Skip to main content

Interactions Between Oxygen-Releasing Roots and Microbial Processes in Flooded Soils and Sediments

  • Chapter
Root Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 168))

Abstract

It is hard to imagine that wetland soils and sediments are adverse habitats for plant growth, considering the diverse vegetation that flourishes in fresh- and salt-water marshes (tidal as well as non-tidal), bogs, fens, forested swamps, and floodplains. However, the permanent or periodic flooding of soils or sediments has a number of physical, chemical and biological consequences for the soil/sediment environment (e.g. Ponnamperuma 1984; Gambrell et al. 1991). The most important ramification of the water layer on top of flooded soils and sediments is the restricted entry of atmospheric oxygen. The diffusion of oxygen in water is 10,000 times slower than in air. Oxygen is rapidly depleted in the upper layers of inundated soil due to chemical and biological oxidation processes, resulting in a soil profile where the presence of oxygen is limited to the upper mm’s (e.g. Frenzel et al. 1992; Lorenzen et al. 1998). Plants have developed various mechanisms to equip them for colonisation and growth in anoxic flooded soils and sediments, as reviewed elsewhere (Drew 1983; Armstrong et al. 1994; Blom and Voesenek 1996; Blom 1999). Changes in anatomy, morphology and metabolism are of paramount importance for surviving in anoxic root environments. The most important adaptation is the development of aerenchyma, which creates a gas-space continuum that stretches from the stornata to the root-root cap junction, referred to as aerenchyma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Armstrong W (1964) Oxygen diffusion from the roots of some British bog plants. Nature 204:801–802

    CAS  Google Scholar 

  • Armstrong W (1970) Rhizosphere oxidation in rice and other species: a mathematical model based on the oxygen flux component. Physiol Plant 23:296–303

    Google Scholar 

  • Armstrong W (1971) Radial oxygen losses from intact rice roots as affected distance from the apex, respiration and waterlogging. Physiol Plant 25:192–197

    Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. In: Woolhouse HWW (ed) Advances in botanical research, vol 7. Academic Press, London, pp 225–332

    Google Scholar 

  • Armstrong J, Armstrong W (1988) Phragmites australis — a preliminary study of soil oxidising sites and internal gas transport pathways. New Phytol 108:373–382

    Google Scholar 

  • Armstrong J, Armstrong W (1990) Light enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. Ex Steud. New Phytol 114:121–128

    Google Scholar 

  • Armstrong J, Armstrong W (2001) An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquat Bot 69:251–268

    CAS  Google Scholar 

  • Armstrong W, Beckett PM (1987) Internal aeration and the development of stelar anoxia in submerged roots. A multishelled mathematical model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytol 105:221–245

    Google Scholar 

  • Armstrong J, Armstrong W, Beckett PM (1992) Phragmites australis — Venturi-induced and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol 120:197–207

    Google Scholar 

  • Armstrong W, Brandie R, Jackson MB (1994) Mechanisms of flood tolerance in plants. Acta Bot Neer 43:307–358

    CAS  Google Scholar 

  • Armstrong J, Afreen-Zobayed F, Armstrong W (1996) Phragmites die-back: sulphide-and acetic acid-induced bud and root death, lignifications, and blockages within aeration vascular systems. New Phytol 134:601–614

    Google Scholar 

  • Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM (2000) Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann Bot 86:687–703

    Google Scholar 

  • Arth I, Frenzel P (2000) Nitrification and denitrifìcation in the rhizosphere of rice: the detection of processes by a new multi-channel electrode. Biol Fertil Soils 31:427–435

    CAS  Google Scholar 

  • Arth I, Frenzel P, Conrad R (1998) Denitrifìcation coupled to nitrification in the rhizosphere of rice. Soil Biol Biochem 30:509–515

    CAS  Google Scholar 

  • Bagwell CE, Piceno YM, Ashburne-Lucas A, Lovell CR (1998) Physiological diversity of the rhizosphere diazotroph assemblages of selected salt marsh grasses. Appl Environ Microbiol 64: 4276–4282

    PubMed  CAS  Google Scholar 

  • Bèdard C, Knowles R (1989) Physiology, biochemistry and specific inhibitors of CH4, NH4 + and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    PubMed  Google Scholar 

  • Bedford BL, Bouldin RR, Bethany BD (1991) Net oxygen and carbon dioxide balances in solutions bathing roots of wetland plants. J Ecol 79:943–959

    Google Scholar 

  • Blaabjerg V, Mouritsen KM, Finster K (1998) Diel cycles of sulphate reduction rates in sediments of a Zostera marina bed (Denmark). Aquat Microb Ecol 15:97–102

    Google Scholar 

  • Blom CWPM (1999) Adaptations to flooding stress: from plant to molecule. Plant Biol 1:261–273

    CAS  Google Scholar 

  • Blom CWPM, Voesenek LACJ (1996) Flooding: the survival strategies of plants Tree 11:290–295

    CAS  Google Scholar 

  • Bodelier PLE, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 + oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65:1826–1833

    PubMed  CAS  Google Scholar 

  • Bodelier PLE, Laanbroek HJ (1997) Oxygen uptake kinetics of Pseudomonas chloro-raphis growing in glucose- or glutamate-limited continuous cultures. Arch Microbiol 167:392–395

    CAS  Google Scholar 

  • Bodelier PLE, Libochant JA, Blom CWPM, Laanbroek HJ (1996) Dynamics of nitrification and denitrifìcation in root-oxygenated sediments and adaptations of ammonia-oxidising bacteria to low oxygen or anoxic habitats. Appl Environ Microbiol 62:4100–4107

    PubMed  CAS  Google Scholar 

  • Bodelier PLE, Wijlhuizen AG, Blom CWPM, Laanbroek HJ (1997) Effects of photoperiod on growth of and denitrifìcation by Pseudomonas chlororaphis in the root zone of Glyceria maxima, studied in a gnotobiotic microcosm. Plant Soil 190:91–103

    CAS  Google Scholar 

  • Bodelier PLE, Duyts H, Blom CWPM, Laanbroek HJ (1998) Interactions between nitrifying and denitrifying bacteria in gnotobiotic microcosms planted with the emergent macrophyte Glyceria maxima. FEMS Microbiol Ecol 25:63–78

    CAS  Google Scholar 

  • Bodelier PLE, Hahn AP, Arth I, Frenzel P (2000a) Effects of ammonium-based fertilisation on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry 51: 225–257

    Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000b) Stimulation of ammonium-based fertilisers of methane oxidation in soil around rice roots. Nature 403:421–424

    PubMed  CAS  Google Scholar 

  • Boschker HTS, Nold SC, Wellsbury P, Bos D, DeGraaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805

    CAS  Google Scholar 

  • Bosse U, Frenzel P (1997) Activity and distribution of methane-oxidising bacteria in flooded rice soil microcosms and in rice plants. Appl Environ Microbiol 63:1199–1207

    PubMed  CAS  Google Scholar 

  • Bosse U, Frenzel P (1998) Methane emission from rice microcosms: the balance of production, accumulation and oxidation. Biogeochemistry 41:199–214

    CAS  Google Scholar 

  • Both GJ, Gerards S, Laanbroek HJ (1992) The occurrence of chemolithoautotrophic nitrifiers in water-saturated soils. Microb Ecol 23:15–26

    Google Scholar 

  • Brix H, Sorrell BK, Orr PhT (1992) Internal pressurisation and convective gas-flow in some emergent freshwater macrophytes. Limnol Oceanogr 37:1420–1433

    Google Scholar 

  • Brunei B, Janse JD, Laanbroek HJ, Woldendorp JW (1992) Effect of transient oxic conditions on the composition of the nitrate-reducing community from the rhizosphere of Typ ha angusti/olia. Microb Ecol 24:51–61

    Google Scholar 

  • Caffrey JM, Kemp WM (1991) Seasonal and spatial pattern of oxygen production, respiration and root-rhizome release in Potamogeton perfoliatus L. and Zostera marina L. Aquat Bot 40:109–128

    Google Scholar 

  • Calhoun A, King GM (1998) Characterisation of root-associated methanotrophs from three freshwater macrophytes: Pontederia cordata, Sparganium eurycarpum, and Sagittaria latifolia. Appl Environ Microbiol 64:1099–1105

    CAS  Google Scholar 

  • Chabbi A, McKee KL, Mendelssohn IA (2000) Fate of oxygen losses from Typha domin-gensis (Typhaceae) and Cladium jamacense (Cyperaceae) and consequence for root metabolism. Am J Bot 87:1081–1090

    PubMed  CAS  Google Scholar 

  • Christensen PB, Sorensen J (1986) Temporal variation of denitrification activity in plant-covered, littoral sediment from Lake Hampen, Denmark. Appl Environ Microbiol 51:1174–1179

    PubMed  CAS  Google Scholar 

  • Christensen PB, Revsbech NP, Sand-Jensen K (1994) Microsensor analysis of oxygen in the rhizosphere of the aquatic macrophyte Littorella uniflora (L.) Ascherson. Plant Physiol 105:847–852

    PubMed  CAS  Google Scholar 

  • Cížková H, Brix H, Kopecky J, Lukavská J (1999) Organic acids in the sediments of wetlands dominated by Phragmites australis: evidence of phytotoxic concentrations. Aquat Bot 64:303–315

    Google Scholar 

  • Colmer TD, Gibberd MR, Wiengweera A, Tinh TK (1998) The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solutions. J Exp Bot 49:1431–1436

    CAS  Google Scholar 

  • Connell EL, Colmer TD, Walker DI (1999) Radial oxygen loss from intact roots of Halophila ovalis as a function of distance behind the root tip and shoot illumination. Aquat Bot 63:219–228

    Google Scholar 

  • Conrad R (1996) Soil micro-organisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640

    PubMed  CAS  Google Scholar 

  • Conrad R, Klose M (1999) Anaerobic conversion of carbon dioxide to methane, acetate and proprionate on washed rice roots. FEMS Microbiol Ecol 30:147–155

    PubMed  CAS  Google Scholar 

  • Crutzen PJ (1981) Atmospherical chemical processes of the oxides of nitrogen, including nitrous oxide. In: Delwiche CC (ed) Denitrification, nitrification and atmospheric nitrous oxide. Wiley, New York, pp 17–74

    Google Scholar 

  • Curl A, Truelove B (1986) The rhizosphere. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dan J, Krüger M, Frenzel P, Conrad R (2001) Effect of late season urea fertilisation on methane emission from a rice field in Italy. Agric Ecosyst Environ 83:191–199

    CAS  Google Scholar 

  • Dannenberg S, Conrad R (1999) Effect of rice plants on methane production and rhizos-pheric metabolism in paddy soil. Biogeochemistry 45:53–71

    Google Scholar 

  • Denier van der Gon HAC, Neue HU (1996) Oxidation of methane in the rhizosphere of rice plants. Biol Fertil Soils 22:359–366

    Google Scholar 

  • Donnelly AP, Herbert RA (1999) Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons. J Appl Microbiol Symp Suppl 85:151S-160S

    Google Scholar 

  • Drew MC (1983) Plant injury and adaptation to oxygen deficiency in the root environment: a review. Plant Soil 75:179–199

    CAS  Google Scholar 

  • Egener T, Hurek T, Reinhold-Hurek B (1998) Use of green fluorescent protein to detect expression of nif genes of Azoarcus sp. BH72, a grass-associated diazotroph, on rice roots. MPMI 11:71–75

    PubMed  CAS  Google Scholar 

  • Ellenberg H (1977) Stickstoff als Standortfactor, insbesondere für mitteleuropäische Pflanzengesellschaften. Oecol Plant 12:1–22

    CAS  Google Scholar 

  • Emerson D, Weiss JV, Megonical JP (1999) Iron-oxidising bacteria associated with ferric hydroxide precipitates (Fe-plaque) on roots of wetland plants. Appl Environ Microbiol 65:2758–2761

    PubMed  CAS  Google Scholar 

  • Engelaar WMHG, Bodelier PLE, Laanbroek HJ, Blom CWPM (1991) Nitrification in the rhizosphere of a flooding-resistant and flooding-non-resistant Rumex species under drained and waterlogged conditions. FEMS Microbiol Ecol 86:33–42

    CAS  Google Scholar 

  • Engelaar WMHG, VanBruggen MW, VandenHoek WPM, Huyser MAH, Blom CWPM (1993) Root porosities and radial oxygen losses of Rumex and Plantago species as influenced by soil pore diameter and soil aeration. New Phytol 125:565–574

    Google Scholar 

  • Engelaar WMHG, Matsumaru T, Yoneyama T (2000) Combined effects of soil waterlogging and compaction on rice (Oryza sativa L.) growth, soil aeration, soil N transformations and 15N discrimination. Biol Fertil Soils 32:484–493

    Google Scholar 

  • Frenzel P (2000) Plant-associated methane oxidation in rice field and wetlands. In: Schink B (ed) Advances in microbial ecology, vol 16. Kluwer, New York, pp 85–114

    Google Scholar 

  • Frenzel P, Bosse U, Janssen PH (1999) Rice roots and methanogenesis in a paddy soil: ferric iron as an alternative electron acceptor in the rooted soil. Soil Biol Biochem 31:421–430

    CAS  Google Scholar 

  • Frenzel P, Rothfuss F, Conrad R (1992) Oxygen profiles and methane turnover in a flooded rice microcosm. Biol Fertil Soils 14:84–89

    CAS  Google Scholar 

  • Gambrell RP, Delaune RD, Patrick WH Jr (1991) Redox processes is soils following oxygen depletion. In: Jackson MB, Davies DD, Lambers H (eds) Plant life under oxygen deprivation. SPB Academic Publishing bv, The Hague, The Netherlands

    Google Scholar 

  • Gilbert B, Frenzel P (1998) Rice roots and CH4 oxidation: the activity of bacteria, their distribution and the micro environment. Soil Biol Biochem 30:1903–1916

    CAS  Google Scholar 

  • Gilbert B, Aßmuss B, Hartmann A, Frenzel P (1998) In situ localisation of two methan-otrophic strains in the rhizosphere of rice plants. FEMS Microbiol Ecol 25:117–128

    CAS  Google Scholar 

  • Gregory PJ, Hinsinger P (1999) New approaches to studying chemical and physical changes in the rhizosphere: an overview. Plant Soil 211:1–9

    CAS  Google Scholar 

  • Grierson PF, Comerford NB (2000) Non-destructive measurements of acid phosphatase activity in the rhizosphere using nitrocellulose membranes and image analysis. Plant Soil 218:49–57

    CAS  Google Scholar 

  • Grosse W, Armstrong J, Armstrong W (1996) A history of pressurised gas-flow studies in plants. Aquat Bot 54:87–100

    Google Scholar 

  • Grosskopf R, Stubner S, Liesack W (1998) Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms. Appl Environ Microbiol 64:4983–4989

    CAS  Google Scholar 

  • Grünfeld S, Brix H (1999) Methanogenesis and methane emissions: effects of water table, substrate type and the presence of Phragmites australis. Aquat Bot 64:63–75

    Google Scholar 

  • Hansen JW, Udy JW, Perry CJ, Dennison WC, Lomstein BA (2000) Effects of the seagrass Zostera capricorni on sediment microbial processes. Mar Ecol Prog Ser 199:83–96

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    PubMed  CAS  Google Scholar 

  • Hines ME, Evans RS, Sharak Genthner BR, Willis SG, Friedman S, Rooney-Varga JN, Dev-ereux R (1999) Molecular phylogenetic and biogeochemical studies of sulphate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65:2209–2216

    CAS  Google Scholar 

  • Hojberg O, Sorensen J (1993) Microgradients of microbial oxygen consumption in a bar-ley rhizosphere model system. Appl Environ Microbiol 59:431–437

    PubMed  CAS  Google Scholar 

  • Howes BL, Teal JM (1994) Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance. Oecologia 97:431–438

    Google Scholar 

  • Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    PubMed  CAS  Google Scholar 

  • Jespersen DN, Sorrell BK, Brix H (1998) Growth and root oxygen release by Typha latifo-lia and its effects on sediment methanogenesis. Aquat Bot 61:165–180

    CAS  Google Scholar 

  • Justin SHFW, Armstrong W (1987) The anatomical characteristics of roots and plant response to soil flooding. New Phytol 106:465–495

    Google Scholar 

  • Killham K, Yeomans C (2001) Rhizosphere carbon flow measurements and implications: from isotopes to reporter genes. Plant Soil 232:91–96

    CAS  Google Scholar 

  • Kim JD, Jugsujinda A, Carbonell-Barrachina AA, Delaune RD, Patrick WH Jr (1999) Physiological functions and methane and oxygen exchange in Korean rice cultivars under controlled soil redox potential. Bot Bull Acad Sin 40:185–191

    CAS  Google Scholar 

  • King GM (1994) Associations of methanotrophs with the roots and rhizomes of aquatic vegetation. Appl Environ Microbiol 60:3220–3227

    PubMed  CAS  Google Scholar 

  • King GM, Garey MA (1999) Ferric iron reduction by bacteria associated with the roots of freshwater and marine macrophytes. Appl Environ Microbiol 65:4393–4398

    PubMed  CAS  Google Scholar 

  • Klemedtsson L, Berg P, Clarholm M, Schürer J (1987) Microbial nitrogen transformations in the root environment of barley. Soil Biol Biochem 19:551–558

    CAS  Google Scholar 

  • Kludze HK, Delaune RD, Patrick WH Jr (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci Soc Am J 57:386–391

    CAS  Google Scholar 

  • Kowalchuk GA, Stephen JR (2001) Ammonia-oxidising bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55:485–529

    PubMed  CAS  Google Scholar 

  • Kowalchuk GA, Bodelier PLE, Heilig GHJ, Stephen JR, Laanbroek HJ (1998) Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiol Ecol 27:339–350

    CAS  Google Scholar 

  • Krüger M, Frenzel P, Conrad R (2001) Microbial processes influencing methane emission from rice fields. Glob Change Biol 7:49–63

    Google Scholar 

  • Küsel K, Pinkart H, Drake HL, Devereux R (1999) Acetogenic and sulfate reducing bacteria inhabiting the rhizoplane and the deep cortex cells of the sea grass Halodule wrightii. Appl Environ Microbiol 65:5117–5123

    Google Scholar 

  • Laan P, Smolders A, Blom CWPM, Armstrong W (1989) The relative roles of internal aeration, radial oxygen losses, iron exclusion and nutrient balances in fio od-tolerance of Rumex species. Acta Bot Neerl 38:131–145

    Google Scholar 

  • Laanbroek HJ (1990) Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review. Aquat Bot 38:109–125

    Google Scholar 

  • Lamers PM, Tomassen HBM, Roelofs (1998) Sulphate-induced eutrophication and phy-totoxicity in freshwater wetlands. Environ Sci Technol 32:199–205

    CAS  Google Scholar 

  • Lee N, Nielsen PH, Andreasen KH, Juretschenko S, Nielsen JP, Schleifer KH, d Wagner M (1999) Combination of fluorescent in situ hybridisation and microautoradiography a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    PubMed  CAS  Google Scholar 

  • Lehmann-Richter S, Grosskopf R, Liesack W, Frenzel P, Conrad R (1999) Methanogenic archaea and CO2-dependent methanogenesis on washed rice roots. Environ Microbiol 1:159–166

    PubMed  CAS  Google Scholar 

  • Lorenzen J, Hauer Larsen L, Kjaer T, Revsbech NP (1998) Biosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrifica-tion in a diatom inhabited freshwater sediment. Appl Environ Microbiol 64:3264–3269

    PubMed  CAS  Google Scholar 

  • Lovell CR, Piceno YM, Quattro JM, Bagwell CE (2000) Molecular analysis of diazotroph diversity in the rhizosphere in the rhizosphere of the smooth cordgrass, Spartina alternifiora. Appl Environ Microbiol 66:3814–3822

    CAS  Google Scholar 

  • Lovley DR (1995) Microbial reduction of iron, manganese and other metals. Adv Agron 54:175–231

    CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Competitive mechanisms for inhibition of sulphate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol 53:2636–2641

    PubMed  CAS  Google Scholar 

  • Lu Y, Wassmann R, Neue HU, Huang C (1999) Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochemistry 47:203–218

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London, 889 pp

    Google Scholar 

  • Minoda T, Kimura M, Wada E (1996) Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields. J Geophys Res 101:21091–21097

    CAS  Google Scholar 

  • Molisch H (1887) Über Wurzelausscheidungen und deren Einwirkung auf organische Substanzen. Sitzungsber Akad Wiss Wien Math Nat Kl 96:84–109

    Google Scholar 

  • Moorhead KK, Reddy KR (1988) Oxygen transport through selected aquatic macro-phytes. J Environ Qual 17:138–142

    Google Scholar 

  • Nielsen LB, Finster K, Welsh DT, Donnely A, Herbert RA, DeWit R, Lomstein BA (2001) Sulphate reduction and nitrogen fixation rates with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows. Environ Microbiol 3:63–71

    PubMed  CAS  Google Scholar 

  • Nijburg JW, Coolen JL, Gerards S, Klein Gunnewiek PJA, Laanbroek HJ (1997) Effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitrate-reducing bacterial community. Appl Environ Microbiol 63:931–937

    PubMed  CAS  Google Scholar 

  • Patrick WH Jr, Jugsujinda A (1992) Sequential reduction and oxidation of inorganic nitrogen, manganese, and iron in flooded soil. Soil Sci Soc Am J 56:1071–1073

    CAS  Google Scholar 

  • Pedersen O, Sand-Jensen K, Revsbech NP (1995) Diel pulses of 02 and C02 in sandy lake sediments inhabited by Lobelia dortmanna. Ecology 76:1536–1545

    Google Scholar 

  • Peters V, Conrad R (1996) Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils. Soil Biol Biochem 28:371–382

    CAS  Google Scholar 

  • Ponnaperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic Press, New York, pp 9–45

    Google Scholar 

  • Prade K, Trolldenier G (1990) Denitrification in the rhizosphere of rice and wheat seedlings as influenced by plant K-status, air filled porosity and substrate organic matter. Soil Biol Biochem 22:769–773

    CAS  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649.

    PubMed  CAS  Google Scholar 

  • Ratering S, Schnell S (2000) Localisation of iron-reducing activity in paddy soil by profile studies. Biogeochemistry 48:341–365

    CAS  Google Scholar 

  • Reddy KR, D’Angelo EM, Debusk TA (1989a) Oxygen transport through aquatic macro-phytes: the role in wastewater treatment. J Environ Qual 19:261–267

    Google Scholar 

  • Reddy KR, Patrick WH Jr, Lindau CW (1989b) Nitrification and denitrification at the plant root-sediment interface. Limnol Oceanogr 34:1004–1013

    CAS  Google Scholar 

  • Reichardt W, Mascarina G, Padre B, Doll J (1997) Microbial communities of continuously cropped, irrigated rice fields. Appl Environ Microbiol 63:233–238

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Tree 6:139–143

    CAS  Google Scholar 

  • Risgaardpedersen N, Jensen K (1997) Nitrification and denitrifìcation in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnol Oceanogr 42:529–537

    Google Scholar 

  • Robertson LA, Dalsgaard T, Revsbech NP, Kuenen JG (1995) Confirmation of aerobic’ denitrifìcation in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol Ecol 18:113–120

    CAS  Google Scholar 

  • Roden EE, Wetzel RG (1996) Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnol Oceanogr 41:1733–1748

    CAS  Google Scholar 

  • Rothfuss F, Conrad R (1993). Thermodynamics of methanogenic intermediary metabolism in littoral sediment of Lake Constance. FEMS Microbiol Ecol 12:265–276

    CAS  Google Scholar 

  • Schipper LA, Reddy KR (1996) Determination of methane oxidation in the rhizosphere of Sagittaria lanci/olia using methyl fluoride. Soil Sci Soc Am J 60:611–616

    CAS  Google Scholar 

  • Scheid D, Stubner S (2001) Structure and diversity of gram-negative sulphate-reducing bacteria on rice roots. FEMS Microbiol Ecol 36:175–183

    PubMed  CAS  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41:23–51

    CAS  Google Scholar 

  • Semenov AM, VanBruggen AHC, Zelenev VV (1999) Moving waves of bacterial populations and total organic carbon along roots of wheat. Microb Ecol 37:116–128

    PubMed  CAS  Google Scholar 

  • Smolders A, Roelofs JGM (1993) Sulphate-mediated iron limitation and eutrophication in aquatic ecosystems. Aquat Bot 46:247–253

    CAS  Google Scholar 

  • Smolders A, Roelofs JGM (1995) Internal eutrophication, iron limitation and sulphide accumulation due to the inlet of River Rhine water in peaty shallow waters in the Netherlands. Arch Hydrobiol 133:349–365

    CAS  Google Scholar 

  • Snowden RED, Wheeler (1995) Chemical changes in selected wetland plant species with increasing Fe supply, with specific reference to root precipitates and Fe tolerance. New Phytol 131:503–520

    CAS  Google Scholar 

  • Sorrell BK (1999) Effect of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions. Plant Cell Environ 22:1587–1593

    CAS  Google Scholar 

  • Sorrell BK, Armstrong W (1994) On the difficulties of measuring oxygen release by root systems of wetland plants. J Ecol 82:177–183

    Google Scholar 

  • Sposito G (1984) The surface chemistry of soils. Oxford University Press, Oxford, 234 pp

    Google Scholar 

  • Stienstra AW, Both GJ, Gerards S, Laanbroek HJ (1993) Numbers of nitrite-oxidising bacteria in the root zone of grassland plants. FEMS Microbiol Ecol 12:207–214

    Google Scholar 

  • Stoltzfus JR, So R, Malarvithi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    CAS  Google Scholar 

  • Stubner S, Wind T, Conrad R (1998) Sulphur oxidation in rice field soil: activity, enumeration, isolation and characterisation of thiosulphate-oxidising bacteria. Syst Appl Microbiol 21:569–578

    PubMed  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviours in associated bacteria. MPMI 13:637–648

    PubMed  CAS  Google Scholar 

  • VanBodegom P, Goudriaan J, Leffelaar P (2001a) A mechanistic model on methane oxidation in a rice rhizosphere. Biogeochemistry 55:145–177

    CAS  Google Scholar 

  • VanBodegom P, Stams F, Mollema L, Boeke S, Leffelaar P (2001b) Methane oxidation and competition for oxygen in the rice rhizosphere. Appl Environ Microbiol 67:3586–3597

    CAS  Google Scholar 

  • VandeGeijn SC, Vos J, Groenwold J, Goudriaan J, Leffelaar PA (1994) The Wageningen rhizolab-facility to study soil-root-shoot-atmosphere interactions in crops. Plant Soil 161:275–287

    Google Scholar 

  • Visser EJW, Colmer TD, Blom CWPM, Voesenek LACJ (2000) Changes in growth, porosity, and radial oxygen loss from adventitious rots of selected mono-and dicotyledonous wetland species with contrasting types of aerenchyma. Plant Cell Environ 23:1237–1245

    Google Scholar 

  • Wang B, Adachi K (2000) Differences among rice cultivars in root exudation, methane oxidation, and populations of methanogenic and methanotrophic bacteria in relation to methane emission. Nutr Cycl Agroecosyst 58:349–356

    CAS  Google Scholar 

  • Welsh DT (2000) Nitrogen fixation in seagrass meadows: regulation, plant-bacteria interactions and significance to primary productivity. Ecol Lett 3:58–71

    Google Scholar 

  • Welsh DT, Bartoli M, Nizzoli D, Castaldelli G, Riou SA, Viaroli P (2000) Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Mar Ecol Prog Ser 208:65–77

    Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59–97

    Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (1992) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 719–767

    Google Scholar 

  • Wind T, Conrad R (1995) Sulphur compounds, potential turnover of sulphate and thio-sulphate, and numbers of sulphate-reducing bacteria in planted and unplanted paddy soil. FEMS Microb Ecol 18:257–266

    CAS  Google Scholar 

  • Wind T, Conrad R (1997) Localisation of sulphate reduction in planted and unplanted rice field soil. Biogeochemistry 37:253–278

    CAS  Google Scholar 

  • Zehnder AJB, Stumm W (1988) Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 1–38

    Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities. Biol Fertil Soils 29:111–129

    CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Rev 61:533–616

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bodelier, P.L.E. (2003). Interactions Between Oxygen-Releasing Roots and Microbial Processes in Flooded Soils and Sediments. In: de Kroon, H., Visser, E.J.W. (eds) Root Ecology. Ecological Studies, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09784-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09784-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05520-1

  • Online ISBN: 978-3-662-09784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics