Skip to main content

Prediction and Statistical Analysis of Alternatively Spliced Exons

  • Chapter
Regulation of Alternative Splicing

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 31))

Abstract

The completion of large genomic sequencing projects revealed that metazoan organisms abundantly use alternative splicing. Alternatively spliced exons can be found in these sequences by sequence comparison of genomic, mRNA and EST sequences. Furthermore, a large number of alternative exons have been described in the literature. Here, we review computer and manually curated databases of alternative exons and discuss the various approaches used to generate them. Sequence analysis shows that alternative exons often have unusual lengths, suboptimal splice sites and characteristic nucleotide patterns. Despite this progress alternative exons cannot be predicted ab initio from genomic data, which is due to the degenerate nature of splicing signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amendt BA, Si ZH, Stoltzfus CM (1995) Presence of exon splicing silencers within human immunodeficiency virus type 1 tat exon 2 and tat-rev exon 3: evidence for inhibition mediated by cellular factors. Mol Cell Biol 15 (11): 6480

    PubMed  CAS  Google Scholar 

  • Ashiya M, Grabowski PJ (1997) A neuron-specific splicing switch mediated by an array of premRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart. RNA 3 (9): 996–1015

    PubMed  CAS  Google Scholar 

  • Ayane M, Preuss U, Köhler G et al. (1991) A differentially expressed murine RNA encoding a protein with similarities to two types of nucleic acid binding motifs. Nucleic Acids Res 19: 1273–1278

    Article  PubMed  CAS  Google Scholar 

  • Beaudoing E, Gautheret D (2001) Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Res 11 (9): 1520–1526

    Article  PubMed  CAS  Google Scholar 

  • Bell MY, Cowper AE, Lefranc M.-P et al. (1998) Influence of intron length on alternative splicing of CD44. Mol Cell Biol 18: 5930–5941

    PubMed  CAS  Google Scholar 

  • Berget SM (1995) Exon recognition in vertebrate splicing. J Biol Chem 270: 2411–2414

    PubMed  CAS  Google Scholar 

  • Birney E, Kumar S, Krainer AR (1993) Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 21 (25): 5803–5816

    Article  PubMed  CAS  Google Scholar 

  • Black DL (1991) Does steric interference between splice sites block the splicing of a short c-src neuron-specific exon in non neuronal cells? Genes Dev 5: 389–402

    Article  PubMed  CAS  Google Scholar 

  • Boggs RT, Gregor P; Idriss S et al. (1987) Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell 50 (5): 739–747

    Article  PubMed  CAS  Google Scholar 

  • Breitbart RE, Andreadis A, Nadal-Ginard B (1987) Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu Rev Biochem 56: 467–495

    Article  PubMed  CAS  Google Scholar 

  • Brett D, Pospisil H, Valcarcel J et al. (2002) Alternative splicing and genome complexity. Nat Genet 30 (1): 29–30

    Article  PubMed  CAS  Google Scholar 

  • Bruzik JP, Maniatis T (1995) Enhancer-dependent interaction between 5’ and 3’ splice sites in trans. Proc Natl Acad Sci USA 92 (15): 7056–7059

    Article  PubMed  CAS  Google Scholar 

  • Burge CB, Padgett RA, Sharp PA (1998) Evolutionary fates and origins of U12-type introns. Mol Cell 2 (6): 773–785

    Article  PubMed  CAS  Google Scholar 

  • Burset M, Seledtsov IA, Solovyev VV (2000) Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res 28 (21): 4364–4375

    Article  PubMed  CAS  Google Scholar 

  • Burset M, Seledtsov IA, Solovyev VV. (2001) SpliceDB: database of canonical and non-canonical mammalian splice sites. Nucleic Acids Res 29 (1): 255–259

    Article  PubMed  CAS  Google Scholar 

  • Caceres JF, Stamm S, Helfman DM et al. (1994) Regulation of alternative splicing in vivo by over-expression of antagonistic splicing factors. Science 265 (5179): 1706–1709

    Article  PubMed  CAS  Google Scholar 

  • Caputi M, Casari G, Guenzi S, Tagliabue R, Sidoli A, Melo DA, Baralle FE (1994) A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res 22 (6): 1018–1022

    Article  PubMed  CAS  Google Scholar 

  • Carlo T, Sterner DA, Berget SM (1996) An intron splicing enhancer containing a G-rich repeat facilitates inclusion of a vertebrate micro-exon. RNA 2 (4): 342–353

    PubMed  CAS  Google Scholar 

  • Chandler D, McGuffin ME, Piskur J et al. (1997) Evolutionary conservation of regulatory strategies for the sex determination factor transformer-2. Mol Cell Biol: 2908–2919

    Google Scholar 

  • Chaudhari N, Hahn WE (1983) Genetic expression in the developing brain. Science 220: 924–928

    Article  PubMed  CAS  Google Scholar 

  • Clark F, Thanaraj TA (2002) Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from humans. Hum Mol Gent 11: 1–14

    Article  Google Scholar 

  • Cooper TA (1998) Muscle-specific splicing of a heterologous exon mediated by a single musclespecific splicing enhancer from the cardiac troponin T gene. Mol Cell Biol 18 (8): 4519–4525

    PubMed  CAS  Google Scholar 

  • Cooper TA, Mattox W (1997) The regulation of splice site selection, and its role in human disease. Am J Hum Genet 61: 259–266

    Article  PubMed  CAS  Google Scholar 

  • Coulter LR, Landree MA, Cooper TA (1997) Identification of a new class of exonic splicing enhancers by in vivo selection [published erratum appears in Mol Cell Biol 1997 June 17(6):3468]. Mol Cell Biol 17 (4): 2143–2150

    PubMed  CAS  Google Scholar 

  • Croft L, Schandorff S, Clark F et al. (1999) ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nat Genet 24: 340–341

    Google Scholar 

  • Del Gatto F, Breathnach R (1995) Exon and intron sequences, respectively, repress and activate splicing of a fibroblast growth factor receptor 2 alternative exon. Mol Cell Biol 15(9): 48254834

    Google Scholar 

  • Dralyuk I, Brudno M, Gelfand MS et al. (2000) ASDB: database of alternatively spliced genes. Nucleic Acids Res 28 (1): 296–297

    Article  PubMed  CAS  Google Scholar 

  • Elrick LL, Humphrey MB, Cooper TA, Berget SM (1998) A short sequence within two purine-rich enhancers determines 5’ splice site specificity. Mol Cell Biol 18 (1): 343–352

    PubMed  CAS  Google Scholar 

  • Epstein JA, Glaser T, Cai J et al. (1994) Two independent and interactive DNA-binding sub-domains of the Pax6 paired domain are regulated by alternative splicing. Genes Dev 8 (17): 2022–2034

    Article  PubMed  CAS  Google Scholar 

  • Fogel BL, McNally MT (2000) A cellular protein, hnRNP H, binds to the negative regulator of splicing element from Rous sarcoma virus. J Biol Chem 275 (41): 32371–32378

    Article  PubMed  CAS  Google Scholar 

  • Fu X-D (1995) The superfamily of arginine/serine-rich splicing factors. RNA 1: 663–680

    PubMed  CAS  Google Scholar 

  • Gallego ME, Gattoni R, Stevenin J et al. (1997) The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A. EMBO J 16 (7): 1772–1784

    Article  PubMed  CAS  Google Scholar 

  • Gelfand MS, Dubchak I, Dralyuk I et al. (1999) ASDB: database of alternatively spliced genes. Nucleic Acids Res 27 (1): 301–302

    Article  PubMed  CAS  Google Scholar 

  • Graham IR, Hamshere M, Eperon IC (1992) Alternative splicing of a human alpha-tropomyosin muscle-specific exon: identification of determining sequences. Mol Cell Biol 12 (9): 3872–3882

    PubMed  CAS  Google Scholar 

  • Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6: 1197–1211

    Article  PubMed  CAS  Google Scholar 

  • Hanamura A, Caceres JF, Mayeda A et al. (1998) Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4: 430–444

    PubMed  CAS  Google Scholar 

  • Hastings ML, Krainer AR (2001) Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol 13 (3): 302–309

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs V, Ryner LC, Baker B (1998) Regulation of sex-specific selection of fruitless 5’ splice sites by transformer and transformer-2. Mol Cell Biol 18: 450–458

    PubMed  CAS  Google Scholar 

  • Helfman DM, Rici WM (1989) Branch point selection in alternative splicing of tropomyosin pre-mRNAs. Nucleic Acids Res 17: 5633–5640

    Article  PubMed  CAS  Google Scholar 

  • Hertel KJ, Maniatis T (1998) The function of multisite splicing enhancers. Mol Cell 1: 449–455

    Article  PubMed  CAS  Google Scholar 

  • Hide WA, Babenko VN, van Heusden PA et al. (2001) The contribution of exon-skipping events on chromosome 22 to protein coding diversity. Genome Res 11 (11): 1848–1853

    PubMed  CAS  Google Scholar 

  • Hoshijima K, Inoue K, Kiguchi I et al. (1991) Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 1991 (252): 833–836

    Article  Google Scholar 

  • Huh GS, Hynes RO (1994) Regulation of alternative pre-mRNA splicing by a novel repeated hexanucleotide element. Genes Dev 8 (13): 1561–1574

    Article  PubMed  CAS  Google Scholar 

  • Humphrey MB, Bryan J, Cooper TA, Gerget SM (1995) A 32-nucleotide exon-splicing enhancer regulates usage of competing 5’ splice sites in a differential internal exon. Mol Cell Biol 15 (8): 3979–3988

    PubMed  CAS  Google Scholar 

  • Jensen KB, Drege BK, Stefani G et al. (2000) Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25: 359–371

    Article  PubMed  CAS  Google Scholar 

  • Ji H, Zhou Q, Wen F et al. (2001) AsMamDB: an alternative splice database of mammals. Nucleic Acids Res 29: 260–263

    Article  PubMed  CAS  Google Scholar 

  • Jumaa H, Nielsen PJ (1997) The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J 16: 5077–5085

    Article  PubMed  CAS  Google Scholar 

  • Kamma H, Portman DS, Dreyfuss G (1995) Cell type specific expression of hnRNP proteins. Exp Cell Res 221: 187–196

    Article  PubMed  CAS  Google Scholar 

  • Kan Z, Rouchka EC, Gish WR et al. (2001) Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res 11 (5): 889–900

    Article  PubMed  CAS  Google Scholar 

  • Kawai J, Shinagawa A; Shibata K et al. (2001) Functional annotation of a full-length mouse cDNA collection. Nature 409 (6821): 685–690

    Article  PubMed  Google Scholar 

  • Kawamoto S (1996) Neuron-specific alternative splicing of nonmuscle myosin II heavy chain-B pre-mRNA requires a cis-acting intron sequence. J Biol Chem 271 (30): 17613–17616

    PubMed  CAS  Google Scholar 

  • Kent WJ, Zahler AM (2000a) Conservation, regulation, synteny, and introns in a large-scale C. briggsae-C. elegans genomic alignment. Genome Res 10 (8): 1115–1125

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ, Zahler AM (2000b) The intronerator: exploring introns and alternative splicing in Caenorhabditis elegans. Nucleic Acids Res 28 (1): 91–93

    Article  PubMed  CAS  Google Scholar 

  • König H, Ponta H, Herrlich P (1998) Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J 10: 2904–2913

    Article  Google Scholar 

  • Komatsu M, Kominami E, Arahata K et al. (1999) Cloning and characterization of two neural-salient serine/arginine-rich ( NSSR) proteins involved in the regulation of alternative splicing in neurons. Genes Cells 4: 593–606

    Google Scholar 

  • Kosaki A, Nelson J, Webster NJ (1998) Identification of intron and exon sequences involved in alternative slicing of insulin receptor pre-mRNA. J Biol Chem 273: 10331–10337

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al. (2001) Initial sequencing and analysis of the human genome. Nature 409 (6822): 860–921

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Durbin R (2001) A computational scan for U12-dependent introns in the human genome sequence. Nucleic Acids Res 29 (19): 4006–4013

    PubMed  CAS  Google Scholar 

  • Libri D, Goux-Pelletan M, Brody E, Fiszman MY (1990) Exon as well as intron sequences are cis-regulating elements for the mutually exclusive alternative splicing of the beta tropomyosin gene. Mol Cell Biol 10 (10): 5036–5046

    PubMed  CAS  Google Scholar 

  • Libri D, Piseri A, Fiszman MY (1991) Tissue-specific splicing in vivo of the beta-tropomyosin gene: dependence on an RNA secondary structure. Science 252 (5014): 1842–1845

    Article  PubMed  CAS  Google Scholar 

  • Lou H, Gagel RF (1999) Mechanism of tissue-specific alternative RNA processing of the calcitonin CGRP gene. Front Horm Res 25: 18–33

    Article  PubMed  CAS  Google Scholar 

  • Lou H, Gagel RF, Berget SM (1996) An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev 10 (2): 208–219

    Article  PubMed  CAS  Google Scholar 

  • Lui H-X, Zhang M, Krainer AR (1998) Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 12: 1998–2012

    Article  Google Scholar 

  • Lui H-X, Chew SL, Cartegni L et al. (1999) Exonic splicing enhancer motif recognized by human SC35 under splicing conditions. Mol Cell Biol 20: 1063–1071

    Google Scholar 

  • Lynch KW, Maniatis T (1995) Synergistic interactions between two distinct elements of a regulated splicing enhancer. Genes Dev 9 (3): 284–293

    Article  PubMed  CAS  Google Scholar 

  • Manley JL, Tacke R (1996) SR proteins and splicing control. Genes Dev 10: 1569–1579

    Article  PubMed  CAS  Google Scholar 

  • Mattox W, Baker BS (1991) Autoregulation of the splicing of transcripts from the transformer-2 gene of Drosophila. Genes Dev 5: 786–796

    Article  PubMed  CAS  Google Scholar 

  • Mattox W, Palmer MJ, Baker BS (1990) Alternative splicing of the sex determination gene transformer-2 is sex-specific in the germ line but not in the soma. Genes Dev 4: 789–805

    Article  PubMed  CAS  Google Scholar 

  • Mayeda A, Krainer AR (1992) Regulation of alternative pre-mRNA splicing by hnRNP Al and splicing factor SF2. Cell 68 (2): 365–375

    Article  PubMed  CAS  Google Scholar 

  • Mayeda A, Helfman DM, Krainer AR (1993) Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein Al and pre-mRNA splicing factor SF2/ASF [published erratum appears in Mol Cell Biol 1993 Jul 13(7):4458]. Mol Cell Biol l3(5): 29933001

    Google Scholar 

  • Carthy EM, Phillips JA 3rd (1998) Characterization of an intron splice enhancer that regulates alternative splicing of human GH pre-mRNA. Hum Mol Genet 7 (9): l491–1496

    Google Scholar 

  • Nally LM, McNally MT (1996) SR protein splicing factors interact with the Rous sarcoma virus negative regulator of splicing element. J Virol 70 (2): 1163–1172

    Google Scholar 

  • Nally LM, McNally MT (1998) An RNA splicing enhancer-like sequence is a component of a splicing inhibitor element from Rous sarcoma virus. Mol Cell Biol 18 (6): 3103–3111

    Google Scholar 

  • Milner RJ, Sutcliffe JG (1983) Gene expression in rat brain. Nucleic Acids Res 11: 5497–5520

    Article  PubMed  CAS  Google Scholar 

  • Min H, Turck CW, Nikolic JM, Black DL (1997) A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev 11: 1023–1036

    Google Scholar 

  • Mironov AA, Fickett JW, Gelfand MS (1999) Frequent alternative splicing of human genes. Genome Res 9: 1288–1293

    Article  PubMed  CAS  Google Scholar 

  • Modafferi EF, Black DL (1997) A complex intronic splicing enhancer from the c-src pre-mRNA activates inclusion of a heterologous exon. Mol Cell Biol 17 (11): 6537–6545

    PubMed  CAS  Google Scholar 

  • Modrek B, Resch A, Grasso C et al. (2001) Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 29 (13): 2850–2859

    Article  PubMed  CAS  Google Scholar 

  • Mount SM (1982) A catalogue of splice junction sequences. Nucleic Acids Res 10 (2): 459–472

    Article  PubMed  CAS  Google Scholar 

  • Mount SM, Salz HK (2000) Pre-messenger RNA processing factors in the Drosophila genome. J Cell Biol 150 (2): F37 - F44

    Article  PubMed  CAS  Google Scholar 

  • Nagel RJ, Lancaster AM, Zahler AM (1998) Specific binding of an exonic splicing enhancer by the pre-mRNA splicing factor SRp55. RNA 4 (1): 11–23

    PubMed  CAS  Google Scholar 

  • Nakai K, Sakamoto H (1994) Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene 141: 171–177

    Article  PubMed  CAS  Google Scholar 

  • Nayler O, Cap C, Stamm S (1998) Human transformer-2-beta gene (SFRS10): complete nucleotide sequence, chromosomal localization, and generation of a tissue-specific isoform. Genomics 53: 191–202

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF, Liu JS, Lawrence CE (1995) Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Prot Sci 4: 1618–1632

    Article  CAS  Google Scholar 

  • Pagani F, Buratti E, Stuani C, Romano M, Zuccato E, Niksic M, Giglio L, Faraguna D, Baralle FE (2000) Splicing factors induce cystic fibrosis transmembrane regulator exon 9 skipping through a nonevolutionary conserved intronic element. J Biol Chem 275 (28): 21041–21047

    Article  PubMed  CAS  Google Scholar 

  • Polydorides AD, Okano HJ, Yang YYL et al. (2000) A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc Natl Acad Sci USA 97: 6350–6355

    Article  PubMed  CAS  Google Scholar 

  • Reddy R (1989) Compilation of small nuclear RNA sequences. Methods Enzymol 180: 521–532

    Article  PubMed  CAS  Google Scholar 

  • Screaton GR, Caceres JF, Mayeda A et al. (1995) Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J 14 (17): 4336–4349

    PubMed  CAS  Google Scholar 

  • Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15 (17): 7155–7174

    Article  PubMed  CAS  Google Scholar 

  • Shiga N, Takeshima Y,Sakamoto H, Inoue K, Yokota Y, Yokoyama M, Matsuo M (1997) Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy. J Clin Invest 100 (9): 2204–2210

    CAS  Google Scholar 

  • Si ZH, Rauch D, Stoltzfus CM (1998) The exon splicing silencer in human immunodeficiency virus type 1 Tat exon 3 is bipartite and acts early in spliceosome assembly. Mol Cell Biol 18 (9): 5404–5413

    PubMed  CAS  Google Scholar 

  • Sirand-Pugnet P, Durosay P, Brody E, Marie J (1995) An intronic ( A/U)GGG repeat enhances the splicing of an alternative intron of the chicken beta-tropomyosin pre-mRNA. Nucleic Acids Res 23: 3501–3507

    Google Scholar 

  • Smith CWJ, Valcârcel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. TIBS 25: 381–388

    PubMed  CAS  Google Scholar 

  • Southby J, Gooding C, Smith CW (1999) Polypyrimidine tract binding protein functions as a repressor to regulate alternative splicing of alpha-actinin mutually exclusive exons. Mol Cell Biol 19 (4): 2699–2711

    PubMed  CAS  Google Scholar 

  • Staffa A, Acheson NH, Cochrane A (1997) novel exonic elements that modulate splicing of the human fibronectin EDA exon. J Biol Chem 272: 33394–33401

    Google Scholar 

  • Stamm S, Zhang MQ, Marr TG et al. (1994) A sequence compilation and comparison of exons that are alternatively spliced in neurons. Nucleic Acids Res 22 (9): 1515–1526

    Article  PubMed  CAS  Google Scholar 

  • Stamm S, Casper D, Hanson V et al. (1999) Regulation of the neuron-specific exon of clathrin light chain B. Mol Brain Res 64: 108–118

    Article  PubMed  CAS  Google Scholar 

  • Stamm S, Zhu J, Nakai K et al. (2000) An alternative-exon database and its statistical analysis. DNA Cell Biol 19 (12): 739–756

    Article  PubMed  CAS  Google Scholar 

  • Steitz JA (1992) Splicing takes a holiday. Science 257: 888–889

    Article  PubMed  CAS  Google Scholar 

  • Stoss O, Olbrich M, Hartmann AM et al. (2001) The STAR/GSG family protein rSLM-2 regulates the selection of alternative splice sites. J Biol Chem 276 (12): 8665–8673

    Article  PubMed  CAS  Google Scholar 

  • Tacke R, Manley JL (1999) Determinants of SR protein specificity. Curr Opin Cell Biol 11: 358–362

    Article  PubMed  CAS  Google Scholar 

  • Tacke R, Chen Y, Manley JL (1997) Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc Nall Acad Sci USA 94 (4): 1148–1153

    Article  CAS  Google Scholar 

  • Tanaka K, Watakabe A, Shimura Y (1994) Polypurine sequences within a downstream exon function as a splicing enhancer. Mol Cell Biol 14: 1347–1354

    PubMed  CAS  Google Scholar 

  • Thanaraj TA (1999) A clean data set of EST-confirmed splice sites from Homo sapiens and standards for clean-up procedures. Nucleic Acids Res 27 (13): 2627–2637

    Article  PubMed  CAS  Google Scholar 

  • Thanaraj TA (2000) Positional characterisation of false positives from computational prediction of human splice sites. Nucleic Acids Res 28: 744–754

    Article  PubMed  CAS  Google Scholar 

  • Thanaraj TA, Clark F (2001) Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions. Nucleic Acids Res 29 (l2): 2581–2593

    Article  PubMed  CAS  Google Scholar 

  • Thanaraj TA, Robinson A (2000) Prediction of exact boundaries of exons. Briefings Bioinform 1: 343–356

    Article  CAS  Google Scholar 

  • Tian H, Kole R (1995) Selection of novel exon recognition elements from a pool of random sequences. Mol Cell Biol 15: 6291–6298

    PubMed  CAS  Google Scholar 

  • Tian M, Maniatis T (1993) A splicing enhancer complex controls alternative splicing of double-sex pre-mRNA. Cell 74 (1): l05–114

    Article  Google Scholar 

  • Tsukahara T, Casciato C, Helfman DM (1994) Alternative splicing of beta-tropomyosin premRNA: multiple cis-elements can contribute to the use of the 5’- and 3’-splice sites of the nonmuscle/smooth muscle exon 6. Nucleic Acids Res 22 (12): 2318–2325

    Article  PubMed  CAS  Google Scholar 

  • Valentine CR (1998) The association of nonsense codons with exon skipping. Mutat Res 411 (2): 87–117

    Article  PubMed  Google Scholar 

  • Weighardt F, Biamonti G, Riva S (1996) The role of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism. BioEssays 18: 747–756

    CAS  Google Scholar 

  • Wentz MP, Moore BE, Cloyd MW, Berget SM, Donehower LA (1997) A naturally arising mutation of a potential silencer of exon splicing in human immunodeficiency virus type 1 induces dominant aberrant splicing and arrests virus production. J Virol 71 (11): 8542–8551

    PubMed  CAS  Google Scholar 

  • Wise JA (1993) Guides to the heart of the spliceosome. Science 262: 1978–1979

    Article  PubMed  CAS  Google Scholar 

  • Wu S, Romfo CM, Nilson TW et al. (1999) Functional recognition of the 3’ splice site AG by the splicing factor U2AF. Nature 402: 832–835

    Article  PubMed  CAS  Google Scholar 

  • Zahler AM, Neugebauer KM, Lane WS et al. (1993) Distinct functions of SR proteins in alternative pre-mRNA splicing. Science 260 (5105): 219–222

    Article  PubMed  CAS  Google Scholar 

  • Zandberg H, Moen TC, Baas PD (1995) Cooperation of 5’ and 3’ processing sites as well as intron and exon sequences in calcitonin exon recognition. Nucleic Acids Res 23 (2): 248–255

    PubMed  CAS  Google Scholar 

  • Zhang L, Liu W, Grabowski PJ (1999) Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB. RNA 5 (1): 117–130

    Article  PubMed  CAS  Google Scholar 

  • Zhang MQ, Marr TG (1993) A weight array method for splicing signal analysis. Comput Appl Biosci 9 (5): 499–509

    PubMed  CAS  Google Scholar 

  • Zhang MQ, Marr TG (1994) Fission yeast gene structure and recognition. Nucleic Acids Res 22 (9): 1750–1759

    Article  PubMed  CAS  Google Scholar 

  • Zheng ZM, He PJ, Baker CC (1999) Function of a bovine papillomavirus type 1 exonic splicing suppressor requires a suboptimal upstream 3’ splice site. J Virol 73 (1): 29–36

    PubMed  CAS  Google Scholar 

  • Zhuang Y, Weiner AM (1986) A compensatory base change in Ul snRNA suppresses a 5’ splice site mutation. Ce11: 827–835

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thanaraj, T.A., Stamm, S. (2003). Prediction and Statistical Analysis of Alternatively Spliced Exons. In: Jeanteur, P. (eds) Regulation of Alternative Splicing. Progress in Molecular and Subcellular Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09728-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09728-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07858-3

  • Online ISBN: 978-3-662-09728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics