAS  Google Scholar 

  • Begerow D, Bauer R, Oberwinkler F (1997) Phylogenetic studies on nuclear large subunit ribosomal DNA sequences of smut fungi and related taxa. Can J Bot 75: 2045–2056

    Article  CAS  Google Scholar 

  • Berbee ML (1996) Loculoascomycete origins and evolution of filamentous ascomycete morphology based on 18S rRNA gene sequence data. Mol Biol Evol 13: 462–470

    Article  PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1992a) Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. Mol Biol Evol 9: 278–284

    PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1992b) Convergence in ascospore discharge mechanism among pyrenomycete fungi based on 18S ribosomal RNA gene sequence. Mol Phylogenet Evol 1: 59–71

    Article  PubMed  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1992c) 18S ribosomal RNA sequence characters place the human pathogen Sporothrix shenckii in the genus Ophistoma. Exp Mycol 16: 87–91

    Google Scholar 

  • Berbee ML, Taylor JW (1993) Dating the evolutionary radiations of the true fungi. Can J Bot 71: 1114–1127

    Article  Google Scholar 

  • Berbee ML, Taylor JW (1995) From 18S ribosomal sequence data to evolution of morphology among the fungi. Can J Bot 73 (Suppl 1): S677 - S683

    Article  CAS  Google Scholar 

  • Berbee ML, Taylor JW (1999) Fungal phylogeny. In: Oliver RP, Schweizer M (eds) Molecular fungal biology. Cambridge University Press, New York, pp 21–77

    Chapter  Google Scholar 

  • Berbee ML, Yoshimura A, Sugiyama J, Taylor JW (1995) Is Penicillium monophyletic? An evaluation of phylogeny in the family Trichocomaceae from 18S, 5.8S and ITS ribosomal DNA sequence data. Mycologia 87: 210–222

    Article  CAS  Google Scholar 

  • Blanz PA, Unseld M (1987) Ribosomal RNA as a taxo- nomic tool in mycology. Stud Mycol 30: 247–258

    Google Scholar 

  • Bowen AR, Chen-Wu JL, Momany M, Young R, Szaniszlo PJ, Robbins PW (1992) Classification of fungal chitin synthases. Proc Natl Acad Sci USA 89: 519–523

    Article  PubMed  CAS  Google Scholar 

  • Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803

    Article  CAS  Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22: 525–564

    Article  Google Scholar 

  • Burt A, Carter DA, Koenig GL, White TJ, Taylor JW (1996) Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc Natl Acad Sci USA 93: 770–773

    Article  PubMed  CAS  Google Scholar 

  • Butler DK, Metzenberg RL (1989) Premeiotic change of nucleolus organizer size in Neurospora. Genetics 122: 783–791

    PubMed  CAS  Google Scholar 

  • Carmean D, Crespie BJ (1995) Do long branches attract flies? Nature 373: 666

    Article  PubMed  CAS  Google Scholar 

  • Carmean D, Kimsey LS, Berbee ML (1992) 18S rDNA sequences and the holometabolous insects. Mol Phylogenet Evol 1: 270–278

    Google Scholar 

  • Cavalier-Smith T (1993) Kingdom Protozoa and its 18 phyla. Microbiol Rev 57: 953–994

    PubMed  CAS  Google Scholar 

  • Dennis RL (1970) A Middle Pennsylvanian basidiomycete mycelium with clamp connections. Mycologia 62: 578–584

    Article  Google Scholar 

  • Din AB, Specht CA, Robbins PW, Yarden 0 (1996) Chs-4, a class IV chitin synthase gene from Neurospora crassa. Mol Gen Genet 250: 214–222

    CAS  Google Scholar 

  • Doolittle RF, Feng D-F, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470–477

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27: 401–410

    Article  Google Scholar 

  • Gargas A, DePriest PT, Grube M, Tehler A (1995) Multiple origins of lichen symbiosis in fungi suggested by SSU rDNA phylogeny. Science 268: 1492–1495

    Article  PubMed  CAS  Google Scholar 

  • Gaudet J, Julien J, Lafay JF, Brygoo Y (1989) Phylogeny of some Fusarium species as determined by large-subunit rRNA sequence comparison. Mol Biol Evol 6: 227–242

    Google Scholar 

  • Gray J (1985) The microfossil record of early land plants: advances in understanding of early terrestrialization, 1970–1984. Philos Trans R Soc Lond, Ser B, 309: 167–195

    Google Scholar 

  • Haase G, Sonntag L, Van de Peer Y, Uijthof JMM, Podbielski A, Melzer-Krick B (1995) Phylogenetic analysis of ten black yeast species using nuclear small subunit rRNA gene sequences. Antonie van Leeuwenhoek 68: 19–33

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Di Rienza A, Kocher TD, Wilson AC (1993) Toward a more accurate time scale for the human mitochondrial DNA tree. J Mol Evol 37: 347–354

    Article  PubMed  CAS  Google Scholar 

  • Hibbett DS, Grimaldi D, Donoghue MJ (1995) Cretaceous mushrooms in amber. Nature 377: 487

    Article  CAS  Google Scholar 

  • Hibbett DS, Donoghue MJ, Tomlinson PB (1997) Is Phellinites digiustoi the oldest homobasidiomycete? Am J Bot 84: 1005–1011

    Article  PubMed  CAS  Google Scholar 

  • Hirt RP, Logsdon Jr. JM, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA 96: 580–585

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP (1997) Is the Felsenstein zone a fly trap? Syst Biol 46: 69–74

    Article  PubMed  CAS  Google Scholar 

  • Iwabe N, Kuma K-I, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationships of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86: 9355–9359

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Doolittle WF (1996) Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13: 1297–1305

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ, Luker MA, Palmer JD (2000) Evidence from beta-tubulin phylogeny that Microsporidia evolved from within the Fungi. Mol Biol Evol 17: 23–31

    Article  PubMed  CAS  Google Scholar 

  • Kidston R, Lang WH (1921) On old red sandstone plants, V. The Thallophyta occurring in the peat-bed; the succession of accumulation and preservation of the deposit. Trans R Soc Edinb 52: 855–902

    Google Scholar 

  • Kuhls K, Lieckfeldt E, Samuels GJ, Kovacs W, Meyer W, Petrini O, Gams W, Börner T, Kubicek CP (1996)

    Google Scholar 

  • Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc Natl Acad Sci USA 93:7755–7760

    Google Scholar 

  • Landvik S, Eriksson OE, Gargas A, Gustafsson P (1993) Relationships of the genus Neolecta (Neolectales ordo nov., Ascomycotina) inferred from 18s rDNA sequences. Syst Ascomyc 11: 107–118

    Google Scholar 

  • Landvik S, Shailer NFJ, Eriksson OE (1996) SSU rDNA sequence support for a close relationship between the Elaphomycetales and the Eurotiales and Onygenales. Mycoscience 37: 237–241

    Article  CAS  Google Scholar 

  • LePage BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the middle Eocene. Am J Bot 84: 410–412

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Whelen S, Hall B (1999) Phylogenetic Relationships among Ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16: 1799–1808

    Article  PubMed  CAS  Google Scholar 

  • LoBuglio K, Berbee ML, Taylor JW (1996) Phylogenetic origins of the asexual mycorrhizal symbiont Cenococcum geophilum Fr. and other mycorrhizal fungi among the ascomycetes. Mol Phylogenet Evol 6: 287294

    Google Scholar 

  • LoBuglio KF, Pitt JI, Taylor JW (1993) Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85: 592–604

    Article  CAS  Google Scholar 

  • Metzenberg RL, Stevens JN, Selker EU, MorzyckaWroblewska E (1985) Identification and chromosomal distribution of 5S rRNA genes in Neurospora crassa. Proc Natl Acad Sci USA 82: 2067–2071

    Article  PubMed  CAS  Google Scholar 

  • Nagahama T, Sato H, Shimazu M, Sugiyama J (1995) Phylogenetic divergence of the entomophthoralean fungi: evidence from 18S ribosomal RNA gene sequences. Mycologia 87: 203–209

    Article  CAS  Google Scholar 

  • Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26: 74–86

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell K (1992) Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr Genet 22: 213–220

    Article  PubMed  Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7: 103–116

    Article  PubMed  Google Scholar 

  • Orbach MJ, Vollrath D, Davis RW, Yanofsky C (1988) An electrophoretic karyotype of Neurospora crassa. Mol Cell Biol 8: 1469–1473

    PubMed  CAS  Google Scholar 

  • Paquin B, Forget L, Roewer I, Lang BF (1995a) Molecular phylogeny of Allomyces macrogynus: congruency between nuclear ribosomal RNA- and mitochondrial protein-based trees. J Mol Evol 41: 657–665

    Article  PubMed  CAS  Google Scholar 

  • Paquin B, Roewer I, Wang Z, Lang BF (1995b) A robust fungal phylogeny using the mitochondrially encoded NAD5 protein sequence. Can J Bot 73 (Suppl 1): S180–5185

    Article  CAS  Google Scholar 

  • Paquin B, Laforest M-J, Forget L, Roewer I, Wang Z, Longcore J, Lang BF (1997) The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Curr Genet 31: 380–395

    Article  PubMed  CAS  Google Scholar 

  • Philippe H, Chenuil A, Adoutte A (1994) Can the Cambrian explosion be inferred through molecular phylogeny? Development (Suppl): 15–25

    Google Scholar 

  • Radford A (1993) A fungal phylogeny based upon orotidine 5’-monophosphate decarboxylase. J Mol Evol 36: 389–395

    Article  PubMed  CAS  Google Scholar 

  • Ragan MA, Goggins CL, Cawthorn RJ, Cerenius L, Jamieson AVC, Plourde SM, Rand TG, Söderhäll K, Guttell RR (1996) A novel clade of protistan parasites near the animal-fungal divergence. Proc Natl Acad Sci USA 93: 11907–11912

    Article  PubMed  CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundredmillion-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91: 11841–11843

    Article  PubMed  CAS  Google Scholar 

  • Reynolds DR, Taylor JW (eds) (1993) The fungal hobo-morph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, 375 pp

    Google Scholar 

  • Rossman AY (1993) Holomorphic hypocrealean fungi: Nectria sensu stricto and teleomorphs of Fusarium. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 149–160

    Google Scholar 

  • Saenz GS, Taylor JW, Gargas A (1994) 18S rRNA gene sequences and supraordinal classification of the Erysiphales. Mycologia 86: 212–216

    Google Scholar 

  • Seifert KA, Louis-Seize G, Savard ME (1997) The phylogenetic relationships of two trichothecene-producing hyphomycetes, Spiecellum roseum and Trichothecium roseum. Mycologia 89: 250–257

    Article  Google Scholar 

  • Silva-Hanlin DMW, Hanlin RT (1999) Small subunit ribosomal RNA gene phylogney of several loculoascomycetes and its taxonomic implications. Mycol Res 103: 153–160

    Article  Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363: 67–69

    Article  Google Scholar 

  • Singer R, Archangelsky S (1958) A petrified basidiomycete from Patagonia. Am J Bot 45: 194–198

    Article  Google Scholar 

  • Smith TL (1989) Disparate evolution of yeasts and filamentous fungi indicated by phylogenetic analysis of glyceraldehyde-3-phosphate dehydrogenase genes. Proc Natl Acad Sci USA 86: 7063–7066

    Article  PubMed  CAS  Google Scholar 

  • Spanggaard B, Skouboe P, Rossen L, Taylor JW (1996) Phylogenetic relationships of the intercellar fish pathogen Ichthyophonus hoferi and fungi, choanoflagellates and the rosette agent. Mar Biol 126: 109–115

    Article  CAS  Google Scholar 

  • Spatafora JW (1995) Ascomal evolution of filamentous ascomycetes: evidence from molecular data. Can J Bot 73 (Suppl 1): S811 - S815

    Article  CAS  Google Scholar 

  • Spatafora JW, Blackwell M (1994) The polyphyletic origins of opiostomatoid fungi. Mycol Res 98: 1–9

    Article  Google Scholar 

  • Spatafora JW, Mitchell TG, Vilgalys R (1995) Analysis of genes coding for small-subunit rDNA sequences in studying phylogenetics of dematiaceous fungal pathogens. J Clin Microbiol 33: 1322–1326

    PubMed  CAS  Google Scholar 

  • Stenroos SK, DePriest PT (1998) SSU rDNA phylogeny of cladoniiform lichens. Am J Bot 85: 1548–1559

    Article  PubMed  CAS  Google Scholar 

  • Swann EC, Taylor JW (1993) Higher taxa of basidiomycetes: an 18S rRNA gene perspective. Mycologia 85: 923–936

    Article  CAS  Google Scholar 

  • Swann EC, Frieders EM, McLaughlin DJ (1999) Microbotryum, Kriegeria and the changing paradigm in basidiomycete classification. Mycologia 91: 51–66

    Google Scholar 

  • Taylor JW (1995) Making the Deuteromycota redundant: a practical integration of mitosporic and meiosporic fungi. Can J Bot 73 (Suppl 1): S754 - S759

    Article  Google Scholar 

  • Taylor TN, Hass H, Kerp H (1999) The oldest fossil ascomycetes. Nature 399–648

    Google Scholar 

  • Taylor TN, Remy W, Hass H (1994) Allomyces in the Devonian. Nature 367: 601

    Google Scholar 

  • Van de Peer Y, Jansen J, De Rijk P, De Wachter R (1997) Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res 25: 111–116

    Article  PubMed  Google Scholar 

  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (1993) Monophyletic origins of the Metazoa: an evolutionary link with Fungi. Science 260: 340–342

    Article  PubMed  CAS  Google Scholar 

  • Walker WF (1984) 5S rRNA sequences from Atractiellales, and basidiomycetous yeasts and Fungi Imperfecti. Syst Appl Microbiol 5:352–359

    Google Scholar 

  • Walker WF, Doolittle WF (1982) Redividing the Basidiomycetes on the basis of 5S rRNA sequences. Nature 299: 723–724

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, San Diego, California, pp 315–322

    Google Scholar 

  • Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H (1989) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86: 6201–6205

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berbee, M.L., Taylor, J.W. (2001). Fungal Molecular Evolution: Gene Trees and Geologic Time. In: McLaughlin, D.J., McLaughlin, E.G., Lemke, P.A. (eds) Systematics and Evolution. The Mycota, vol 7B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10189-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10189-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08576-5

  • Online ISBN: 978-3-662-10189-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics